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Abstract

In this paper, the new improved generalized tanh-coth method have been devised
for getting new exact soliton solutions of a (2+1)-dimensional extension of the
Benjamin — Ono equation. This equation arises in the study of long internal gravity
waves in deep stratified fluids. The solitons and other solutions achieved by this
method can be categorized as a single and combo solitons . The results obtained
confirm that proposed method is efficient techniques for analytic treatment of a

wide variety of the nonlinear evolution equations.

Keywords: The improved generalized tanh-coth method, New exact soliton
solutions, The (2+1)-dimensional extension of the Benjamin — Ono equation with

time-dependent coefficients.

1. INTRODUCTION

This paper is introduced with the (2+1)-dimensional extension of the Benjamin — Ono
equation with time-dependent coefficients

s + (D)2, + B gz + 1)ty = O, (1)

where the «(t) cotrols the nonlinear and the characteristic speed of the long
waves,the other 5(t) and ~(¢) are the fluid depth, a(t), 5(¢) and ~y(¢) are real functions
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of variable t and u(z,y,t) is the elevation of the free surface of the fluid. For
a(t) = a,6(t) = p and y(t) = 0,the equation (1) gives the standard Benjamin —
Ono equation [1-5].

Nonlinear evolution equations (NLEEs) have been extensively used to depict natural
phenomena of science and engineering including electromagnetism, plasma physics,
mathematical physics, fiber optics, mathematical biology, thermodynamic and vice
versa. The study of wave propagation has attracted much attention that resulted to
significant research findings during the past decades. Nonlinear evolution equations
play a major role in a variety of scientific and engineering fields, such as ocean
engineering, optical fiber communications, plasma physics and fluid dynamics, where
useful results on solitions have been reported in the literature [4-11].

Another powerful method has been presented by Malfliet [12], who had customized the
tanh technique and called the tanh method. In 2002 Fan and Hon [13], extended the tanh
method which is called the extended tanh method. In 2006 Wazwaz [14], extended and
improved this method which is called the tanh-coth method. In 2008 Salas and Gomez
[15], improved and generalized this method which is called the improved generalized
tanh-coth method [15-18].

The rest composition of the paper is devised as follows. In section 2, we briefly
describe the extended and improved this method, In section 3, the improved generalized
tanh-coth method is applied to the (2+1)-dimensional extension of the Benjamin — Ono
equation with time-dependent coefficients. The last section is some conclusions are
given.

2. THE IMPROVED GENERALIZED TANH-COTH METHOD

In this section, we present short description of the extended improved generalized
tanh-coth method. Consider the general nonlinear PDE:

P(U7 Ux; Ut: Ux:m Utt7 Uxt) = Oa (2)

where v = wu(z,t) is an unkhown function, P is a polynomial in u(xz,t) and the
subscripts for the partial derivatives.
Step 1: The traveling wave transformation is given by

Ulx,t) = u(n),n =z — At +no, (3)
where ) is the wave speed. We can redure (3) to the ordinary differential equation

O(u, ul’ul/7u///7 u””,u””’...) — 0 (4)
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Step 2: According to the improved generalized tanh-coth method,we seek the exact
solution of (3) that can be expressed in the following from:

u(n) = 3 (o)’ + Y ai)om™, %)

where M is a positive integer integer that will be determined by balanving the highest
order derivative term with the highest order nonlinear term. The coefficients a;(t) are
variable funtion of t (ap/(t) # 0 and a_y/(t) # 0) that are determined later while the
new variable ¢(n) is the solution to the generalized Riccti equation

¢ (n) = bo(t) + bi(t)d(1) + ba(t) b (n)?, (6)

where by(t), by (t) and by(t) are variable funtion of t. The solutions of generalized Riccti
equation by [15].
Case 1 (exponential function solutions) . When by(t) = 0,

_ bi(t)
N —bg (t) + b1 (t)e—bl OUN

¢(n) (7)

