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Abstract

In this paper, the axisymmetric bending of a functionally graded material
(FGM) circular plate with a non-uniform thickness fully/partially resting on a
non-uniform two-parameter elastic foundation. The governing equation has
been developed on the basis of the classical plate theory (CPT). To this end,
the differential quadrature method (DQM) is applied to obtain the solution by
discretizing the differential equations of bending with different boundary
conditions. The material properties are considered to vary in the transverse
direction following a power-law relation of volume fraction index of the
constituents. The variation of plate thickness and subgrade modulus is
assumed to be parabolic in the radial direction. A parametric study
incorporating evaluation of various parameters (e.g., volume fraction index,
thickness variation, subgrade modulus variation, surface-foundation contact
ratio and different boundary conditions) is performed on the static analysis of
the circular plate. It can be concluded that by the appropriate choice of
geometrical parameters with restrains type, an optimum design can be
achieved to provide uniform stresses under the plate in addition to minimize
the transverse displacement. Furthermore, the obtained results are validated
and compared with those found in literature, where excellent agreement is
observed.

Keywords: Axisymmetric bending, Circular plates, Functionally graded
material (FGM), Variable thickness, Elastic foundation, Differential
quadrature method (DQM)
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1 INTRODUCTION

Recently, circular plates supported by an elastic foundation have had extensive
application in various engineering fields. They can be employed in a wide range of
structural components such as foundation of liquid storage tanks, foundation of wind
turbines, raft foundation for buildings, base of silos, machines and deck plates utilized
in launch vehicles in addition to chimneys and heat exchangers in shape of tubes.
Since achieving high strength and stiffness structural components is very important in
modern industries, a new class of composite material called functionally graded
material (FGM), an inhomogeneous composite usually made from a mixture of
ceramic and metal by gradually varying material properties through the thickness
direction. This type of material was employed in the industrial field for the first time
by the Japanese [1]. FGMs can be found in manufacturing of aerospace structures,
fusion reactors, pressure vessels, solar panels and heat exchange panels.
Consequently, the following lines are addressing examples of the considerable
research work conducted to demonstrate the static and dynamic analysis of FGM
plate.

Reddy and Wang [2] demonstrated the axisymmetric bending analysis of FG circular
and annular plate by employing the first-order shear deformation Mindlin plate
theory. The solution of different terms such as deflection of the plate, forces and
moment resultant was carried out based on Kirchhoff plate theory, whereas Mindlin
solution is governed when the Kirchhoff solution is known. Ma and Wang [3] studied
the axisymmetric analysis of bending and buckling of FGM circular plates through
incorporating third-order and classical plate theory relationships. In addition, they
proved that the first order shear theory is adequate to include the effects of shear
deformation on the axisymmetric bending. Following the unconstrained three order
shear deformation plate theory (UTST), Saidi and Rasouli [4] investigated the
axisymmetric analysis of bending and buckling of FG circular plate in which the
shear-free condition is released at the upper and lower faces of the plate as plates in
flow fields. Numerical results of the deflection, resultant moments and critical
buckling were presented and compared to corresponding results based on the classical
plate theory. Yun and Ronggiao [5] presented an analytical solution to the
axisymmetric bending of FG circular plate subjected to transverse load for different
boundary conditions on the basis of three-dimensional theory adopting the direct
displacement approach. The transverse load was expanded in the Fourier-Bessel series
and the plate response was obtained by the superposition principle. Gupta et al. [6]
studied the axisymmetric free vibration of nonhomogeneous circular plate with
nonlinear variable thickness based on the classical plate theory using the differential
quadrature method. Vullo and Vivio [7] developed an analytical approach for
estimating the relations between elastic stresses and strains in non-uniform thickness
rotating disks with a fictitious density distribution under the influence of thermal load.
Naei and Masoumi [8] demonstrated the buckling analysis of FGM circular plate with
variable thickness for different boundary conditions employing energy method on the
basis of Love-Kirchhoff plate theory with Sander’s non-linear strain-displacement
equation for thin plates. The influence of the variable thickness was investigated on
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the critical buckling of the plate using the finite-element method.

