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Abstract

Graph coloring problem (GCP) is a combinatorial optimization problem with many
applications in science and engineering. Because the coloring is sensitive to the order
of vertices and is computationally hard, heuristic search methods on the domain of
permutation of vertices have become a practical solution approach. In this work,
we propose a modified discrete differential algorithm (MDDE) to generate suitable
permutations by improving mutation and crossover operators. The method is tested
and compared with several well-known methods using DIMACS benchmark graphs.
The experimental results show that the proposed MDDE is effective for the graph
coloring problem.
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1. INTRODUCTION

Permutation-based combinatorial optimization problems arise in many fields of science and
engineering. They include vehicle routing problem, flow shop scheduling problem, optical
permutation network, traveling salesman problem, and graph coloring problem. Since they
are NP-hard problems, many researchers have studied and developed heuristic algorithms
to search for optimum solutions. Some well-known algorithms are genetics algorithm
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(GA) [1], branch and bound algorithm (BB) [2], tabu search algorithm (TS) [3], particle
swarm optimization algorithm (PSO) [4] and differential evolution algorithms (DE) [5].

The DE algorithm is an efficient evolutionary algorithm for solving continuous
optimization problems. Its discrete version has been designed and proposed for solving
combinatorial optimization problems. This research focuses on solving the graph
coloring problem (GCP), which has many applications such as timetable scheduling [6],
examination scheduling [7], and channel routing [8]. Let G = (V,E) be a graph with a
vertex set V and an edge set E. The k coloring is a function c : V → {1, 2, . . . , k} such
that c(u) ̸= c(v) for each (u, v) ∈ E. A graph G is k colorable if it has a k coloring. The
graph coloring problem finds the minimum number k that G is k colorable. This number is
called the chromatic number of G denoted by χ(G).

There are many evolutionary algorithms proposed for solving the GCP. In 2008, Bui
et al. [9] proposed an ant-based algorithm (ABAC). Unlike the ant colony optimization
(ACO), each ant in ABAC colors only a portion of the graph. The results show that
ABAC performed well on some benchmark graphs. In 2010, Ray et al. [10] proposed
the MSPGCA algorithm with a new operator called the double point guided mutation
to improve the performance of the simple genetic algorithm GAGCA. Then, Faraji and
Javadi [11] proposed an algorithm based on bees’ behavior in nature called BEECOL in
2011. The results show that BEECOL outperforms the Max-Min ant system algorithm
(MMGC). In 2012, Pal et al. [12] presented the modification of the simulated annealing
method called MSAGCP, which performs better than the simulated annealing method
SAGCP. The MSAGCP can find the best-known results for most of the tested graphs but
still fails for some instances. In 2015, Mahmoudi and Lotfi [13] introduced a modified
cuckoo optimization algorithm called MCOACOL. It is tested on several graph coloring
benchmark problems and compared with some well-known heuristic search methods. The
obtained results show the high performance of MCOACOL.

In this research, we propose a modified discrete differential algorithm (MDDE) that
improves mutation and crossover operations for solving the graph coloring problem.
The remainder of the paper is organized as follows. Section 2 presents the algorithm
descriptions of the Welsh-Powell method, differential evolution algorithm, and the
proposed MDDE method. Section 3 explains the experimental designs. Section 4
presents the performance comparisons of MDDE and some well-known methods. Then
the conclusion is given in the last section.
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2. ALGORITHM DESCRIPTIONS

2.1. Welsh-Powell method
Since the GCP is NP-hard, the use of heuristic techniques is necessary. One of the effective
heuristic methods to color the vertices of graph G is the Welsh-Powell method [14]. Let
G = (V,E) where V = {v1, v2, . . . , vn} is the vertex set and E = V × V is the edge set.
The Welsh-Powell algorithm can be described as follows:
Step 1: List the vertices in order of descending degrees.
Step 2: Color the first vertex in the list (the vertex with the maximum degree) with color 1.
Step 3: Move down the list and color all the vertices not connected to the colored vertex
with the same color.
Step 4: Repeat Step 3 on all uncolored vertices with a new color in descending order of
degrees until all the vertices are colored.