Case 2 (trigonometric and hyperbolic function solutions). When b;(t) = 0,
bo(t)ba(t
o =Y R (RO R 0, W0 >0k >0 @
2

WW bo(®) 2B ) bot) > 0,b2(t) <0, (9)

¢<n>:—v‘§)°2(<?)b2(”tanh<— oo 5a(0) 1), bo(t) < 0.0a(t) >0, (10)

¢<n>=—vb‘;it£2(”tan<— b b ). bolt) < 0,bo(t) <0. (1)

Case 3 (exponential function solutions). When by (t) = 0

d(n) =

— eb1(tn
o) = 2 jz:ll();)(t)

Case 4 (rational function solutions). When by(t) = b1(¢t) =0
1

(12)

o) = 37 (13)

Case 5(trigonometric function solutions). When by (t)? < 4bo ()b (t) and by (t) # 0,

_ V/4bo(t)ba(t) — b (t)* tan(g\/4bo(t)ba(t) — bi(t)? n) — bi(t)
26 (1) '

¢(n) (14)
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Case 6(hyperbolic function solutions). When by (¢)? > 4by(t)ba(t) and by(t) # 0,

\/bl 4b0 )b2 (t) tanh(%\/bl (t)2 — 4bo(t)bg(t) ’I]) — b1 (t)

¢(n) = 25 (1) (15)
Case 7(rational function solutions). When by (¢)? # 0 and by (t)? = 4bo(t)bs(t),
o(n) = _200(t)(i(t) n +2) (16)

bi(t)%

We substitute equation (5) into equation (6) and collect all terms with the same order
of ¢(n)’; we get a polynomial in ¢(n). Equating each coefficient of the polynomial
to zero, we will give a system of algebraic equations involving the parameters
bo(t), bi(t),ba(t), N, ag, ay, as, ..., apr.Solving the system, we can construct a variety of
exact solutions of equation (3)

3. THE IMPROVED GENERALIZED TANH-COTH METHOD OF THE
BENJAMIN-ONO EQUATION

We use the wave transformations v = V(n) and n = oy + asy + ast , to reduce
equation (1) to the following ODE:

" "

azV(n)" +a()ai(V(n)?®)" + (B(t)ai +(Hay)V(n)". (17)

Balancing the highest order linear term V()" with the highest order nonlinear term
(V(n)?)" in equation (17), we get M = 2. Consequently, we set

a3(t) | aalt)
o(n)  o(n)?*

Using equation (6) and equation (18) in equation (19) and equating all the coefficients

V(n) = ao(t) + a1 ()e(n) + e2(t)(n)* + (18)

of power of ¢(n) to be zero, we obtain a system of algebraic equation in the unknowns
@(t), 1(t), a2(t), qs(t) and qu(2).

()¢ 20aa® (g (1) (bo (£))* + 120 g4 () B (bo (£))*
+120 g4 (1) v o (bo ()" = 0, (19)

¢(n) " B6aar®(qa () by (1) bo (t) + 24 @ ar’gs (t) qa (2) (bo ()
+336 ¢4 (t) B o'y (t) (bo (t )) + 336 ¢4 (1) v ay'hy (t) (bo (t»g
+24 5 (1) Bon* (bo ()" + 24 g5 (1) v a2* (bo ()" = 0, (20)
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420 an’gs (1) qa (£) by (£) bo (1) + 32 an® (qa (£)) b (£) bo(t)

+12a g0 () g (8) (bo (1))* + 60 g (£) B o "by (t) (bo (1))

+60 g3 (1) y aa*by (8) (bo (£))° + 240 g4 (1) 5 an b (1) (bo (1))

+330qa () Bon* (by (£))* (bo (1)) + 240 g4 (£) v z"ba (t) (bo (1))’

+330 g4 () 7 a2 (b1 (£))” (bo ())” + 6 a5”qa (t) (bo (1))