A considerable number of engineering applications deal with circular plates supported
by elastic foundation. Winkler model is the simplest model to idealize the behavior of
the foundation underneath the plate. The elastic foundation can be represented by a

number of separate linear springs with constant subgrade modulus K, [9]. Abbasi and

Farhatnia [10] analyzed the bending analysis of circular plate resting on Winkler
foundation based on the classical plate theory using differential transformation
method. The study included the effects of Winkler foundation on the central
deflection of the plate in addition to radial and tangential stresses. A refined extension
of the Winkler model so called Pasternak foundation model that includes the
interaction between the plate and the foundation in addition to consider the influence
of in-plane shear [11] has been utilized. Arefi and Allam [12] studied the effects of
the Winkler-Pasternak foundation on the nonlinear analysis of FG circular plate with
piezoelectric layers. Shariyat and Alipour [13] presented a semi-analytical solution for
free vibration of two-directional FGM circular plate resting on a two-parameter elastic
foundation, illustrating the influence of various parameters such as elastic foundation
on the natural frequency and modal stress of the plate.

In many cases, adopting the elastic foundation with a constant modulus has led to
inaccurate results. For instance, in foundation mat subjected to uniformly distributed
load, the foundation modulus at the edges has higher values than at the center of the
mat as the distortion of the plate is not taken into consideration. Consequently,
integrating the variation of foundation modulus is recommended in particular cases
[14]. However, few studies have considered variable elastic foundation in the bending
analysis of plates. Foyouzat and Mofid [15] investigated the static bending analysis of
axisymmetric thin circular and annular plate resting on variable Winkler foundation
under different boundary conditions. In addition, they provided a further extension of
the addressed problem to a two-parameter elastic foundation. Rad and Shariyat [16]
carried out the solution of static bending analysis of circular and annular plates
supported by variable Winkler-Pasternak foundation using the exact three dimensions
theory of elasticity by considering different sets of the foundation subgrade modulus.
Furthermore, practical applications can be simulated as plates partially resting on
elastic foundation such as plates that are used to cover openings or cavities in
structures. Alinaghizadeh et al. [17] highlighted the utilization of plates partially
resting on a two-parameter elastic foundation by investigating the bending behavior of
two-directional FG circular/annular sector plates.

Many numerical methods have been employed to analyze the dynamic and static
behavior of circular plate. Differential quadrature method (DQM) was one among the
numerical methods that grasp the attention of the researchers in various engineering
fields. Liew and Han [18] adopted the DQM to study the static analysis of rectangular
plates on Winkler foundation for a combination of boundary conditions. Hossenin and
Akhavan [19] investigated the buckling and dynamic behavior of sectorial plate
supported by Pasternak foundation under in-plane compressive loads using DQM.
The results revealed the stability and accuracy of the DQM in comparison with other
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numerical methods. Arshid et al. [20] employed the DQM to analyze the free
vibration of circular plate made from porous material incorporated with piezoelectric
actuators. Farhatnia and Saadat [21] studied the axisymmetric bending analysis of
FGM sandwich plate supported by Winkler foundation via DQM. The numerical
results of the transverse deflection in addition to the radial and tangential stress were
compared with the results obtained by the finite-element method to demonstrate the
efficiency of the proposed approach.

As mentioned above in the literature, no research work has been published yet on
plates partially resting on a non-uniform two-parameter elastic foundation using the
DQM as previous studies are limited to circular plates fully resting on foundation. In
the present work, an axisymmetric bending solution of a FGM circular plate with
varying thickness along the radial direction and subjected to transverse loading at the
upper face of the plate with restrained edge is carried out using the differential
quadrature method. The mechanical properties of the material vary across the
thickness direction corresponding to a power-law relation in terms of volume fraction
of constituents. A parametric study is carried out to investigate the influence of
different parameters on the bending of the plate such as variable thickness, volume
fraction index, existence of elastic foundation, variation of the subgrade modulus and
the partially contact between the lower face of the plate and the elastic foundation.
The governed equation is developed based on the classical plate theory and the
solution was obtained by the differential quadrature method. Numerical results of the
transverse displacement and radial stress are compared with other numerical methods
from well-known literature, demonstrating the efficiency of the adopted approach.