2.2. Differential evolution algorithm
2.2.1 DE for continuous optimization problems

The DE algorithm is an efficient population-based optimization method for continuous
optimization problems proposed by Storn and Price in 1997 [5]. It consists of three basic
population operations: mutation, crossover, and selection. First, the initial population of
real vectors is generated uniformly in the feasible region. For each generation and each
target vector xi, a mutant vector vi = xr1 +F (xr2 −xr3) is constructed from three different
random population vectors xr1 , xr2 and xr3 which are also different from xi where F is
a scaling factor. The components of vi are exchanged with those of the target vector xi

according to the crossover rate CR to construct a trial vector ui. Then, the target vector xi

is replaced by the trial vector ui if ui is better than xi. DE population vectors will evolve
iteratively and move toward an optimal solution.

2.2.2 DE for permutation-based optimization problems
The DE algorithm for permutation-based optimization problems needs some modifications.
Since all components of a population vector are distinct integers, we cannot use the
difference of vectors directly. However, the property that two vectors have some equal
component values is essential for the mutation operation. The crossover operation also
needs to be modified in designing an efficient permutation-based DE algorithm.
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2.3. The proposed MDDE method
Since the heuristic methods to color the vertices are sensitive to the order of vertices,
we propose a modified discrete differential algorithm (MDDE) to generate suitable
permutations by improving mutation and crossover operators to balance exploration and
exploitation during the search. The mutation strategy considers the distances between
corresponding components of two permutation vectors and uses random insertion operation
to generate a mutant vector. To accelerate the search, MDDE uses a small proportion
of mutant permutations as trial permutations. For the usual mutant permutations, the
crossover strategy applies the two-cut operator [15] to exchange their contents with the
target permutation to construct the trial permutation. The proposed MDDE is described as
follows.
Step 1 Input: A graph G = (V,E), objective function to be minimized (f ), problem
dimension (D), population size (NP ), maximum number of generations (MG), mutation
parameter F in [0, 1], and crossover probabilities Pc and Pt in [0, 1].

Step 2 Initialization: Randomly generate the initial population of NP permutations on D

vertices. Color the vertices of G by using each permutation and the Welsh-Powell method.
Find the best permutation xbest and its best value fbest (number of colors).

Step 3 Mutation: For each target permutation xi, construct the mutant permutation vi by
the following steps.
3.1 Calculate the auxiliary vector δi by

δi,j =

 xr1,j ; xr2,j − xr3,j = 0 or | xr2,j − xr3,j

D
|≥ F

0 ; otherwise
(2.1)

where j = 1, 2, . . . , D and xr1 , xr2 , xr3 are different random population permutations
which are also different from the target xi. They are sorted as

f(xr1) ≤ f(xr2) ≤ f(xr3).

3.2 Random a permutation vector y. Remove the components of y such that δi,j are not
equal to 0 and let ȳ be the vector of the remaining components of y. Then insert each
component of ȳ into each component of δi such that δi,j = 0 to obtain a mutant permutation
vi.

Step 4 Crossover: Construct the trial permutation ui using consecutive parts of xi and vi as
follows.
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4.1 Random a number r in (0, 1).
4.2 If r ≥ Pc, then let ui = vi.
4.3 If r < Pc, then exchange the contents of xi and vi to obtain ui. Random a position
k ∈ {1, 2, . . . , D} to cut xi into 2 parts. Set p1 = [xi,1, xi,2, ..., xi,k]. Remove components
of p1 from vi and let p2 be a vector of the remaining components. Construct z1 and z2 by
concatenating p1 and p2 as z1 = p1p2 and z2 = p2p1. The trial permutation ui is obtained
by

ui =

{
z1 ; s < Pt

z2 ; otherwise
(2.2)

where s is a random number in [0, 1].

