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Abstract

The purpose of this literature is to tackle Lane-Emden type fractional order linear
and non linear partial differential equations with initial and boundary conditions
by applying Riemann - Leivoulli fractional integral. Fractional order homotopy
perturbation method, proposed by D. D. Pawar has handled the problems very
easily and precisely yield the approximate series solutions. Further the properties
of Lane-Emden type fractional non linear differential equations with initial and
boundary conditions have been interpreted in the form of two dimensional plots
by using Matlab.
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1. INTRODUCTION

In the view of recent challenges in the emerging fields of science and technology,
researchers are looking forward through fractional order mathematical models [1], [2]
to study the complex concepts of the physical phenomenon. It has been observed
that fractional calculus has made it possible to analyse the physical and chemical
properties more widely. At the same time, theory of fractional calculus have developed
the confrontation regarding it’s solutions. Fractional calculus has made tremendous
evolution in the field of economics and finance [3], physics[4], hydraulics, geology and
fluid dynamics [5], biomedical and biotechnology [6]-[8], control systems [9], signals
and systems, communication theory [10], image processing [11] and so on. On account
of memory effect of fractional calculus, the researchers and scientists have fruitfully
utilised this branch of calculus to enhance the day to day human life applications.

To analyse the fractional order differential equations, we need to solve them more
accurately. Researchers and scientists have demonstrated some of the analytic and
numerical methods which freely handles mathematical models of fractional order
derivatives to get their solutions . The various types of perturbative and non perturbative
techniques like finite difference method [12], variation iteration method [13], Adomain
decomposition method [14], modified Adomian decomposition method [15], fractional
variational iteration method [16], homotopy analysis method [17], Ji Huan He [18] -
[20] proposed homotopy perturbation method. D. D. Pawar et al. [21] have extended
homotopy perturbation method to fractional order homotopy perturbation method.
Fractional order homotopy perturbation method has been applied to solve fractional
order Emden- Fowler type differential equations, fractional order Klein-Gorden type
differential non linear wave equations and fractional order evolution type differential
equations by D. D. Pawar et al. [21].

In this paper , we have illustrated some of the time fractional Lane-Emden type
differential equations by using fractional order homotopy perturbation method to get
it’s series solution and analysed it appropriately. In the next section, we have introduced
fractional order homotopy perterbation method.

1.1. Fractional order homotopy perturbation method [FHPM]

In this section, we have briefly explained fractional order homotopy perturbation
method to solve system of 't number of time fractional ordinary differential equations
with initial conditions. The general form of system of time fractional order partial
differential equations can be considered as follows

s
D ]u]'(l'l,ﬂfg,.’lfg, ...l’T,l,t) + Nj(l’1,$2,$37 ...mr,l,t,ul,um .. .,Ur)

= gj(21, 22, T3, ... Tro1, 1) (1)
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wherea; € RTandj = 1,2, 3, ...r
With the following initial conditions

ULO(.Il, X2, L3y ... LTp—1, tO) - fi(x17 X2, L3, ... x?‘—l) (2)

where: = 1,2, 3, ...rall vV j’»s are non linear operator and f/s are functions of zs and
t.

By taking ’p’ as an embedded parameter, we construct homotopy for each of the
differential equation as follows

(1 —p) (D%u; —ujo) + p(D%uj + Nj(z1, 22, ... xr1, tug, ugs .o yup)  (3)

—gj(IhJZQ, e L1, t)) :O (4)
.. Daj’LLj :Uj70 —p (Uj’() + Nj(l’l, T2, X3y ... Tp—1, t,ul, U, .. .7U7«)
+gj(l'1, T2, T3,y ... LTp_1, t)) (5)

Applying inverse operator, ,.J;” to both sides of 5,

Uj(iCl,.fIZ'Q, T3, ... .I'rfl,t) =t Jta'j’dj’() — ptOJtaj [Uj@

+Nj($17 T2, T3, ... xr—17t7 Ula U27 T U?")

_gj(xla Lo, T3, - .. Tp-1, t)] (6)
where j = 1,2, 3, ... and Uj(z1, z2, T3, ... 2p_1, to) = w;(21, 29,23, ... 2Tr—1, to)

We get the series for the system 1.1 which is given by equating the coefficients of
power of p’s in 4.