2 MATHEMATICAL FORMULATION
2.1 Axisymmetric bending problem

Consider a FGM circular plate with outer radius b and initial thickness h, at the
center of the plate, the plate is fully or partially resting on elastic foundation with
variable Winkler’s foundation modulus k,(r) represented by linear spring and
Pasternak’s foundation modulus k (r) represented by shear layer under the plate as
shown in

Fig. 1. The plate is assumed to be in continuous contact with the foundation except

for the distance a and subjected to a uniformly distributed transverse load denoted by
d,. The cylindrical polar coordinate system (r,6,z) is adopted in the analysis. The

physical middle plane of the circular plate is located at z=0 and the top and bottom
surfacesare z=h/2 and z=-h/2, respectively.
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Fig. 1. FGM circular plate with variable thickness partially supported by a two-
parameter elastic foundation with variable modulus.

The governing differential equation of circular plate with variable thickness resting on
elastic foundation can be obtained by utilizing the classical plate theory (CPT) as [21],
and by adding the term of Pasternak foundation obtained from [13]. Therefore, the
equation can be written as:

d*w dD(r)jdsw dD(r) ,d’D(r) \d*w
r*D(r 2r’| D(r) +r r{ =D(r)+(2+v)r r?
O ( =g Jge T TP @ = T e "
2
+ D(r)—rdD(r)+r2vd Dz(r) d—W—k rzi(rd—\lv)+kwr3w:qor3
dr dr dr " dr dr

where W is the out-plane deflection, D is the flexural rigidity of the plate and v is
Poisson’s ratio assumed to be constant.

Young’s modulus E(r,z) is smoothly varying from metal to ceramic according to the
power-law distribution through the thickness of the plate as [10]:

E(r,z):(EC—Em)(%+%j ‘E @)

where the subscripts m and ¢ refer to the metallic and ceramic constituents,
respectively, and g is the volume fraction index.

Due to non-homogeneity of material properties, the physical neutral surface and
geometric middle surface do not coincide. As a result, we have to select a proper
reference plane where the stress and strain are zero. This plane is located at distance
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(z,) from the middle surface of the plate, which can be obtained from [22]:

h(r)/2
J' zE(r,z)dz

—h(r)/2

Zy = h(r)/2 ' (3)
Lm/z E(r,z)dz

Therefore, the flexural rigidity of the plate is determined as follows:

_J-h(r)lz - E(r Z) (@)

h(r)/2

Furthermore, following the classical plate theory, one can deduce relations describing
the radial and tangential stress using appropriate derivatives of the deflection function
based on the following equations:

o - _E(r, z)z(d W vdwj

' 1-v dr? rdr -
E(r,2)z(1ldw d’w

=T o | TtV
1-v r dr dr

2.2 Thickness and foundation modulus profiles

The thickness of the circular plate is assumed to vary continuously along the radial
direction according to prescribed function as [21]:

h(r) = h, (1+ y(%ﬂ (6)

in which y is a geometrical parameter which controls the degree of curvature of the
thickness profile.

Similarly, Pasternak and Winkler coefficients are varying parabolically along the
radial direction as [16]:

K, (r) =k, (1—0{%) J K, (N =k, [1—0{%) J )

in which y and o are parameters controlling the curvature degree for thickness and

foundation coefficients profiles, respectively. For better understanding of Egs. (6) and
(7), the variation of thickness profile and the distribution of the coefficients of the
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elastic foundation are shown in Fig. 2.
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Fig. 2. Thickness profile and the distribution of foundation coefficients along the
radial direction.

2.3 Boundary and regularity conditions

Two different types of boundary conditions are adopted in the present work as
follows:

- Clamped boundary condition:

_ dw

W, =0 o =0 ®)

r=b

- Simply-supported boundary condition:

d*w v dw
=0, M =-D|—+—-1|=0
r=b "|r:b [ drz + r drj (9)

In order to ensure that the solution is avoided from singularity, regularity condition
must be fulfilled as below:

W

- Regularity condition at the center of the plate:

dw

— =0.

ar . (10)
3 DQ Method

The differential quadrature method (DQM) approximates any derivative of a function
with respect to a spatial variable at any grid point as a weighted linear summation of
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their values at all the grid points selected in the solution domain. According to the
differential quadrature rule, the nth-order derivative of f(r) can be discretely

expressed at a grid point r,, as [19]:

n N
ddigf) =>eE(r),  i=12..,N, (11)

