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Abstract

This paper concerns the study of the following stochastic differential equation{
dX = −f(X)dt + σ(X)0dW,

X(0) = x0 > 0,

}

where f : [0, ∞) → [0, ∞) is an increasing function σ ∈ C1(R), W is a (one
dimensional) Wiener process defined on a given probability space (Ω,F,P) with a
filtration {F}t≥0 satisfying the usual conditions. Under some conditions, we show
that any solution of the above problem extincts in a finite time and its extinction
time as a function of the initial datum is continuous. We also extend the above
results to other classes of extinction problems.
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1. INTRODUCTION

In this paper, we address the following stochastic differential equation (SDE)

dX = −f(X)dt + σ(X)0dW, (1)

X(0) = x0 > 0, (2)

where f : [0, ∞) → [0, ∞) is a C1 increasing function for positive values, σ ∈ C1(R),
W is a (one dimensional) Wiener process defined on a given probability space (Ω,F,P)
with a filtration {F}t≥0 satisfying the usual conditions, namely, it is right continuous
and {F}t≥0 contains all P-null sets (see, [14]). Let us notice that our stochastic
differential equation is given in Stratonovich form. It is well known that if a SDE is
given in Itô form, then it may be rewritten in Stratonovich form. In fact, if X(t) solves
dX = −f(X)dt + g(X)dW , where the SDE is given in Itô form, then X(t) solves

dX = −f(X)dt + b(X)0dW

with
b(s) = f(s) + 1

2g′(s)g(s).

The first SDE which dates back to 1930 has been written by Uhlenbeck and Ornstein
(see, [21]). This SDE has been used as a model for the Brownian motion (irregular
motion of a particle suspended in a fluid first observed on the microscope by the botanist
Brown in the XIX century). A mathematical study of SDEs is due to Itô half a century
age and they have extensively used in practically all branches of science and technology
from physics to biology (see [1], [6], [11], [14], [15], [17], [19], [20], [21], and the
references cited therein). We know that a solution X(t) of the SDE in (1)-(2) may
extinct in a finite time, namely, there exists a finite time T such that X(t) > 0 for
t ∈ [0, T ), but X(t) = 0 for t ≥ T . The time T is called the extinction time of X(t). In
[16], Nabongo and Boni have considered the SDE defined in (1)-(2) in the case where
σ(X) is replaced by σ(X, ε), ε being a positive parameter. Under some conditions, they
have showed that any solution X(t) of (1)-(2) extincts in a finite time, and its extinction
time goes to that of the solution α(t) of the following ordinary differential equation
(ODE)

α′(t) = f(α(t)), t > 0, α(0) = x0,

as ε goes to zero with total probability. Motivated by their work, in the present paper,
we are interested in the continuity of the extinction time as a function of the initial
datum. We consider the following SDE

dXε = −f(Xε)dt + σ(Xε)0dW, (3)

Xε(0) = xε
0 > 0, (4)
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where xε
0 > x0, and limε→0 xε

0 = x0. Under some assumptions, we show that, any
solution X(t) of (1)-(2) extincts in a finite time. In addition, we prove that any solution
Xε(t) of (3)-(4) also extincts in a finite time, and its extinction time goes to that of
X(t) with total probability as ε goes to zero. The remainder of the paper is written in
the following manner. In the next section, we give a result about stability of ODEs.
In the third section, under some assumptions, we show that any solution X(t) of the
SDE defined in (1)-(2) extincts in a finite time and its extinction time as a function of
the initial datum is continuous. Finally, in the last section, we reveal the possibility of
extension for the results of Section 3 to other classes of extinction problems.

2. STABILITY OF ODES

In this section, we prove a result about stability of ODEs. Consider the solution y(t) of
the following ODE

y′(t) = −H(t, y(t)), t > 0,

y(0) = α > 0,

where H : R+ × R+ → R, is a function, H ∈ C0,1(R+ × R+). Let z(t) be the solution
of the ODE below

z′(t) = −H(t, z(t)), t > 0,

z(0) = αε > 0,

where αε ≥ α and limε→0 αε = α.
Our result about stability of ODEs is stated in the following theorem.