+6aar® (g3 (1)) (bo (1)* + 16 ven® (qa (1))* (by (£))* = 0, 1)
28 v ar® (qa (£))* b (£) by () + 40 g3 () B ar b (t) (bo (1))
+18aar®qs () u (1) (br (1) + 4 ar®qo (1) gs (£) (bo (1))
+haan®q (8) qa (1) (bo (1)” +50 g3 () Ban® (by (£))* (bo (1))
+40 g3 (t) 7 a2y (1) (bo (1))* 4 50 g5 (1) v a™ (by (£))* (o (1))*
+130g4 () B o (by ()% bo (1) + 130 qa (£) v a2* (by (£))* bo (1)
+10 v an® (g5 (1)) by (1) bo (1))

bo () + 440 gy (t) B o by () by () (bo
+440 g4 (1) 7 cig"b (£) by (£) (bo (£))* + 36 s g3 () qa () b (£) o (1)
+20 vy qo (1) qa (£) b (£) bo (£) + 2 s’qs (t) (bo (1))?

+10 az®qy () by () bo (t) = 0, (22)

L (1) (bo ()
£)% bo (1) + 232 g4 (£) 7 2" (8) (by

+232q4 (t) B ar by (t) (s ( (£))% bo (2)
+6 v an®qr (1) qa (8) by (£) bo () + 30 cvan®qs (1) qa (£) Do () by (1)
+6 v an’qo (1) gs (1) b () bo () + 16 v an®qo (1) qa () Do () bo (1)

bo ()

(bo (£))" + 8 aas® (g5 ()" ba (¢)
o (t) +8aan®qo () ai (1) (br (1))*

+15g3 (1) Baa™ (br (1))” bo (

+15.q3 (t) y ca® (by (£))7 bo (£) + 136 qa (£) B an™ (ba (1))* (bo (1))°

F120001” (g4 (1)) (b2 (£))* + 16 qa (1) B o™ (by ()" + 16 g4 (1) v az* (b (£))"
+3 3" qs (1) by (1) bo (£) + 8 as®qu (£) ba (£) bo (1) + 4 aven® (g3 (1)) (br (1))

+4ag’qu (1) (b1 (1))° =0,
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o(m) ™" :22qs (1) Ban'by () (b (1)) bo (t) + 22 g5 () 7 aa’ba (¢) (by (1)) bo (t)
+120 4 (£) B ar™ (ba (£)7 by (1) bo () + 120 qu (1) v ™ (b2 () by (1) bo (t)
+4aar®q (1) qu (t) by (t) by (t) + 4 ar®qo () g3 (1) by (1) b (2
+12 0 ar’qo (1) qa (£) by () by (£) + 12 an®gs () qa (t) (b2 (1))
+2aan’qo (1) gs (£) (b (1)* + 20 ar’qr (8) qa (£) (b (1))
+16 g3 (1) i (b2 (1)) (bo (£))* + 30 s (£) 5 ar by (1) (b1 (1))
+30 ga (£) 7 a2y (1) (by (1)) + 6. (gs (£))* b (t) by (1)
+16. 3 (£) Baa™ (ba (1) (bo (£)* + g5 () B oa™ (by ()"

2

+3 (1) v azt (b (8)" + 2 s®qs (1) ba (8) o () + 6 ag®qa (1) ba (£) by (¢)
=0,

+as’gs () (b ())? (24)

o) raqn () Bon® (b (£)*bo (8) + qu () v oz (b (£))° bo (¢

+qs (£) B ar by (1) (b1 (1)) + g3 (£) 7y b (£) (b (1))

2 qan?q (£) qa (£) b (£) by (£) + 2. cnqo (£) gs (£) b (£) by (8)

+2aarqo (t) qu (t) by () bo () + 2 ar®qa (t) g3 (t) by () by (2)

+8qs (£) B an™ (ba ()% by () bo (£) + 8gs (1) v az” (b (1)) by (£) bo (t)