X=X; =

in which c{” are the weighting coefficients associated with nth-order derivative of

f(x), andNis the number of discrete grid points in the solution domain. The
weighting coefficients in Eq. (11) are given as follows:

w__ M “(r)

ij , bj=12,..,N, j=#i, 12
F T M) J J (12)
where
N
M(l)(ri): H (r| _rj) (13)
j=1, j=i
and
C_(_n—l)
¢ =nl ¢V ——2L—1|, i, j=12.,N, j=i, and n=23,.., (14)
ri_rj
N
e =— Z e, i,j=12,...,N. (15)
j=1, j=i

3.1 Numerical discretization

Several options can be employed to choose grid points location and the easiest
method to select grid points in computational domain is uniform grid mesh, where all
the grid points are equally spaced. However, in order to achieve more accurate results
and reasonably convergence, non-uniform grid points are chosen. Shu and Richards
[23] proposed a refined technique called Chebyshev-Gauss-Lobatto for selection of
grid points. The grid points using this technique are given by:

ri:E(l—cos(i;llﬂD, i=12,...,N. (16)
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3.2 DQM applied to the governing equations

The discretized form of Eqg. (1) can be achieved easily by substituting relation (12)
into Eqg. (1) as:

I D(r)Zc(“)w +2r? (D(q)+n%}ic‘”w —k (r)r3Zc(2)w

i =1

2 N
o) -0+ @24y PO 2 COEIS ey, ey e a7
dr, dr, -1 -1 )
{D(r‘)_ dDdEr) is D(r)jzcmw Hk (DFW =g, 1=23,.,N-2.

Following the same procedure, the equations of radial and tangential stress can be
transformed into the DQ formulation as [21]:

ar|r:ri Z)Z(z cow, +— Zc(l)w]

| j=1

(76’|r:ri == El(_VZ)Z (r > cPw, +ch(2)W j

i i=1

(18)

3.3 DQM applied to boundary and regularity conditions

During the implementation of DQM to the boundary conditions, a problem arises.
This problem appears because of the existence of two boundary conditions at the
same point. In order to overcome this problem, Bert [24] proposed é-point technique
as an appropriate way when applying DQM to the boundary conditions of beams and
plates problems. In this technique, only one boundary condition is applied at the
boundary grid point and the derivative condition is discretized at J-point, where &
represents a very small distance. Then, boundary and regularity conditions can be
discretized as follows:

- Clamped boundary conditions:

N
w, =0, > C{w, =0. (19)

=

- Simply supported boundary condition:

S 1
w, =0, chﬁmwlw[rzqg_m ,j 0. (20)

j=1 i j=1
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- Regularity condition at the center of the plate:

N
2 CHw, =0. (21)

j=1

4  SOLUTION TECHNIQUE

In order to achieve the solution, the discretized forms of governing equation and
boundary/regularity conditions result in a set of linear equations. This set can be
expressed in a matrix form as follows:

I A1,1 A1,2 Ai,N—l Ai,N | W, 0
A2,1 Az,z AZ,N—l Ai,N W, Qo

: : . : : Dor=e ity (22)
AN—1,1 AN—1,2 o AN—l,N -1 AN—l,N Wy 0
B AN,l AN,z AN—l,N—l AN,N 1L Wy 0

Obviously, Eg. (22) includes all the functional values in the whole analysis domain.
Nevertheless, it is difficult to couple Eq. (19) or (20) and Eq. (21) to obtain the

solution of wy , and w,. Hence, to overcome this problem, the governing equation

and the boundary/regularity conditions must be solved simultaneously. The matrix of
Eq. (22) can be reconstructed as:

[P 1{We | +[ A Wi} ={0}, [Ae]iwe}+[A J{w } ={a,}. (23)

where B refers to boundary points and 7 refers to internal points. It is noted that the
sizes of matrices [A, ], [Agz]and [A; ] are (N -3)x(N —-3), (3x3) and 3x(N-3).