Theorem 2.1. Let T be a positive fixed time, and suppose that y ∈ C1([0, T ]) such that
y(t) ≥ ρ > 0 for t ∈ [0, T ]. Then, we have

sup
t∈[0,T ]

|y(t) − z(t)| = O(|α − αε|, as ε → 0.

Proof. Let t(ε) be the first t ∈ (0, T ) such that

|y(t) − z(t)| ≤ ρ

2 for t ∈ (0, t(ε)). (5)

It is clear that |y(0) − z(0)| = |α − αε| goes to zero as ε tends to zero. This implies that
t(ε) > 0 when ε is sufficiently small. An application of the triangle inequality gives

z(t) ≥ y(t) − |y(t) − z(t)| ≥ ρ − ρ

2 = ρ

2 for t ∈ (0, t(ε)).
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Introduce the error
e(t) = y(t) − z(t) for t ∈ (0, t(ε)).

Invoking the mean value theorem, we easily see that

e′(t) = −Hy(t, ξ(t))e(t) for t ∈ (0, t(ε)), e(0) = y(0) − z(0),

where ξ(t) is an intermediate value between y(t) and z(t), and Hy is the partial
derivative of H with respect to the second variable. Let

L = sup
t∈[0,T ],y≥ ρ

2

|Hy(t, y(t))|

and introduce the function

w(t) = eLt|y(0) − z(0)|, for t ∈ [0, T ].

A direct calculation renders

w′(t) ≥ −Hy(t, ξ(t))w(t) for t ∈ (0, t(ε)), w(0) ≥ e(0).

With the help of the maximum principle, we get w(t) ≥ e(t) for t ∈ (0, t(ε)). In
the same way, we also prove that w(t) ≥ −e(t) for t ∈ (0, t(ε)), which implies that
|e(t)| ≤ w(t) for t ∈ (0, t(ε)), or equivalently

|y(t) − z(t)| ≤ eLt|y(0) − z(0)|, for t ∈ (0, t(ε)). (6)

Now, let us show that t(ε) = T . Suppose that t(ε) < T . Making use of (5) and (6), we
see that

ρ

2 = |y(t(ε)) − z(t(ε))| ≤ eLt|y(0) − z(0)| = eLt|α − αε|.

Since the quantity on the right hand side of the second equality goes to zero as ε tends
to zero, we deduce that ρ

2 ≤ 0, which is impossible. Consequently, t(ε) = T and the
proof is complete.

3. CONTINUITY OF EXTINCTION TIMES

In this section, under some conditions, we show that any solution X(t) of (1)-(2)
extincts in a finite time and its extinction time as a function of the initial datum is
continuous. For the sake of simplicity, let us start with some examples concerning
ODEs. Consider the following ODE

y′(t) = −yp(t), t > 0, (7)

y(0) = M > 0, (8)
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where p > 0. An explicit solution of (7)-(8) is given by

y(t) =


1

(M1−p+(p−1)t)
1

p−1
if p > 1,

Me−t if p = 1
(M1−p − (p − 1)t)

1
p−1
+ if 0 < p < 1,

where (x)+ = max{x, 0}. Thus, we see that if p ≥ 1, then 0 < y(t) < M for t ≥ 0 and
limt→∞ y(t) = 0, but if 0 < p < 1, then 0 < y(t) < M for t ∈ [0, M1−p

1−p
) and y(t) = 0

for t ≥ M1−p

1−p
. In this case, we say that the solution y(t) of (7)-(8) extincts in a finite

time, and the time T0 = M1−p

1−p
is called the extinction time of the solution y(t). Now, let

yε(t) be the solution of the ODE below

y′
ε(t) = −yp

ε(t), t > 0,

yε(0) = M ε > 0,

where M ε ≥ M and limε→0 M ε = M. When 0 < p < 1, then reasoning as above,
we see that yε(t) extincts in a finite time Tε = M1−p

ε

1−p
. It is not hard to check that

limε→0 Tε = M1−p

1−p
= T0. More generally, consider the following ODE

α′(t) = −f(α(t)), t > 0, (9)

α(0) = M > 0, (10)

where f ∈ C1(R) is an increasing function for positive values. It is well known that, if
the integral

∫ M
0

ds
f(s) diverges, then the solution α(t) of (9)-(10) satisfies 0 < α(t) < M

and limt→∞ α(t) = 0, but if the integral
∫ M

0
ds

f(s) converges, then the solution of (9)-(10)
extincts in a finite time and its extinction time T0 is given explicitly by T0 =

∫ M
0

ds
f(s) .