Uj(l’l,xz,l’g, ...xr,l,t) = Uj,o +pUj’1 +p2 Uj}g +....= Zpin’i (7)
=0

where all U; ; are functions of 1, x2, 73, ... 7,1 and t. The approximate series solution
for the system 1.1 yields by taking p — 11in 7 as

Uj<$1,$2,l’3, Irfl,t) = Uj’(] + Uj’l + Uj,2 +....= Z Uj,i (8)
=0

It is necessary to note that the major advantage of fractional order homotopy
perturbation method [FHPM] is that it gives solution in the form of perturbation series
which can freely give solution and it may be convergence in all sense which has been
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explained independently.

1.2. Fractional Integral and Fractional Derivative

Definition 1 [1]-[2] A real function h(t),t > 0, is said to be in the space C,,, i € R
if there exist a real number p (> ) such that h(t) = tPhy(t) where hy(t) € C[0,00]
and it is said to be in the space C}} if and only if h" € C), n € N

Definition 2 [/]-/2]

Riemann-Liouville fractional integral

Riemann-Liouville fractional order integral operator (J{*) of order o > 0 of a function
h € C, p > —1is defined as

1 t
" Ta ),

0J h(t) (t—7)* Lh(r)dr (v > 0)

wheret > 0 and T (.) is a well known gamma function.

Some of the properties of Riemann -Liouville fractional integral operator have been
explained. For h(t) € C,, p € R, u > —1,a > 0 a,f > 0andv > —1

L oJoh(t) oJP h(t) = oJ TP h(t)

2. 0JOh(t) oJP h(t) = oJ7 h(t) .o h(t)

@ v r'v+1 a+v
3 0Jf (t—a) = gy (t —a)@t?)

Definition 3 [1]-/2]

Riemann-Liouville fractional order derivative

Let o be non negative real number. Let h(t) be piecewise continuous on (0, co) and
integrable on any finite subinterval of |0, co|.

For t > 0, Riemann-Liouville fractional derivative of h(t) of order «.

oDEh(t) = ﬁ (%)n /0 (= re (), a>0. (9

where n is a positive integer such that (n — 1) < a < n.
Definition 4 [1]-[2]

Caputo sense fractional order derivative

Let o be non negative real number. Let h(t) be piecewise continuous on (0, co) and
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integrable on any finite subinterval of |0, >|.
The Caputo sense fractional order derivative (.OCDf ) of h(t) is defined as

1

¢ Do = t — ey ) (1) dr
D80 = s [ (=) () d

Forn—1<a<n néeN t > 0andh(t) e C™,

Definition 5 [1]-/2]

Grunwald-Letnikov Fractional Derivatives

Grunwald-Letnikov definition of fractional derivative of a function generalize the
notion of backward difference quotient of integer order. Grunwald-Letnikov fractional
derivative of order « of the function f(t) is defined as

[52]
.1 , I'((a+1) .
JDFf(t) = 1lim — —1)/ t— gk 10
P = i j_o( STy ey AL (10
where t_T“ is integer and o € C.
If o« = —1, we have a Riemann sum which is the first integral.

2. TIME FRACTIONAL LANE-EMDEN TYPE DIFFERENTIAL
EQUATIONS

In 1870, J. Homer L.A., et al. [22] have proposed the renewal of heat radiation
from the sun by means of the mechanical power of the sun’s mass and how it goes
descending towards it’s center. They have also focused on the temperatures and
densities corresponding to assumed volume of sun . Further, it was proved that
some of the known gases like hydrogen, carbon or supposing a mixture of gases are
present inside the sun layers. It is hypothesised that pure hydrogen would give the
lowest temperature of all known substances and all the equations have been analysed
systematically.

Lane-Emden type non linear differential equations handles equilibrium density
distribution in self-gravitative sphere of polytrophic isothermal gas, the thermal history
of a spherical cloud of gas, isothermal gas spheres and thermionic currents. The
equation bears great importance in the area of radiative cooling. In astrophysics,
it forms the modelling of clusters of galaxies. It is to be noted that Lane-Emden
type differential equation has a singularity at the origin [23]-[25]. In view of
importance of Lane-Emden type differential equations, fractional order Lane-Emden
differential equation’s initial value problem have been solved by using fractional order
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homotopy perterbation method which gives their approximate solution. As Lane-
Emden differential equations have singularity behaviour at origin in this regards it has
become more interesting to get solution of the equation more precisely.