The functional values of the internal points were separated from the boundary points.
The functional values at the internal points and the boundary points are denoted by
{w, } and {w,}, respectively.

The functional values at the boundary points can be obtained as:

-1
We b =—[Ae] [Au{w}. (24)
By substituting {w, } from Eg. (24) into the second part of Eqg. (23), we get:

([Au]_[AiB][ABB]il[ABI ]){Wl}:{qo}' (25)

The solving process was carried out by developing a MATLAB program to solve the
set of the linear equation for the computational domain. The results are presented and
discussed in the next section.
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5 Numerical results

The numerical results presented in this section employ a value of h, =0.01lm, b=0.6

m, g, =10°kPa. The mechanical properties of the materials employed in the study are
taken from Ref. [25] as Young’s modulus of elasticity of metal and ceramic are
E,, = 70GPa, E, =380 GPa, respectively. However, the value of Poisson’s ratio is

considered to be constant and taken as v =0.3. Furthermore, the following non-
dimensional quantities are adopted for presenting the results:

2, =010, 2,=0,/q,, W=w/b, R=r/b, &=z/h

5.1 Comparison with results of past literature

In order to demonstrate the accuracy of the presented method, numerical results for
the non-dimensional transversal displacement shown in Table. 1 are compared with
those reported in Ref. [10] for a clamped and simply supported circular plate. The
plate is assumed to be fully rested on an elastic foundation in purpose of validation
and subjected to uniform loading. The plate is assumed to be homogenous with
uniform thickness and rested on one parameter elastic foundation (Winkler model). So
as to reach the convergence and the stability of the proposed method, 20 grid points
are adequate to obtain acceptable results for both clamped and simply supported
conditions. The numerical results obtained by the differential quadrature method show
excellent agreement with the differential transformation method (DTM) which reveals
the accuracy and the efficiency of the adopted approach.

Table. 1. Comparison of results for uniform thickness, (y =0) rested on Winkler
foundation (k, =a =a=0).

Clamped edge Simply supported edge
k
v g=0 g=1 ¢9=10 ¢g=100 g=0 g=1 ¢g=10 g¢g=100
0 Present 0.0097 0.0195 0.0324 0.0470 0.0395 0.0793 0.1320 0.1915
Ref.[10] 0.0097 0.0195 0.0324 0.0470 0.0395 0.0793 0.1320 0.1915
5 Present 0.0082 0.0141 0.0198 0.0243 0.0221 0.0306 0.0358 0.0386
Ref.[10] 0.0082 0.0141 0.0198 0.0243 0.0221 0.0306 0.0358 0.0386
10 Present 0.0070 0.0110 0.0141 0.0161 0.0153 0.0186 0.0201 0.0206
Ref.[10] 0.0070 0.0110 0.0141 0.0161 0.0153 0.0186 0.0201 0.0206
50 Present 0.0033 0.0038 0.0039 0.0038 0.0041 0.0041 0.0039 0.0037

Ref.[10] 0.0033 0.0038 0.0039 0.0038 0.0041 0.0041 0.0039 0.0037

In comparison to another study as shown in Table. 2, it was carried out to guarantee
the accuracy of the presented results. In order to validate the obtained results, tapered
thickness profile was studied with different values of y for homogenous metal
material. The results were compared to the results reported in Ref. [21] for two
numerical methods DQM and Finite Element method (FEM) using ABAQUS
software. The results match those obtained by FEM with error percentage less than
0.02.
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Table. 2. Validation of results for tapered section profile for homogeneous metal
material, (g = o, k,, =k, =0).

Non-dimensional transversal displacement at the center of the

Edge plate (W)
condition
y=-05 y=-0.3 y=0.3 y=05
Present (DQM) 0.1688 0.0987 0.0319 0.0240
Clamped  Ref.[21] (DQM) 0.1688 0.0987 0.0319 0.0240
Ref.[21] (FEM) 0.1683 0.0985 0.0316 0.0237
) Present (DQM) 0.5046 0.3446 0.1438 0.1133
f&g‘;’;?’te 4 Ref[21](DQM) 0.5044 0.3445 0.1438 0.1132
Ref.[21] (FEM) 0.5040 0.3441 0.1434 0.1129