Now, let αε(t) be the solution of the ODE below

α′
ε(t) = −f(αε(t)), t > 0,

αε(0) = M ε > 0,

where M ε ≥ M and limε→0 M ε = M. Reasoning as previously, we note that αε(t)
extincts in a finite time at the time Tε =

∫ Mε

0
dσ

f(σ) . This implies that limε→0 Tε = T0.

Thus, we see that for certain ODEs, the extinction times as functions of the initial datum
are continuous. Now, let us consider the SDEs. Our first result is the following.

Theorem 3.1. Suppose that σ(X) = X and
∫ α

0
ds

f(s) < ∞ for any positive real α. Then
for almost every ω, any solution X(t) of the SDE in (1)-(2) extincts in a finite time T ω.
In addition, for every ε > 0, any solution Xε(t) of the SDE in (3)-(4) extincts in a finite
time T ω

ε , and the following relation holds limε→0 T ω
ε = T ω with total probability.
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Proof. Since σ(X) = X , then the problem (1)-(2) becomes

dX = −f(X)dt + X0dW, X(0) = x0.

Setting Z = Xe−W , it is not hard to see that dZ = e−W dX − e−W X0dW , which
implies that
dZ = −e−W f(eW Z)dt. This gives a non-autonomous ODE for each ω such that
W (., ω) is continuous, and Z satisfies

Żω(t) = −e−W (t,ω)f(eW (t,ω)Zω(t))dt, t > 0,

Żω(0) = x0.

In the same manner, setting Zε = Xεe−W , we see that Zε obeys

Żε
ω(t) = −e−W (t,ω)f(eW (t,ω)Zε

ω(t)), t > 0, (11)

Żε
ω(0) = xε

0. (12)

In the above problems, ω is regarded as a parameter. Let M > 0, and define

AM = {ω : W (·, ω) is continuous and max
0≤t≤T∗+1

|W (·, ω)| ≤ M},

where T∗ =
∫ x0

0
ds

f(s) . Let Z1 be the solution of the following ODE

Z ′
1(t) = −e−Mf(e−MZ1(t)), t > 0,

Z1(0) = xε
0.

If ω ∈ AM , then we observe that

Żε
ω(t) ≤ −e−Mf(eMZε

ω(t)), t > 0, (13)

Zε
ω(0) = xε

0. (14)

It is not hard to see that Z1(t) extincts at the time T1 = e2M
∫ e−M xε

0
0

ds
f(s) . By the

maximum principle for ODE, we discover that

0 ≤ Zω(t) ≤ Zε
ω(t) ≤ Z1(t) for t ≥ 0, ω ∈ AM .

Therefore, if ω ∈ AM , then Zε
ω(t) and Zω(t) extinct in finite times T ω

ε and T ω,
respectively, such that T ω ≤ T ω

ε ≤ T1. Let 0 < ε < T ω

2 . There exists ρ ∈ (0, 1)
such that

e2M
∫ e−M ρ

0

dσ

f(σ) ≤ ε

2 . (15)
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Since Zω(t) extincts at the time T ω, there exists a time T0 ∈ (T ω − ε
2 , T ω) such that

0 < Zω(t) < ρ
2

for t ∈ [T0, T ω). Invoking Theorem 2.1, we easily see that the solution Zε
ω(t) of

(11)-(12) verifies
|Zε

ω(t) − Zω(t)| ≤ ρ
2 for t ∈ [0, T0]. An application of the triangle inequality gives

Zε
ω(T0) ≤ |Zε

ω(T0) − Zω(T0)| + Zω(T0) ≤ ρ

2 + ρ

2 = ρ. (16)

The estimate (13) may be rewritten as follows

dZε
ω

f(e−MZε
ω) ≤ −e−Mdt, t > 0.