In this section we have studied two types of time fractional order Lane-Emden type
differential equations with initial conditions and the approximate solution emerged in
the series form have been analysed significantly.

2.1. Example
Let us take time fractional non-linear Lane-Emden type differential equation

Diu(t) + %ut(t) — 2262 + 3)u(t) = 0 (11)

Where 0 < o < 2.

with initial condition «(0) = 1 and u;(0) = 0 According to the homotopy perturbation
method, we may construct linear operator as L [u] = D{u(t) and non-linear operator
as

N [u(t)] = Dfu(t) + 2u(t) — 2(26% + 3)u(?)

Now homotopy have been constructed as

H (u,p) = (1 = p) [Dffu(t) — uo(t)] (12)

+p (Dto‘u(t) + %ut(t) —2(26% + 3)u(t)) =0

where p €0, 1]
Taking initial guess wug(t) = 1

Equating coefficients of *p’ in equation 7

(t) = 2% got2 L 234
YT Ta+3)  T(at1)
3 2a 2 (2a—2)
(a+1)) T2a+1) (a—1) T'(2a—-1)
F(a—i— 3) t2a+2
233 (1
+ 3< + r(a+1)> (20 + 3)

24 T(a+5) ¢ttt
MNa+3) T(2a+5)
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) = 25T (o + 5)I'(2a + 7) $3o+6
ualf) = [ a4+ 3)'(2a+5) } T(3a+7)

25.3.1(a + 5) L(a+3)\ I'(2a +5) 3a+4
[F(oﬂr?ﬂ 23 (1 Tt 1)) T(20 + 3)} T(3a+5)

+[<2432_( 2° )) (204—1—3; 24'32<1+F(a+3)>_( 2T (a + 5) ]F(t3a+2
(

I'2a+1 I'a+1) 200+ 3)'(a+3) 3a+3)

3.24 3.24T(2a + 1) I'(a+3) 3
C(a+1) (a—-1D2a-1) 2'3 <1 + (2a 4+ DI'(a + 1)>] I'(3a + 1)

[ 23.32 24 1 a2
BIiCEN <2332 - (a1)> S0 — 1)] T3~ 1)
3.23 go—d
(a—1)(2a — 3)} I'(3a — 3)

_l’_

Using equation 7 , the approximate solution in the form of series is given by putting
p=1as

22 ta+2 to 23 tQa 322 t2 a—2
u(t) =1+ +6 + (2%3° - _ .
T(a+3)  Ta+l a+1)T2a+1) a-1 T(a-1)

T 20+2 4, r 2a+4
+233<1+ (a+3)>r(t 2 T(a+5) t

I'a+1) 2a + 3) * MNa+3) T'(2a+5)
(26T (o +5) 02+ 7)] 346
T T+ 3)T2a+5) ] TBa+7)
[25.3.T (o + 5) I'(a+3)\ I'2a+5)] t3ots
+ I'(a+3) +2°3 (1+F(a—|—1)> F(2o¢—|—3)] I'(3a+5)
[ 25 I'(2a + 3) I'(a+3) 24T (o +5) g3at2
* <2432 T ot 1)> featn T2 ( F(a+1)) - (2@+3)F(a+3)} [(3a 13)
[ 3.2 3.2'T(2a + 1) I'(a+3) 3
* _23'33 C(a+1) (@e-1T(2a-1) 2'3 <1 * (20 + 1)T(a + 1)” F(3a+1)
[ 223 32 2! 1 a2 3.23 ot
@-D " (2 ’ <a1>> 20— 1>} MBa—1) [(a “1)(2a - 3>] [(3a—3)

The above equation is approximate series solution for the example 2.1. Lane-Emden
type fractional order non- linear differential equation for various fractional order have
been represented graphically as following figure 1.
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Figure 1: 2D plot represent approximate solution u(¢) vs x of Lane-Emden type time
fractional differential equation 2.1 fora = 2, = 1.9, = 1.85, ¢ = 1.8

2.2. Example
Let us take time fractional non linear homogeneous Lane-Emden type differential
equation

Doult) + %ut(t) +un(t) =0

Where 0 < o < 2.
with initial condition u(0) = 1 and u;(0) = 0.