5.2 Parametric studies on bending analysis

To assess the influence of geometrical and foundation parameters on the absolute
value of central displacement of the FGM circular plate, effects of different values of
k-coefficients with different values of volume fraction index are shown in Table. 3 for
clamped and simply supported edges denoted by C and SS, respectively. In case of
clamped edge, it can be observed that the central displacement decreases with
increasing values of k-coefficients for negative values of geometrical parameter y

(concavity goes upward). In contrast, central displacement increases with increasing
values of k-coefficients for positive values of geometrical parameter y (concavity
goes downward). In case of simply supported edge, a significant decrease of the value
of central displacement with increasing values of k-coefficients is observed for
negative values of y. However, the decrease of the value of central displacement is

weak with increasing values of k-coefficients. Moreover, for higher values of k-
coefficients, a significant decrease of the value of central displacement during
increasing values of k-coefficients when g =1 is observed. For better understanding

of the effects of volume fraction index g, see Fig. 3.

In case of circular plate partially rested on an elastic foundation, numerical results for
the non-dimensional central displacement are provided in Table. 4. For clamped edge,
the central displacement increases for positive values of o (max values of the
two-parameters foundation at the center of the plate). Furthermore, this increase is
more noticeable when a/b=0.5. In contrast, for simply supported edge, the central
displacement decreases for positive values of « and the decrease is significant when
a/b=0.2.

The influences of the two-parameter elastic foundation are studied in Fig. 4 for
various combinations of foundation coefficients. In case of a clamped edge,
unexpectedly, the values of the transverse displacement increase with increasing
values of k-coefficients. This happens because the plate was partially rested on the
elastic foundation. In addition, a sudden increase of transverse displacement takes
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place when (k,,k,)=(10,5). On the other hand, for simply supported edge, the

values of the transverse displacement decrease with increasing values of &-
coefficients.

In order to investigate the effects of foundation coefficients variation parameter « in
the radial direction on the transverse displacement of the plate, a plate with a negative
value of geometric parameter y (concavity goes downward) is considered in Fig. 5.

The influence of & on the transverse displacement appears more clearly when higher
values of y are used. As a result, it is recommended for a foundation with a variable
stiffness specification to pick out a plate with cross section with positive values of y
taking into account that this variation will not significantly affect the transverse
displacement in addition to minimizing the overall cross section of the plate.
Furthermore, the bending behavior is almost the same in both clamped and simply
supported edges. This happens because the flexural stiffness of the plate at the edge is
minima in comparison with its value at the center of the plate.

Table. 3. Variation of the non-dimensional transversal displacement at the center of
the plate of FGM circular plate fully rested on non-uniform two-parameter elastic
foundation for & = 0.5.

Non-dimensional transversal displacement at the center of the plate (W)

(KyiKp) 7 g=0 g=1 g=10 Metal

Cc SS C SS Cc SS Cc SS

-05 0.0241 0.0642 0.0483 0.1288 0.0803 0.2143 0.1306  0.3485
-0.3 0.0159 0.0521 0.0319 0.1046 0.0531 0.1740 0.0863 0.2830
(0,0 0 0.0097 0.0395 0.0195 0.0793 0.0324 0.1320 0.0526  0.2146
0.3 0.0065 0.0307 0.0131 0.0616 0.0218 0.1024 0.0355 0.1666
05 0.0052 0.0261 0.0105 0.0525 0.0174 0.0873 0.0283 0.1419

-05 0.0184 0.0234 0.0258 0.0278 0.0291 0.0297 0.0309 0.0310
-0.3 0.0151 0.0247 0.0245 0.0299 0.0298 0.0317 0.0321  0.0325
(5,1) 0 0.0105 0.0253 0.0203 0.0331 0.0287 0.0354 0.0337 0.0354
0.3 0.0073 0.0244 0.0155 0.0355 0.0249 0.0394 0.0335 0.0392
05 0.0059 0.0230 0.0127 0.0361 0.0218 0.0420 0.0321 0.0421