Integrate the above inequality over (T0, T ω
ε ) to obtain

T ω
ε − T0 ≤ e2M

∫ e−M Zε
ω(T0)

0

dσ

f(σ) . (17)

We deduce from (15)-(17) that

0 ≤ T ω
ε − T ω = T ω

ε − T0 + T0 − T ω ≤ ε

2 + ε

2 = ε.

Use the fact that P(∪∞
M=1AM) = 1, X = eW Z and Xε = eW Zε to complete the

proof.

Consider now the SDEs in Îto sense. Then, X(t) solves

dX = −f(X)dt + XdW, (18)

X(0) = x0, (19)

and Xε(t) solves

dXε = −f(Xε)dt + XεdW, (20)

Xε(0) = xε
0. (21)

Then, we have the following result.

Theorem 3.2. Theorem 3.1 remains valid if X(t) and Xε(t) solve (18)-(19) and
(20)-(21), respectively.

Proof. According to the introduction of the paper, we see that the SDE in (18)-(19) may
be rewritten in Stratonovich sense in the following manner
dX = −f(X) − X

2 + X0dW, X(0) = x0.
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Setting Z = Xe−W , it is not hard to see that dZ = e−W dX −e−W X0dW, which implies
that
dZ = −[eW f(eW Z) + 1

2eW Z]dt. This gives a non-autonomous ODE for each ω such
that W (·, ω) is continuous, and Z satisfies

Żω(t) = −[eW (t,ω) + f(eW (t,ω))Zω(t) + 1
2eW (t,ω)Zω(t)], t > 0,

Zω(0) = x0.

In the same way, setting Zε = Xεe−W , we find that

Żε
ω(t) = −[eW (t,ω) + f(eW (t,ω))Zε

ω(t) + 1
2eW (t,ω)Zε

ω(t)], t > 0, (22)

Zε
ω(0) = xε

0. (23)

Consider M > 0, and define

AM = {ω : W (·, ω) is continuous and max
0≤t≤T∗+1

|W (·, ω)| ≤ M},

where T∗ =
∫ x0

0
ds

f(s) . Let Z1 be the solution of the following ODE

Żε
1(t) = −[eW (t,ω)f(eW (t,ω))Zε

1(t) + 1
2eW (t,ω)Zε

1(t)], t > 0,

Zε
1(0) = xε

0.

It is not difficult to see that Z1(t) extincts at the time

T1 = e2M
∫ e−M xε

0

0

dσ

f(σ) + 1
2eMσ

.

Owing to the maximum principle for ODE, we obtain

0 ≤ Zω(t) ≤ Zε
ω(t) ≤ Z1(t) for t ≥ 0, ω ∈ AM .

We deduce that, if ω ∈ AM , then Zε
ω(t) and Zω(t) extinct in finite times T ω

ε and T ω,
respectively, such that T ω ≤ T ω

ε ≤ T1. Again, we know that

Żε
ω(t) ≤ −[e−Mf(e−M)Zε

ω(t) + 1
2e−MZε

ω(t)], t > 0, (24)

Zε
ω(0) = xε

0. (25)

Let 0 < ε < T ω

2 . There exists ρ ∈ (0, 1) such that

e2M
∫ e−M ρ

0

dσ

f(σ) + 1
2e−Mσ

≤ ε

2 . (26)
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Since Zω(t) extincts at the time T ω, there exists a time T0 ∈ (T ω − ε
2 , T ω) such that

0 < Zω(t) < ρ
2

for t ∈ [T0, T ω). Invoking Theorem 2.1, we easily see that the solution Zε
ω(t) of

(22)-(23) verifies
|Zε

ω(t) − Zω(t)| ≤ ρ
2 for t ∈ [0, T0]. An application of the triangle inequality gives

Zε
ω(T0) ≤ |Zε

ω(T0) − Zω(T0)| + Zω(T0) ≤ ρ

2 + ρ

2 = ρ. (27)

The inequality (24) may be rewritten as follows

dZε
ω

e−Mf(e−MZε
ω) + 1

2e−MZε
ω

≤ −dt, t > 0.