+8qy (1) Bon"by () (b (1)) by (£) + 8.1 (£) y 2"ba () (bo () by (1)

+16.a (1) B o™ (b (1)) bo (1) + 14.qa () Bon* (b2 (£))* (br (1))

+16 4 (1) v az* (by (1)) bo () + 4 avan®qo (t) g2 (t) (bo (1))

+16.q2 (1) Ban® (b (1)) b (£) + 16 g2 () 7 ™ (bo (£)) b (¢)

+1d.qa (1) Ban™ (by (1))* (bo (£))* + 14 g2 (1) 7 ™ (ba (£))* (bo (1))

+14.qq (1) y a” (b2 (1)) (b ()) +daar’q (1) qa (t) (b2 (1))

Fag’qr (8) by (8) bo (8) + s’ () by (8) b (1) + 2 ar® (g1 (1)) (bo (1))

+2aar” (g3 (1))* (b2 (1))* + 2 a5’q2 (t) (bo (1))

+2 gy (1) (ba (1))* = 0, (25)



351

g (1) Baa® (b (1) + qu (£) y e (b (1))
+6 i5”g (1) b (1) bo () + 6 cvan® (g1 (1)) b (£) bo (1)
+16.q1 () Ban™ (bs (1)) (bo ()" + 16 1 (£) 7y ™ (b (£))* (bo (1))
+120 g (1) Ban™ (bo (£)) ba (£) by (1) + 12 v anqo (t) g2 () by () bo (¢)
+22q1 (1) B s by (£) (by (£))* bo (£) + 221 (£) 7 azba (£) (by (£))* bo (¢)
+120 go (t) v a* (bo () by (t) by ()
+as®qr () (b (1))* + 2 asqu (1) b (t) bo (£)
+12aa1%q1 (8) o (1) (bo (1)) + 2 avanqo (8) qu (t) (b (1))
+2a gy (t) gs (1) (by (1)) +30g2 (£) B (by (1)) bo (1)
+30 g2 (1) v az” (by (£))* bo (£) + 4 var®qa () gs (£) ba (1) bo (1)
+4aar®q () qu () by (t) by (t) = 0, (26)

136 g2 () Bar™ (bo ())* (b2 (1)) + 136 g2 () 7 a2* (bo (1))* (b2 (1))
+15.q1 () Bon'by (1) (b (1)) + 4 as’qa (1) (b (1))?
+60 1 (1) v az” (ba (£))7 by (£) bo (£) + 2322 (£) v by (1) b (t) (b1 (1))?
+daar® (g (1) (b1 ()" +12aas® (g2 (1)) (bo (1))
+3 as’q (1) b () b (1)
+16.z (t) Ban™ (by (1)) + 16 g2 () 7 ax® (b1 (£))* + 8 as®qz () ba (1) bo (t)
+30 o ®qy (1) qo (1) by () bo () + 6 cvarqo (t) qu () by (t) by (2)
+6 v ai’qa (1) gs (£) by (£) ba (1) + 2322 () B *bo (1) b (t) (b1 (1))?

) ba (t

(t

16 an®qo (£) ga () by () by (£) + 60 g1 () Ban™ (b (1)) by (£) bo (2)
+8aan® (1 (£)2 by () by () + 8 v anqo (£) g2 (£) (b (£))?
+15q1 (£) 7 ax'bs (1) (b1 (£))* =0, 27)

440 g2 (1) 5 a1 by (1) (b2 (£)) by (£) + 440 go (1) 7 2"bo (1) (b2 (1)) b (1)
+20 v ®qo () ga (£) by () by () + 36 v g () g (£) b () bp (2)

+10 g’y () by () by (1) + 25’y (¢) (b2 (1)* + 18 ar®qr (1) g (1) (br ()
+28aan® (g2 (£))7 by (1) bo (£) + 10 s (g1 (1)) bz () by (1)
+haaq (t) g (t) (b (