-0.5 0.0127 0.0130 0.0145 0.0145 0.0155 0.0153 0.0165 0.0158
-0.3 0.0136 0.0144 0.0153 0.0154 0.0159 0.0159 0.0162 0.0162
(10,5) 0 0.0142 0.0174 0.0172 0.0173 0.0172 0.0171 0.0170 0.0169
0.3 0.0103 0.0221 0.0195 0.0202 0.0191 0.0186 0.0180 0.0178
05 0.0113 0.0266 0.0209 0.0229 0.0208 0.0200 0.0190 0.0184

-0.5 0.0072 0.0073 0.0079 0.0077 0.0085 0.0080 0.0092 0.0081
-0.3 0.0077 0.0077 0.0080 0.0080 0.0082 0.0081 0.0084 0.0082
(20,100 © 0.0086 0.0087 0.0085 0.0085 0.0084 0.0084 0.0084 0.0084
0.3 0.0097 0.0101 0.0093 0.0091 0.0089 0.0088 0.0086 0.0086
05 0.0105 0.0115 0.0100 0.0096 0.0092 0.0090 0.0088 0.0087
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Table. 4. Variation of the non-dimensional transversal displacement at the center of
the plate of FGM circular plate partially rested on non-uniform two-parameter elastic

foundation for ( =0.5,g =1k, =10,k, =1).

Non-dimensional transversal displacement at the center of the plate (W)

o a/b=0.1 a/b=0.2 a/b=0.3 a/b=04 a/b=0.5

C SS C SS C SS C SS C SS

-0.5 0.0098 0.0218 0.0106 0.0251 0.0114 0.0302 0.0120 0.0372 0.0121 0.0451
-0.25 0.0099 0.0214 0.0107 0.0246 0.0116 0.0297 0.0122 0.0367 0.0123 0.0450
0 0.0100 0.0209 0.0108 0.0241 0.0117 0.0292 0.0124 0.0362 0.0125 0.0448
0.25 0.0101 0.0205 0.0109 0.0236 0.0119 0.0287 0.0126 0.0357 0.0127 0.0445
0.5 0.0102 0.0201 0.0110 0.0232 0.0121 0.0282 0.0128 0.0352 0.0130 0.0443

0 0
0 -0.005 0
-0.01
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Fig. 3. Effects of volume fraction index (g) on the non-dimensional displacement of the circular plate
for: a) clamped edge, b) simply supported edge; (» =0.5 ,& =0.5,k, =5, k,=1a/b=0).
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Fig. 4. Effects of a two-parameter elastic foundation on the transverse displacement of the plate for: a)
clamped edge, b) simply supported edge; (» =0.5,g =1, =0.5,a/b =0.2).
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Fig. 5. Effects of the variation in the two-parameter elastic foundation coefficients on the transverse
displacement of the plate for: a) clamped edge, b) simply supported edge;
(r=-05,9=21k, =20,k, =2,a/b=0.2).

5.3 Parametric studies on stress analysis

In this subsection, a parametric study has been conducted to investigate the influence
of the ratio of contacting surface with the two-parameter elastic foundation, gradient
index materials and geometric parameters on the radial stress of the FGM circular



1408

1 alb=0.1

1 a/b=0.2

-1 05 0 05 1
a/b=0.3

1 a/b=0.4

<1 05 0 1
a/b 0.5

-1 05 0 05 1

1 I
0.5
0
-0.5
-1

B.M. Abdelbaki, M.E. Sayed-Ahmed, A.M.A. Al-Kaisy

10

Sodn

x 107

O ONCo—

2
4

b)

ab=01

%
S
k

0.5
a/b=0.2

-10
-12

0.5 4

a/b=0.3

P

x 10

[
—_—

0.5 x10*

a/b=0.4

—

0
2
-4
-6
g
-10
12

[
[

0.5 x107*

a/b=0.5

(-

0
3
4
-6
8
-10
42

0
2
4
-6
-8
-10
-12

05 0

%104

Fig. 6. Distribution of non-dimensional radial stress of FGM circular plate partially rested on elastic
foundation plate for: a) clamped edge, b) simply supported edge;
(»=05,9=1k, =20,k, =2, =05,£=0.5).
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plate across the thickness of the elastic foundation (a/b). It is observed that the radial
stress increases uniformly with increasing ratio a/b at both edge and center of the
plate in case of clamped edge. This happens as a result of the absence of elastic
foundation. On the other hand, for a simply supported edge, a sudden increase in the
radial stress occurs for ratio a/b greater than 0.4.