Integrate the above inequality over (T0, T ω
ε ) to obtain

T ω
ε − T0 ≤ e2M

∫ e−M Zε
ω(T0)

0

dσ

f(σ) + 1
2e−Mσ

≤ ε

2 . (28)

It follows from (21)-(23) that

0 ≤ T ω
ε − T ω = T ω

ε − T0 + T0 − T ω ≤ ε

2 + ε

2 = ε.

Use the fact that P(∪∞
M=1AM) = 1, X = eW Z and Xε = eW Zε to complete the

proof.

Now, let us consider the general case. The statement of our main result is given in the
theorem below.

Theorem 3.3. Let ϕ(s, x) be the flux associated to the ODE ẏ = σ(y), y(0) = x such
that ϕ(s, 0) = 0, ϕ(s, x) > 0 for x > 0, and let H(s, x) = f(ϕ(s,x))σ(x)

σ(ϕ(s,x)) .

Suppose that

H(s, x) ≥ H(t, x) if s ≥ t,

and there exists a function ks(x) such that

1
H(s, x) ≤ ks(x) ∈ L1([0, x0]). (29)

Then for almost every ω, any solution X(t) of (1)-(2) extincts in a finite time T ω.
Moreover, for everey ε > 0, any solution Xε(t) of (3)-(4) extincts in a finie time T ω

ε

and the following relation holds limε→0 T ω
ε = T ω with total probability.
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Proof. Exploiting the fact that ϕ(t, x) is the flux of the following ODE

ẏ = σ(y), y(0) = x,

we derive the following equalities

ϕt(t, x) = σ((ϕ(t, x)), ϕ(0, x) = x. (30)

Let Zω(t) be the solution of the Random differential equation

Żω(t) = −f (ϕ(W (t, ω), Zω(t)))
ϕx(W (t, ω), Zω(t)) , t > 0, (31)

Zω(0) = x0. (32)

Set X(t, ω) = ϕ(W (t, ω), Zω(t)). A straightforward computation reveals that

dX = ϕt(W, Zω)dW + ϕx(W, Zω)dZω

= σ (ϕ(W, Zω)) dW + ϕx(W, Zω)dZω

= σ(X)dW − f(X)dZω.

Therefore, we observe that X is a solution of the SDE defined in (1)-(2). On the other
hand, the use of (30) leads us to dϕ

σ(ϕ) , which implies that

∫ ϕ(t,x)

x

ds

σ(s) = t. (33)

Taking the derivative in x of (33) we obtain ϕx(t,x)
σ(ϕ(t,x)) − 1

σ(x) = 0, or equivalently

ϕx(t, x) = σ(ϕ(t,x))
σ(x) . We infer from (31) that

Żω(t) = −f (ϕ(W (t, ω), Zω(t))) σ(Zω(t))
σ (ϕx(W (t, ω), Zω(t))) , t > 0.

Take the expression of H to arrive at

Żω(t) = −H (ϕ(W (t, ω), Zω(t))) , t > 0,

Zω(0) = x0.

In the same way, we also show that

Żε
ω(t) = −H (ϕ(W (t, ω), Zε

ω(t))) , t > 0, (34)

Zε
ω(0) = xε

0. (35)

Consider M > 0, and define

AM = {ω : W (·, ω) is continuous and max
0≤t≤T∗+1

|W (·, ω)| ≤ M},
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where T∗ =
∫ x0

0
ds

f(s) . If ω ∈ AM , then we note that

Żε
ω(t) ≤ −H (ϕ(W (t, ω), Zε

ω(t))) , t > 0, (36)

Zε
ω(0) = xε

0. (37)

Let Z1 be the solution of the following ODE

Z ′
1(t) ≤ −H (ϕ(W (t, ω), Z1(t))) , t > 0, (38)

Z1(0) = xε
0. (39)

Employing (29), we observe that the integral
∫ xε

0
0

dx
H(−M,x) is finite. We deduce that the

solution Z1 extincts in a finite time T1 =
∫ xε

0
0

dx
H(−M,x) . Making use of the maximum

principle for ODE, we derive the following estimates

0 ≤ Zω(t) ≤ Zε
ω(t) ≤ Z1(t) for t ≥ 0, ω ∈ AM .

