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Abstract 

An easy however suitable method is used to generate cylindrical converging 

shock waves. The shock dynamics is used to layout a curved wall profile of 

the check segment in a shock tube. When a planar shock wave propagates 

alongside the curved wall, the disturbances produced via way of means of the 

curved wall could constantly propagate alongside the shock floor and bend the 

shock wave. In the present paper there is analysis of Mach number with 

respect to various factors like 𝜇 and [∆] including specific heat ratio𝛾, area of 

cross-section A of the used channel etc. The analysis has been done for the 

subsonic regime i.e., M< 0.8, transonic i.e., 0.8 <M< 1.2, at M=1 i.e. at the 

speed of sound and supersonic regime, i.e., 1.2 <M< 5.0 .  
Keywords: Mach number, Moving shock, Shock wave, Subsonic wave, 

Supersonic wave. 
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1. INTRODUCTION 

The shock itself and the inflow behind it are perturbed, if a shock moves along a 

channel or a tube with a small area change. When’re-reflected disturbances generated 

by non-uniformity behind the shock are neglected, inflow is called a freely 

propagating shock, as the shock surge isn't affected by there-reflected disturbances. 

Chisnell [1] and Whitham [2] have considered similar type of problem independently 

using different styles and have attained the relation between area of tube or channel 

and Mach number. 
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Numerous experimenters have studied the problem of re-reflected disturbances in the 

inflow behind the moving shock. Rosciszewski [3] has formulated the error involved 

in using CCW approximation and attained correction terms. Yousaf [4] has presented 

an exact expression of the strength of the disturbances over taking the shock. Milton 

[5] has attained a useful, simple relation between Mach number and area of the tube 

or channel. 

The study of surge propagation in an admixture of gas and dust patches has entered 

great attention during the last several decades. There are numerous engineering 

operations for inflow of a medium that consists of suspense of powdered material or 

liquid driblets in a gas. Fine gas overflows have significance in engineering problems 

similar as inflow in rockets, nuclear-reactors, energy sprays, air pollution, etc. With 

the advancement of space technology, the dynamics of fluid flyspeck system has plant 

operations in extra-terrestrial field similar as lunar-ash- inflow and predictably in the 

studies of other globes. The dynamics of fine gas is modified from conventional gas 

dynamics by characterizing the temperature and haste of the gas and flyspeck 

independently. A single flyspeck that isn't in equilibrium with the gas inflow simply 

represents a poor ‘dick’ but if there are enough patches to form a significant bit of the 

mass of the admixture, their commerce with the gas affects the gas inflow, rather 

complicated overflows can thus develop as a result of the relaxation processes. As in 

the case of pure gas overflows, the rate at which diversions from equilibrium tend to 

be excluded may be fast or slow compared with the rate at which inflow changes take 

place. It's thus possible to consider ‘frozen’ inflow in which no relaxation processes 

take place, equilibrium flows for which relaxation is assumed to be infinitely presto, 

and intermediate non equilibrium flows. 

Along with advances in colorful inflow fields mentioned over, some humorless sweats 

have been made in understanding the gusted of fine gas, starting with numerous 

simplifying hypothetical and variations. The paper by Marble [6] was an attempt in 

applying the ultramodern ways of fluid mechanics to the analysis of fine overflows. 

He has introduced numerous important generalities and parameters which can be 

served as strong via media in the development of the abecedarian equations of the 

admixture of gas and solid patches. Marble [7] give an expansive study of the 

overflows of the fine gas with illustration of shock conformation. Rudinger [8] has 

presented the thermodynamic parcels of shock swells, steady snoot inflow and general 

non steady one-dimensional inflow of the gas flyspeck admixture with colorful 

exemplifications depicting the significance of haste and temperature relaxations. Jena 

and Sharma [9] have studied the tone-analogous shocks in fine feasts. Following 

Whitham [2], Pandey and Verma [10] have bandied the conformation of shock down 

anon-uniform tube in two phase overflows. 

The fine analysis of similar two phase inflow is vastly more delicate than that of pure 

gas overflows and one of the usual simplifying hypothetical is that the volume 

enthralled by the patches can be neglected. In numerous important cases, the flyspeck 

represents lower than one half of the mass of gas flyspeck admixture and the viscosity 

of the flyspeck material is further than thousand times larger than the gas viscosity. 

Under similar conditions the flyspeck volume bit is of order of 10-4 and supposition of 
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a negligible flyspeck volume is also well satisfied. One more important consequence 

of this supposition is that equilibrium inflow of the admixture of patches with a 

perfect gas can be anatomized like inflow of perfect gas that has viscosity and specific 

heats of admixture. Carrier [11] was first to study the stir of shock surge in fine feasts. 

Colorful aspects of two- phase flows were studied by Soo [12], Kribe [13], Rudinger 

[14], Marble [15], Bailey [16], Kliegel [17], Gilbert [18], Kliegel [19]. 