Step 5 Selection: Apply the greedy selection to select the population permutation for the
next generation by

xi =

{
ui ; f(ui) ≤ f(xi)

xi ; otherwise
(2.3)

Update the best permutation xbest and the current minimum number of colors fbest.

Step 6 Stopping condition: Repeat all Steps 3 - 5 until reaching the MG. Report the
obtained best permutation xbest and the best value fbest.

The flowchart of the MDDE method is illustrated in Figure 1.

3. EXPERIMENTAL DESIGNS

We conduct three experiments to assess the performance of the MDDE against several
well-known methods. The first experiment compares MDDE with GAGCA and MSPGCA
algorithms [10]. The second experiment compares MDDE with SAGCP and MSAGCP
algorithms [12]. Then the third experiment compares MDDE with MCOACOL, ABAC,
and BEECOL algorithms [13]. The parameters F = 0.5, P c = 0.8, P t = 0.8, NP = 50,
and MG = 100 are set for MDDE, and the algorithm is performed 50 independent runs for
each graph. The settings of the compared methods are taken from the original papers. All
methods are tested on some selected graphs of the DIMACS benchmark downloaded from
the home page: https://mat.gsia.cmu.edu/COLOR/instances.html. The example graphs are
illustrated in Figure 2 by using Social Network Visualizer Software [16].
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Figure 1. Flowchart of the proposed MDDE method.



A Modified Discrete Differential Evolution Algorithm... 337

(a) (b)

(c) (d)

(e) (f)
Figure 2. The example graphs: (a) 2-Insertion 3, (b) queen7 7, (c) myciel6,

(d) miles250, (e) DSJCI 125.1, and (f) queen10 10

4. RESULTS AND DISCUSSION

This section presents the performance comparisons of MDDE with the compared methods
in Table 1 - Table 3. The first four columns of each table show the name of graphs, number
of vertices, number of edges, and the chromatic numbers of graphs. The last columns
show the best values obtained by MDDE and the compared methods. The tables list the
test graphs in the order of the numbers of vertices. We indicate the minimum numbers of
colors obtained among the algorithms in bold. The last row summarizes the total cases that
each algorithm give the numbers of colors equal to χ(G).
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Table 1. Performance comparison of the MDDE, MSPGCA and GAGCA.

Graphs Vertices Edges χ(G) MDDE MSPGCA [10] GAGCA [10]
queen5 5 25 320 5 5 5 6
queen6 6 36 580 7 7 8 9
myciel5 47 236 6 6 6 7
queen7 7 49 952 7 7 7 12
queen8 8 64 1456 9 9 11 15
huck 74 301 11 11 11 11
jean 80 508 10 10 10 11
queen9 9 81 2112 10 10 10 19
david 87 406 11 11 11 11
mugg88 25 88 146 4 4 4 4
myciel6 95 755 7 7 7 10
queen8 12 96 2736 12 12 14 23
mugg100 25 100 166 4 4 4 5
queen10 10 100 2940 11 12 14 20
4-FullIns 3 114 541 7 7 7 9
Games120 120 638 9 9 9 9
DSJCI 125.1 125 736 5 6 6 8
miles750 128 2113 31 31 31 34
miles1000 128 3216 42 42 42 45
miles1500 128 5198 73 73 73 73
anna 138 986 11 11 11 11
2-Insertions 4 149 541 5 5 5 5
5-FullIns 3 154 792 8 8 8 9
myciel7 191 2360 8 8 8 32
mulsol.i.1 197 3925 49 49 49 52
1-Insertions 5 202 1227 6 6 6 7
2-FullIns 4 212 1621 6 6 6 8
3-Insertions 4 281 1046 5 5 5 7
1-FullIns 5 282 3247 6 6 6 7
3-FullIns 4 405 3524 7 7 7 8
4-Insertions 4 475 1795 5 5 5 8
homer 561 1629 13 13 13 15
Total cases with the numbers