2 (1))* +daran’qa (1) gs (t) (b (1))
+40 ¢y (1) B (b (£))* bo () + 50 ¢y (t) B (ba (£))* (by (1))
+40 1 (£) v az* (b2 (1)) bo (£) + 50 g1 () 7y a2* (ba (£))* (by (1))
+130g (£) B (by (1))° ba (£) + 130 g2 (£) ya® (by (£))* b2 (1) =0, (28)
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d(m)': A2aa’q (£) gz (£) by (£) by () + 32 an” (g (1)) ba (1) bo (¢
+12a 0o (£) g2 (t) (b2 () + 240 g2 (1) B o by (t) (b (1))’
+240 g (£) 7 a2bo (1) (b2 (£))° + 330 g2 (£) B o™ (b (£))° (b2 (1))
+330 g2 (1) 7 o (by (1)) (b2 (£))* + 60 1 (1) Bon* (b2 (£))* by ()
+60 g1 (t) v az” (b (£))” by () + 16 cvenr® (g2 (1)) (by (£))°
+6aar® (g1 ()7 (b2 (1))* + 6 a5”qa (£) (b2 (1))* = 0, (29)

d(n)°:  36aar” (g (t)ba () by () + 24 cvar®qu () g2 (¢) (b (¢))?
+336 g2 (t) 7 a2* (b2 (£))” b1 () + 336 g2 () Ban* (b2 (1))° by (1)
+24q1 (t) Bon* (b2 (1) + 24 q1 () v an* (b2 ()" =0, (30)

d(n)°:  120qa () yon* (ba (1)* + 120 () Baa™ (b2 (£))"
1200 ar? (gs (1)% (b (1)) = 0. 31)

Solving the system of algebraic equations with the aid of Maple, using equation
(19)-(31), we obtain the following results.

First Set
1880 (£)by (1) an’ + 8 (by (1)* ar® + 870 () b (£) as* +7 (b1 ()%’ + a?
4o (t) = _§ 2 )
(e Xe 4]
art +yat) by (t) by (¢
@1 (t) = 0,q2(t) = 0,43 (t) = PN CL ek 2) 1 (t) 0(),
CL’Oél
2 4 4
o
Case 1. When by(t) = 0 and ¢(n) = 7b2(t)+ll;1gge*b1(t)n’
. 1.8 bo (t) Y 012462 (t) + 8 bo (t) OZ14,6 bg (t) + Y CY24 (bl (t))Q + O./14ﬁ (bl (t))2
Ul(l'7y,t) - _5( 2 )
(6 Xe 3]
_1( as® . 6(Ban’ +yaxt)bo(?) (=ba () + by (t) e"r(B)(testwartyaz)y
2 aaq? aaq?

- 6 (bo (t))2 (5 0414 + a24) (_b2 (t) + by (t) e—bl(t)(ta3+za1+ya2))2

aan? (b (t))?

(32)
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Case 2. When b;(t) =0,
1. ¢(n) = V”OW tan(y/bo(t) b2(t) 1), bo(t) > 0,ba(t) > 0,

188y (1) 7 ag*bs () + 8bo () an* B b () + 7 s* (by (1))?

wlryt) = = a2
T8 (b () +as? 6bo (t) (Bon® +7az") by (1)
2 aa? e (an (/B ()83 () (105 + 2y + ya2)>)2
6bo (t) (B ar® + v az?) by (t) (33)

5 -

aoq? (tan ( bo (t) by (t) (tas + xay + yog)))

2. ¢(n) = w tanh (—/—bo(0) ba(8) 1), bo(t) < 0,bs(t) > 0,
Us (1;7 Y, t) _ o 8 by (t) i 0424b2 (;)a—;?;)o (t) 0414/6 by (t)

_’70424 (b1 (8))* + oq*B (by () + ars?