non-dimensional radial stress ¥

non-dimensional radial stress 3

c

a)

x10™

0 0.2 0.4 0.6 0.8
non-dimensional radius R

.

non-dimensional radial stress 3

b)

0 0.2

0.4 0.6

non-dimensional radius R

Fig. 7. Distribution of non-dimensional radial stress of FGM circular plate partially rested
on elastic foundation plate for: a) clamped edge, b) simply supported edge;
(r=05,k, =20k, =2, =0.5,a/b=0.2,&=0.5).
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Fig. 8. Distribution of non-dimensional radial stress of FGM circular plate partially rested on elastic
foundation plate for: a) clamped edge, b) simply supported edge;
(=05,g=1,a=05a/b=0.2,&=0.5).
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Fig. 7 shows the variation of non-dimensional radial stress at the top surface of the
FGM circular for different values of volume fraction index g (g =0,15,10). In case of
clamped edge, it can be seen that maximum stresses at the edge and center of the plate
occur when g=1 and g =10, respectively. For a simply supported edge, a uniform
increase is noticed in both of stress at the center of the plate and in the rate of change
of stress during increasing the value of g .

The compound effect of four different sets of two-parameter foundation coefficients
(k,.k,) is plotted in Fig. 8. It is obvious that the influence of increasing the values of
(k.. k,) on the radial stress is more obvious at the edge of the plate while it is barely

noticeable at the center of the plate in case of clamped edge. On the contrary,
increasing the value of (k,,k,) meets a uniform decrease of the radial stress.

In Fig. 9, distribution of the radial stress through the thickness direction is plotted to
demonstrate the effect of two-parameters elastic foundation on the variation of the
radial stress corresponding to sections at R = 0 and R = 1 for FGM circular plate with
clamped edge. As shown in Fig. 9, the degradation of the radial stress at the center of
the plate (R = 0) is remarkable for higher sets of (k,,k,) while the values of radial

stress go up by increasing values of (k,,k ). However, for an elastic foundation with
higher shear coefficient (k,), the values of the radial stress are slightly decreased by
increasing values of (k,,k,).
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14 | —e—(k k) =(205)

05 -04 -03 -02 -01 0 0.1 02 03 04 05
thickness ratio &

Fig. 9. Distribution of the radial stress through the thickness of the plate at: a) center of the plate, b)
plate edge; (» =0.5,g =10, =0.5,a/b = 0).
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CONCLUSION

In the present paper, the differential quadrature method (DQM) was adopted to study
the bending and stress analyses of axisymmetric functionally graded material circular
plate with variable thickness partially resting on a non-uniform two-parameter elastic
foundation subjected to uniform transverse pressure. The validity of the present work
has been investigated for static analysis of the simply supported and clamped plate
under various parameters. The obtained numerical results show excellent agreement
with the results tabulated in the literature. Based on this study results, the main
conclusions can be summarized as follows.

e The profile of the circular plate can affect the values of the central
displacement. As for clamped edge it is better to choose a profile with
concavity going upward (+y), while for a simply supported edge, it is better to

choose a profile with concavity going downward (—y).

e The values of transverse displacement increase by increasing volume fraction
index g toward metal material.

e For a variable elastic foundation, the central displacement of clamped circular
plate increases for positive values of « where the values of the foundation
coefficients (k,,k ) are maximum, while the central displacement decreases

in case of a simply supported plate.

e A gradual stress distribution occurs by varying the contact surface ratio a/b
for clamped edge while a sudden increase in the stress for a simply supported
plate takes place. Thus, for plates partially resting on elastic foundation, it is
recommended to choose plates with a clamped edge.

e The gradient of the material properties significantly influences the radial stress
for both clamped and simply supported edges. In addition, the effect of the
ratio a/b appears clearly in case of a simply supported edge. As a result, by
proper choice of the gradient of the material, a uniform stress distribution may
be achieved without the need to change the thickness profile.

e By increasing the values of foundation coefficients (k,,k,), the radial stress

increases at the edge of the plate for clamped edge and decreases at the center
of the plate for simply supported edge.
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