31 cases 28 cases 7 cases
of colors equal to χ(G)
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4.1. Performance comparison of MDDE, MSPGCA and GAGCA
The performances of MDDE on 32 test graphs are compared with those of MSPGCA and
GAGCA as reported in [10]. Table 1 shows that MDDE gives the numbers of colors equal to
χ(G) for 30 graphs with the remaining numbers different from χ(G) only 1. The reported
numbers of colors by GAGCA and MSPGCA equal to χ(G) for 7 cases and 28 cases,
respectively. Their remaining numbers differ from χ(G) between 1 to 11. It indicates that
MDDE significantly outperforms GAGCA and slightly outperforms MSPGCA.

Table 2. Performance comparison of MDDE, MSAGCP and SAGCP.

Graphs Vertices Edges χ(G) MDDE MSAGCP [12] SAGCP [12]
queen5 5 25 320 5 5 5 7
queen7 7 49 952 7 7 7 9
huck 74 301 11 11 11 11
jean 80 508 10 10 10 11
queen9 9 81 2112 10 10 11 14
david 87 406 11 11 11 11
mugg88 25 88 146 4 4 4 4
myciel6 95 755 7 7 7 8
mugg100 25 100 166 4 4 4 4
queen10 10 100 2940 11 12 12 17
4-FullIns 3 114 541 7 7 7 7
Games120 120 638 9 9 9 10
DSJCI 125.1 125 736 5 6 6 10
miles750 128 2113 31 31 31 35
miles1000 128 3216 42 42 45 50
Miles1500 128 5198 73 73 75 80
anna 138 986 11 11 11 13
2-Insertions 4 149 541 5 5 5 6
5-FullIns 3 154 792 8 8 8 8
mulsol.i.1 197 3925 49 49 52 58
1-Insertions 5 202 1227 6 6 7 9
Zeroin i 2 211 3541 30 30 30 44
2-FullIns 4 212 1621 6 6 6 6
3-Insertions 4 281 1046 5 5 5 5
1-FullIns 5 282 3247 6 6 6 8
3-FullIns 4 405 3524 7 7 9 12
4-Insertions 4 475 1795 5 5 6 7
homer 561 1629 13 13 13 17
Total cases with the numbers

26 cases 19 cases 8 cases
of colors equal to χ(G)
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4.2. Performance comparison of MDDE, MSAGCP and SAGCP
Table 2 presents the performance comparisons of MDDE, MSAGCP, and SAGCP on
28 graphs. They obtain the numbers of colors equal to χ(G) for 26, 19, and 8 cases,
respectively. The MDDE gives smaller numbers of colors than those of MSAGCP
and SAGCP for 18 and 6 graphs, respectively. This shows that the proposed MDDE
outperforms both SAGCP and MSAGCP.

4.3. Performance comparison of MDDE, MCOACOL, ABAC and BEECOL
Table 3 presents the performance comparison of MDDE, MCOACOL, ABAC, and
BEECOL on 63 graphs. The results show that they give the numbers of colors equal to
χ(G) for 61, 57, 62, and 57 graphs, respectively. Their remaining numbers differ from
χ(G) only 1. Thus, all methods are effective for the GCP. In addition, the proposed MDDE
and ABAC slightly outperform MCOACOL and BEECOL.

Table 3. Performance comparison of MDDE, MCOACOL , ABAC, and BEECOL.