200 iy ?
+6 (B a4 %4) by (t) bo (t) by (t)
a12+/=by () by () tanh ( —bo (t) b (t) (tag + oy + ya2)>
+ b

0 it | ons) bl 5 (34)

aay? (tanh (v/=bo (b (0) (tas + was + yas) ) )

b b
3. 6() = Y20 tan(—/bo(t) ba(t) m), bolt) < 0,ba(t) < 0,

_ 1 8by(t)y by () +8bo (£) axB by (1) + v (b (1))
u4((L’, Y, t) - 5 D)

o
LB (b (1) +as? 6 bo () (B ar* + 7 ax*) by (t)
2 aa® aaq? <tan ( bo (t) by (t) (tas + xay + ya2)>>2
+6 (ﬁ Oé14 + v a24) bl <t> bo (t) b2 (t) ) (35)
aay?/bo (1) b (8) tan (/Bo (1) 2 (1) (tas + war + yas) )
Case 3. When by(t) = 0 and ¢(y) = “nlto0 0
u5(x7 v, t) _ _% 8 b() (t) ’)/042462 (t) + 8 bo (t) 0614ﬁ 1;20(2)2 + 7@24 (bl (t)>2 + 04146 (bl <t>>2
lag (B aa® + 5 ") (ba ()" bo (1)
2 a2 e (—bo (t) + by (t) ebr()(tastaon+yaz))
(bo ()% (Ban® + 7 an?) (b1 (£))” (36)

aa? (—bo (£) =+ by (t) ebr(O(tastrortyaz))®



354

Case 4. When by(t) = b,(t) =0 and ¢(n) = _bz(i) -,

(b (1))” (B on® + 7 a?) (ba (1)) (tas + zay + yay)?

ug(x,y,t) = —6

[eXe3]
» bo (1) v by (t) I (Bart + v ast) by (1) by (1) by (1) (tas + zay + yao)
oo oo
18by (t) cn*Bba () + v o (b1 (1)° + a1 *B (b (1)” + as” 17
D) oo ? ' 37

Case 5. When b, (t)? < 4by(t)by(t), ba(t) # 0
and () = Y2000 -bi @ tan(; v/ 2001 m)—b1 (0

202 (D)
U7(ZL‘, Y, t) _ _%8 b[) (t> 70624192 (t) + 8[)0 (Of)aoléglﬁ bg (t) + 70@4 (bl (t))Q
Lt 0f e Bt 0 Oh(Ob ),
2 o2

o/ (by ()% + 4bo (1) by (1
- (tan (1\/ — (by (1)) + 4 by (£) by () (tas + 70y + yag)) _ b, (t)) :

2

(bo (1)* (Ban* + 7 as")

—(24
( oo

) .

(b2 ())° 39
(\/ (by (£))” — 4bo (£) by (£) tanh (1 /2 (b1 ()% — 404 (1) by (t)n) by (t))

Case 6. When bl(t)2 > 4b0(t)b2 (t) ,bg (t) 7é 0 and
() = Yo 4o(0)ia() tanh(§ /b1 ()2 4bo(£)b2 (t) n)—b1 (1)

(

Zbg(t)
. 18 b() (t) Yy O[Q4b2 (t) + 8 b() (t) 04145 bg (t) + Yy 0424 (bl (t))Q
ug(x,y,t) - _5 050412
1 05145 <b1 <t>>2 + 0632 ﬁOé14 + ’)/0524
= — (12 )
2 oo ?

s/ (b (1))* — 4bo (2) ba (1)
b (£) bo (1) bs (1)

tanh <ﬁ \/(b1 (t))? — 4bg () by (t) (tas + way + yoq)) — by (1)

(bo (1)* (Bau* + 7 as")

)

(

(~24 )

(ba (1))

39
<\/ (by (£))” — 4by (£) by (£) tanh (W (by (£))° — 4by (£) b (t)n) by (t))%

(
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Case 7. When b1 (t)z 7£ 0 ,bl (t)2 = 4b0(t)b2(t) and

2b b 2
¢(77) == O(tgf(i)(§>nn+ _)a

_ 18bg (1) v an'ba (t) + 8o (t) Bz (1) + 7 s’ (b 1)) 4 a8 (by (1))

2 oo ?