Therefore, if ω ∈ AM , then Zε
ω(t) extincts in a finite time T ω

ε such that

0 < T ω < T ω
ε < T1.

Let 0 < ε < T ω

2 . There exists ρ ∈ (0, 1) such that∫ ρ

0

dx

H(−M, x) ≤ ε

2 . (40)

Since Zω(t) extincts at the time T ω, there exists a time T0 ∈ (T ω − ε
2 , T ω) such that

0 < Zω(t) < ρ
2

for t ∈ [T0, T ω). Invoking Theorem 2.1, we easily see that the solution Zε
ω(t) of

(34)-(35) satisfies
|Zε

ω(t) − Zω(t)| ≤ ρ
2 for t ∈ [0, T0]. An application of the triangle inequality gives

Zε
ω(T0) ≤ |Zε

ω(T0) − Zω(T0)| + Zω(T0) ≤ ρ

2 + ρ

2 = ρ. (41)

The estimate (36) may be rewritten in the following manner

dZε
ω

H(−M, Zε
ω) ≤ −dt, t > 0.

Integrate the above inequality over (T0, T ω
ε ) to obtain

T ω
ε − T0 ≤

∫ Zε
ω(T0)

0

dσ

H(−σ, Zε
ω) ≤ ε

2 . (42)

It follows from (40)-(42) that

0 ≤ T ω
ε − T ω = T ω

ε − T0 + T0 − T ω ≤ ε

2 + ε

2 = ε.

Use the fact that P(∪∞
M=1AM) = 1, X = ϕ(W, Z) and Xε = ϕ(W, Zε) to complete the

proof.
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Remark 3.1. It is worth noting that, if σ(x) = x and f(s) = sq with 0 < q < 1, then

ϕ(s, x) = xes and H(s, x) = xqe−(1−q)s.

4. OTHER EXTINCTION TIMES

In this section, we show the possibility to extend the results of the previous section to
another problem of extinction which is called problem of quenching. To illustrate our
analysis, let us consider the following ODE

y′(t) = −(y(t))−p, t > 0 (43)

y(0) = M, (44)

where p > 0. An explicit solution of (43)-(44) is given by

y(t) =
(
M1+p − (1 + p)t

) 1
1+p for t ∈ [0,

M1+p

1 + p
).

Hence, we see that, if t = M1+p

1+p
, then y(t) reaches the value zero which implies that

y′(t) exploses at the same time. In this case, we say that the solution y(t) quenches in a
finite time, and it is not hard to check that the quenching time as a function of the initial
datum is continuous. More generally, consider the following ODE

y′(t) = −f(y(t)), t > 0 (45)

y(0) = M, (46)

where f(s) is a positive, decreasing function for positive values of s, lims→0+ f(s) =
∞,

∫ M
0

ds
f(s) < ∞. It is not hard to see that M > y(t) > 0 for t ∈ [0, T0), but

limT →T0 y(t) = 0 where T0 =
∫ M

0
ds

f(s) . Therefore, we discover that y(t) quenches in a
finite time, and the time T0 is called the quenching time of y(t). Let us also notice that
the derivative in t of y(t) exploses at the time T0. Here again, we easily show that the
quenching time as a function of the initial datum is continuous. Now, let us consider
the following SDEs

dX = −f(X)dt + σ(X, ε)0dW, (47)

X(0) = x0 > 0, (48)

and

dXε = −f(Xε)dt + σ(Xε)0dW, (49)

Xε(0) = xε
0 > 0, (50)

where f(s) is positive, decreasing function for positive values of s, lims→0+ f(s) = ∞,∫ α
0

ds
f(s) < ∞ for any positive real α. Using the methods developed in the previous

section, it is not difficult to prove that the above theorems remain valid when X(t) and
Xε(t) solve (45)-(46) and (47)-(8), respectively.
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