Graphs Vertices Edges χ(G) MDDE MCOACOL [13] ABAC [13] BEECOL [13]
Myciel3 11 20 4 4 4 4 4
myciel4 23 71 5 5 5 5 5
queen5 5 25 320 5 5 5 5 5
1-FullIns 3 30 100 4 4 4 4 4
queen6 6 36 580 7 7 8 7 8
2-Insertions 3 37 72 4 4 4 4 4
myciel5 47 236 6 6 6 6 6
queen7 7 49 952 7 7 7 7 8
2-FullIns 3 52 201 5 5 5 5 5
3-Insertions 3 56 110 4 4 4 4 4
queen8 8 64 1456 9 9 10 9 10
1-Insertions 4 67 232 5 5 5 5 5
huck 74 301 11 11 11 11 11
4-Insertions 3 79 156 4 4 4 4 4
jean 80 508 10 10 10 10 10
3-FullIns 3 80 346 6 6 6 6 6
queen9 9 81 2112 10 10 11 10 11
david 87 406 11 11 11 11 11
mugg88 1 88 146 4 4 4 4 4
mugg88 25 88 146 4 4 4 4 4
1-FullIns 4 93 593 5 5 5 5 5
myciel6 95 755 7 7 7 7 7
queen8 12 96 2736 12 12 13 12 12
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Table 3. Performance comparison of MDDE, MCOACOL , ABAC, and BEECOL (Cont.).

Graphs Vertices Edges χ(G) MDDE MCOACOL [13] ABAC [13] BEECOL [13]
mugg100 1 100 166 4 4 4 4 4
mugg100 25 100 166 4 4 4 4 4
queen10 10 100 2940 11 12 12 11 12
4-FullIns 3 114 541 7 7 7 7 7
Games120 120 638 9 9 9 9 9
DSJCI 125.1 125 736 5 6 6 6 6
miles250 128 387 8 8 8 8 8
miles500 128 1170 20 20 20 20 20
miles750 128 2113 31 31 31 31 31
miles1000 128 3216 42 42 42 42 42
Miles1500 128 5198 73 73 73 73 73
anna 138 986 11 11 11 11 11
2-Insertions 4 149 541 5 5 5 5 5
5-FullIns 3 154 792 8 8 8 8 8
mulsol.i.2 188 3885 31 31 31 31 31
myciel7 191 2360 8 8 8 8 8
mulsol.i.1 197 3925 49 49 49 49 49
1-Insertions 5 202 1227 6 6 6 6 6
Zeroin i 3 206 3540 30 30 30 30 30
Zeroin i 1 211 4100 49 49 49 49 49
Zeroin i 2 211 3541 30 30 30 30 30
2-FullIns 4 212 1621 6 6 6 6 6
3-Insertions 4 281 1046 5 5 5 5 5
1-FullIns 5 282 3247 6 6 6 6 6
3-FullIns 4 405 3524 7 7 7 7 7
Fpsol2.i.3 425 8688 30 30 30 30 30
le450 25a 450 5714 25 25 25 25 25
le450 25b 450 8263 25 25 25 25 25
Fpsol2.i.2 451 8691 30 30 30 30 30
4-Insertions 4 475 1795 5 5 5 5 5
Fpsol2.i.1 496 11654 65 65 65 65 65
homer 561 1629 13 13 13 13 13
2-Insertions 5 597 3936 6 6 6 6 6
1-Insertions 6 607 6337 7 7 7 7 7
Inithx.i.3 621 13969 31 31 31 31 31
Inithx.i.2 645 13979 31 31 31 31 31
4-FullIns 4 690 6650 8 8 8 8 8
2-FullIns 5 852 12201 7 7 7 7 7
Inithx.i.1 864 18707 54 54 54 54 54
5-FullIns 4 1085 11395 9 9 9 9 9
Total cases with the numbers

61 cases 57 cases 62 cases 57 cases
of colors equal to χ(G)
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5. CONCLUSION

In this research, we proposed a discrete differential evolution algorithm MDDE to solve the
graph coloring problems. The MDDE uses new permutation-based mutation and crossover
operators to balance diversification and intensification during the search. Extensive
experiments show that the proposed MDDE is effective for solving the GCP. Future
research can investigate the possibility of solving other graph problems such as maximum
clique problems and the maximum independent set problems using the same approach.
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