1 as’ (Bar® +7a5") (b (1)) (tas + was + yas)
20,2 aay? (by (t) (tas + zoq + yag) + 2)
3 (Bant +ya5") (b (1) (tas + zay + yas)®

2 a2 (b (t) (tos + zon +yon) +2)°

ug(x,y,t) =

(40)

Second Set

o (t) = L8070zt () + 80 () ar'Bba () + st (b ()’ + '8 (b ()" + o’
2 2 )

[6Xe 5]
4 4 2 4 4
() = B +ya )2b1 (t) by (t)’ () = —6 (b2 ()" (8 o 7 )’
[eXe%] o
g3(t) = qa (t) = 0. (41)
Case 1. When by(t) = 0 and ¢(n) = _b2<t)+2183—b1mn’
_ 1y (by (1) oo + a5 (Bart + 7 a?) (by ()b (¢)
UlO(JH Y, t) - _5 CVO{12 -6 OéOZ12 (—bg (t) I bl (t) efbl(t)(ta3+xa1+ya2))
CL8Bby (1) ba(t) ' + B (b ()" ax* + 87 bo () by (t) an’
2 ao?
o (@ Bau' +yas) (0 (1) )

aar? (—by (t) + by (t) e—bl(t)(tangmleraQ))g-

Case 2. When b,(t) =0
1. () = Y220 40 (/B () ba2(t) 1), bo(t) > 0,ba(t) > 0,

= b2 (2)

188y (8)ba (t) an* + B (by (1)* on* + 87 by (1) b (1)
2 o aq?

Ly (b (1) st + ag? (Bon® +vas®) by () /bo (t) b2 ()
2 o o2 o aq?

-(tan ( bo (t) by (1) (tas + zag + yozg)))

up(z,y,t) =

)

— (6

2

by (1) (Bar* + v az?) by (t) (tan ( —bo (t) bz (t) (v + way + 3/0‘2))/2

p 3)

6
[eXe3]
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2. 6() = Y02 tanh(y/bo(8) ba(0) 1), bo(t) > 0.ba(t) < 0,

C188h (M) ba () en + 8 (b (1) an’ + 7 (br (1) s’ + ag?

U12<I, Yy, t) =

2 ao?
_4750(’5)52(75) 2! — 6 Ba +yayt
aal aal

() /o (1) by (1) tanh (\/ 1) ba (1) (tas + vay + ya2))]

by (t) (Ban* + 7zt

_[6

2

(tanh ( bo (1) bs (1) (tas + wan + yaQ))) ! (44)

3. 0(00) = Y202 yanh (/o) ba(t) m), bolt) < 0,bo(t) > 0,

—1.88bo () ba (t) ar* + B (b (1))* an® + 87 bo () by (1) 05" + s
2 o aq?

v (by (1) o (6 (Bar* +7yag*) b (t) /=y (t) ba (t))

200 vy 2 o o2

(tanh ( —bo (t) by (t) (tag + zay + ya2)>)

by () (B ar* + 7 as®) by () (tanh (W tag + xoy + yao )2

oo

wg(z,y,t) =

2

=)

+6

b b
4. () = Y2020 tan(—/bo(0) ba(t) m). bolt) < 0,ba(t) <O,

C8Bbo (1) by (1) an® + B (by (£))* an® + 8ybo (1) b (£) a® + s
200 vy 2
_V(bl(t)) +( Bay +7042)

200 vy 2 ao?
(b () v/Bo () b2 (2) tan (v/Bo (£ B2 (1) (tag + s + ya) ))