According to fractional order homotopy perturbation method, we may construct linear
operator as L [u(t)] = D u(t) — up(t) and non-linear operator as

N [u(t)] = Dgu(t) + 2uy(t) 4 u(t)

Now homotopy can be constructed as

H (u, p) = (1= p) [Df'u(t) = uo(t)] (13)

+p (DS‘U(t) + %ut(t) + u”(t)) =0

Let’s taken =1

where p €0, 1]

Taking initial guess wug(t) = 1

Equating coefficients of 'p’ in equation 13

ta

ult) = " T(a+1)
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9 tza_g t20¢
us(t) = <a _ 1> T (20 —1) + I'2a+1)

92 t3a 4 6o — t?’o‘ 2 t3a
us(t) = - <(a “(2a - 3)) T(Ba—3) <(2a ~ (o - 1)) FBa-1) TBa+1)

ua(t) = K(a - 1)(2042—3 3)(3a — 5))] F(i:—:) " ((2a - 1??2a - )) F(iji%)

t4o¢72 t4o¢
* [(304 “1)(Ba— 2)} Tda—1) T Tla+1)

24 t5a 8
us(t) = ((a —1)(2a - 3)(3a — 5) (4o — 7)) I'(5a —7)

22 22 2 t5a 6
+ ((2a 1 2a- 3)) (@ —1)(4a —5)T(a—5)
2 2(3a — 2) 2 tha—4
B [3@ -1 (a—1)Q2a-— 1)] (4 — 3) T (5 — 3)
2 t5a—2 23 t5a—6

(4o — 1) (b — 1) " (a—1)(2a—3)(3a —5)(5a —5)
Sa—4
+[< 2a—1) (2a—3 >ai1}l“(t5a—3)

[(3& —1) <(a i(??(z_jz 1))} r(gi) a F(Stofj— 1)

and so on. Using equation 7, the approximate solution in the form of series is given by
putting p = 1 as

o 2 t2a 2 22

wwt) =l-Fogpt <a—1) 2a—1) I 2a+1) ((a—l)(2a—3)> T (30— 3)

t3a_4

_<(2a§01)_(cj—1)> r(?j—: 3511 [<a—1 20— 3 )F(3042—5)} 1“(242—65)

6o — 2 tha—4
B _<(a—1)(2a—1)> (3 —2) <(a—1)(2a—3)>] [(4o — 3)
[ 2 6o — 4 tla—2 tie
Ba-10) (@-1)a- 1)] Tda—1)  Tla+1)
[ 24 22 22
@ = 1D)2a—3)(3a —5)(da— 7)] TGa—1) [(204 1) (2a— 3)]

+

t5a78

2 P26 2 (3 —2) 2 oot
((a —1)(4a — 5)> C(ha—5) [3a 1 (a—1)(2a— 1)] (4 — 3) T(5a — 3)
9 t5a72 23 t5a76
C (Aa—1DTGa—1) (a—1)(2a—3)(3a—5)T(5a —5)

* [((252 - <2a22 3)) = 1] r(gj_43>
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B 2 2(3a — 2) G N

(Ba—1) (a=1)2a—-1))] T(GBa—-1) T'(Ga+1)
The analysis for various fractional order have been represented graphically as following
figure 2.

Figure 2: 2D plot represent approximate solution u(t) vs t of Lane-Emden type time
fractional differential equation 2.2 fora = 2, = 1.85,a« = 1.75, a« = 1.65

3. CONCLUSIONS

The approximate series solutions have been obtained upto fourth term in first example
and upto sixth term in second example for fractional Lane—-Emden type differential
equations with the sense of Riemann-Liouville derivative. It is being observed
that fractional Lane-Emden type equation is useful to model many phenomena in
mathematical physics and astrophysics. The proposed solution yields the reliable results
of the model. The graphical results demonstrates the nature of the solution of fractional
Lane—Emden type differential equations for various fractional orders. It is ascertained
that the solution is more suitable and effective to analyse the complexity of fractional
Lane-Emden type differential equations in both the examples.
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