At high gas densities (high pressure) or at high particle mass fragments, the flyspeck 

volume bit may come sufficiently large, so that it may be included into inflow 

analysis without introducing significant error. Since the patches may be considered as 

incompressible in comparison with the gas, the flyspeck volume bit enters into the 

introductory inflow equations as a fresh variable. The intriguing parcels of similar two 

phase flows are that indeed equilibrium flows cannot be treated as perfect gas 

overflows. There are numerous engineering problems in which dilute phase of gas 

patches is a good approximation of factual conditions. In similar cases due to the 

actuality of solid patches in the gas, parcels of admixture differ significantly from 

those of gas alone. Similar types of studies have multitudinous operations in 

underground explosion [20, 21]. 

In present paper Re-reflection effect on shock swells in two phase flows through a 

tube of variable cross section is considered when flyspeck volume bit appeared as a 

fresh variable [22]. Originally, Re-reflection goods on shock surge in a tube of 

variable cross section is attained and secondly, one dimensional area relation for 

anon-uniform, steady inflow ahead of a shock is attained and concluded that all the 

results are valid for the case when direction of the shock stir and the gas inflow ahead 

of the shock is same [23]. 

 

2. EQUATIONS OF MOTION 

The differential equation for the motion of shock wave through tube given by Zhai et 

al. [24] can be written as: 
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Where M is the Mach number, A is the area of cross-section of the tube and 𝛾 is the 

specific ratio of heat of the used gas. The equation (2.1) takes the form: 
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[∆][(2𝜇 + 1) log(𝑀2 − 1) − 2 log 𝑀 + log(𝑀 − 1) + log(𝑀 + 1)] + log 𝐴 = log 𝐶       (2.5) 

Where; 

[∆] = ℎ𝑒𝑎𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = (1 − 𝛾 + 𝛾2) (
𝛾+1

4
+

1

2𝜇
−

𝜇

2
)                                               (2.6) 

C=Constant and calculated by using the initial boundary conditions: 

M=M0 , 𝜇 = 𝜇0, [∆] = [∆]0                                                                                      (2.7) 

[∆]0[(2𝜇0 + 1) log(𝑀0
2 − 1) − 2 log 𝑀0 + log(𝑀0 − 1) + log(𝑀0 + 1)] + log 𝐴 = log 𝐶   (2.8) 
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3.  MATHEMATICAL ANALYSIS 

Table 2.1 (Values of the factors 𝜇 and [∆] with respect to Mach number M) 

S. No. 𝛾 M A m2 𝜇 [∆] 

1 1.404 0.5 0.001256 7.0503 -4.4715 

2 1.404 0.55 0.001256 4.5729 -1.5761 

3 1.404 0.6 0.001256 3.5352 -1.0251 

4 1.404 0.65 0.001256 2.7747 -0.9500 

5 1.404 0.7 0.001256 2.3945 -0.3874 

6 1.404 0.75 0.001256 1.8947 -0.1292 

7 1.404 0.8 0.001256 1.6212 0.1548 

8 1.404 0.9 0.001256 1.2441 0.3808 

9 1.404 1.0 0.001256 1.0000 0.3510 

10 1.404 1.1 0.001256 0.8313 0.7868 

11 1.404 1.2 0.001256 0.7093 0.9512 

12 1.404 1.3 0.001256 0.6179 1.1012 

13 1.404 1.4 0.001256 0.5474 1.2407 

14 1.404 1.5 0.001256 0.4918 1.3717 
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Figure 3.1 (Variation of factor 𝜇 with respect to Mach number) 

 

 

Figure 3.1 (Variation of heat factor [∆] with respect to Mach number) 
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4. DISCUSSIONS 

The calculated values of the factors 𝜇 and [∆] with respect to Mach number M are 

shown in the Table 2.1 and figure 3.1 and 3.2 respectively. The figure 3.1, shows that 

for the subsonic regime i.e., M< 0.8, the factor 𝜇 decreases with M, whereas in the 

transonic and supersonic regime, it increases with M. The figure 3.2, shows that for 

the subsonic regime i.e., M< 0.8, the factor [∆] increases with M, and in the transonic 

and supersonic regime, it also increases with M. 

 

5. CONCLUSIONS 

The calculated values of the factors 𝜇 and [∆] with respect to Mach number M and 

figure 3.1 and 3.2, that shows for the subsonic regime i.e., M< 0.8, the factor 𝜇 

decreases with M, whereas in the transonic and supersonic regime, it increases with 

M. It shows that for the subsonic regime i.e., M< 0.8, the factor [∆] increases with M, 

and in the transonic and supersonic regime, it also increases with M. The equation 

(2.13) shows that the Mach number varies with the area of cross-section of the 

channel/ tube. The polynomial trend line equations are given by 
  

𝜇 = 14.35 𝑀4 − 83.12 𝑀3 + 174 𝑀2 − 155 𝑀 + 50.24; 𝑅2 = 0.967 
 

[∆] = −50.83 𝑀4 + 220.3 𝑀3 − 350.1 𝑀2 + 243.2 𝑀 − 62.33; 𝑅2 = 0.949 
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