6 b (t) (Baa® + v a®) bo (t) <tan ( b20 b Tt yaz))<22

uig(z,y,t) =
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Case 3. When by(t) = 0 and ¢(n) = —bo(t)-zlil(g)ebl(t)n’

u15(x, Y, t) = _% 85 bo (t) by (t) 0614 + 5 (bl (t)oé)lOléfl + 8vby (t) b (t) Q/24 + 0432

-6 (B +7a2") by (1) (—bo (t) + by (t) b )(m3+ml+ya2))
OéCYl

6 (Boa* + v a0t (—bo (t) + b1 (1) ebl(t)(ta3+ml+ya2))
aay? (by (1))
GO 1360 -
am?(b (1) 2 aam?

2

—6

1

Case 4. When by(t) = b,(t) =0 and ¢(n) = — e

2
wig(z,y,t) = _%8550 (t) by (t) u* + B (b (15))2 ant 4+ 8~ bg (1) by () ay

[6 e 3]
1y (01 (1) an” + g 46 (Bar' +ya") b (1)
2 oo ? aaq? (taz + zag + yas)
4 4
_ Bai” +va 48)

aaq? (tag + xag + yoz2)2'

Case 5. When by (t)? < 4by(t)ba(t), ba(t) # 0
4bo (1)b2 (1) =b1 (t)2tan(5 /4bo (t)b2 (1) =b1 (1) 1) —b1 (t)
2

and  ¢(n) = N0 ,
s () — _%85%(15)52 () ar* + B (by (tlza?;ugvbo ()b (1) g™ + 032
1y (b ()t ; (B +7az") b (1) \/— (b1 (1)) + 4 bo (t) b (t))
2 oo ? o a2
(tan (%\/_(bl()) + 4 b (¢t 77) 3ﬁa1a;r’2ya2

(\/—(bl(t))2+4bo tan< \/ (b1 (£))* + 4o (t) by )—b1 (}9)
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Case 6. When b1 (t)z > 4b0(t)b2(t) , bg(t) 7£ 0 and
o(n) = \/bl(t)2*4bo(t)b2(t)tanh(%\/l;l(t)2f4bo(t)b2(t) n)—by (£)

2bo (t

]

_1 8 6 bo (t) bg (t) Oél4 + B (bl (t))Q 0614 + 8’}/ b() (t) bQ (t) 0624 + Oég2
2

t) =
Ulg(ﬂf,y, ) 2 aay

19 0’ Bort a0
2 o o? aaq?

\/(b1 (t))* — 4 bg (t) by (t) tanh (%\/(b1 (t))* — 4 bo (t) by (t)n) — by ()]

§,6’a14—|—7a24
2

-

2 %ot

(V01 @7 =001 0t (500 0 = 40 0 (00 <t>§§1>

Case 7. When b1 (t)Z 7£ 0 ,bl (t)2 = 4()0 (t)bg (t) and
¢(77) _ __2b60(t)(b1(t) n+2)

bi(t)2n
urg(7,y,t) = —%85 bo (t) b () o +a8071§0 (t) by () 0" + v
1B ()t +y (0 (1) o
2 o a2
1o (Bt a0t b (1) bo (1) (by (1) +2)
by (1) aaq? (tas + o + yao)
Ly L0 Bar 4500 () by (0 +2° o

aan? (by (1)) (tas + zay + yay)®

4. CONCLUSIONS

In summary, we have proposed the (2+1)-dimensional extension of the Benjamin —
Ono equation with time-dependent coefficients. the extended improved generalized
tanh-coth Method has been effectively applied to the (2+1)-dimensional extension of the
Benjamin — Ono equation with time-dependent coefficients that describes inner waves
of deep-stratified fluids. Our results revealed that the proposed method is effective for
handling nonlinear evolution equations. Thus, we will extend the proposed method for
some nonlinear fractional partial differential equations in a future work.
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