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Abstract 

In this paper, the axisymmetric bending of a functionally graded material 

(FGM) circular plate with a non-uniform thickness fully/partially resting on a 

non-uniform two-parameter elastic foundation. The governing equation has 

been developed on the basis of the classical plate theory (CPT). To this end, 

the differential quadrature method (DQM) is applied to obtain the solution by 

discretizing the differential equations of bending with different boundary 

conditions. The material properties are considered to vary in the transverse 

direction following a power-law relation of volume fraction index of the 

constituents. The variation of plate thickness and subgrade modulus is 

assumed to be parabolic in the radial direction. A parametric study 

incorporating evaluation of various parameters (e.g., volume fraction index, 

thickness variation, subgrade modulus variation, surface-foundation contact 

ratio and different boundary conditions) is performed on the static analysis of 

the circular plate. It can be concluded that by the appropriate choice of 

geometrical parameters with restrains type, an optimum design can be 

achieved to provide uniform stresses under the plate in addition to minimize 

the transverse displacement. Furthermore, the obtained results are validated 

and compared with those found in literature, where excellent agreement is 

observed. 

Keywords: Axisymmetric bending, Circular plates, Functionally graded 

material (FGM), Variable thickness, Elastic foundation, Differential 

quadrature method (DQM) 
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1 INTRODUCTION 

Recently, circular plates supported by an elastic foundation have had extensive 

application in various engineering fields. They can be employed in a wide range of 

structural components such as foundation of liquid storage tanks, foundation of wind 

turbines, raft foundation for buildings, base of silos, machines and deck plates utilized 

in launch vehicles in addition to chimneys and heat exchangers in shape of tubes. 

Since achieving high strength and stiffness structural components is very important in 

modern industries, a new class of composite material called functionally graded 

material (FGM), an inhomogeneous composite  usually made from a mixture of 

ceramic and metal by gradually varying material properties through the thickness 

direction. This type of material was employed in the industrial field for the first time 

by the Japanese [1]. FGMs can be found in manufacturing of aerospace structures, 

fusion reactors, pressure vessels, solar panels and heat exchange panels. 

Consequently, the following lines are addressing examples of the considerable 

research work conducted to demonstrate the static and dynamic analysis of FGM 

plate. 

Reddy and Wang [2] demonstrated the axisymmetric bending analysis of FG circular 

and annular plate by employing the first-order shear deformation Mindlin plate 

theory. The solution of different terms such as deflection of the plate, forces and 

moment resultant was carried out based on Kirchhoff plate theory, whereas Mindlin 

solution is governed when the Kirchhoff solution is known.  Ma and Wang [3] studied 

the axisymmetric analysis of bending and buckling of FGM circular plates through 

incorporating third-order and classical plate theory relationships. In addition, they 

proved that the first order shear theory is adequate to include the effects of shear 

deformation on the axisymmetric bending. Following the unconstrained three order 

shear deformation plate theory (UTST),   Saidi and Rasouli [4] investigated the 

axisymmetric analysis of bending and buckling of FG circular plate in which the 

shear-free condition is released at the upper and lower faces of the plate as plates in 

flow fields. Numerical results of the deflection, resultant moments and critical 

buckling were presented and compared to corresponding results based on the classical 

plate theory. Yun and Rongqiao [5] presented an analytical solution to the 

axisymmetric bending of FG circular plate subjected to transverse load for different 

boundary conditions on the basis of three-dimensional theory adopting the direct 

displacement approach. The transverse load was expanded in the Fourier-Bessel series 

and the plate response was obtained by the superposition principle. Gupta et al. [6] 

studied the axisymmetric free vibration of nonhomogeneous circular plate with 

nonlinear variable thickness based on the classical plate theory using the differential 

quadrature method. Vullo and Vivio  [7] developed an analytical approach for 

estimating the relations between elastic stresses and strains in non-uniform thickness 

rotating disks with a fictitious density distribution under the influence of thermal load. 

Naei and Masoumi [8] demonstrated the buckling analysis of FGM circular plate with 

variable thickness for different boundary conditions employing energy method on the 

basis of Love-Kirchhoff plate theory with Sander’s non-linear strain-displacement 

equation for thin plates. The influence of the variable thickness was investigated on 
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the critical buckling of the plate using the finite-element method.  

A considerable number of engineering applications deal with circular plates supported 

by elastic foundation. Winkler model is the simplest model to idealize the behavior of 

the foundation underneath the plate. The elastic foundation can be represented by a 

number of separate linear springs with constant subgrade modulus wk  [9]. Abbasi and 

Farhatnia [10] analyzed the bending analysis of circular plate resting on Winkler 

foundation based on the classical plate theory using differential transformation 

method. The study included the effects of Winkler foundation on the central 

deflection of the plate in addition to radial and tangential stresses. A refined extension 

of the Winkler model so called Pasternak foundation model that includes the 

interaction between the plate and the foundation in addition to consider the influence 

of in-plane shear [11] has been utilized. Arefi and Allam [12] studied the effects of 

the Winkler-Pasternak foundation on the nonlinear analysis of FG circular plate with 

piezoelectric layers. Shariyat and Alipour [13] presented a semi-analytical solution for 

free vibration of two-directional FGM circular plate resting on a two-parameter elastic 

foundation, illustrating the influence of various parameters such as elastic foundation 

on the natural frequency and modal stress of the plate.  

In many cases, adopting the elastic foundation with a constant modulus has led to 

inaccurate results. For instance, in foundation mat subjected to uniformly distributed 

load, the foundation modulus at the edges has higher values than at the center of the 

mat as the distortion of the plate is not taken into consideration. Consequently, 

integrating the variation of foundation modulus is recommended in particular cases 

[14]. However, few studies have considered variable elastic foundation in the bending 

analysis of plates. Foyouzat and Mofid [15] investigated the static bending analysis of 

axisymmetric thin circular and annular plate resting on variable Winkler foundation 

under different boundary conditions. In addition, they provided a further extension of 

the addressed problem to a two-parameter elastic foundation. Rad and Shariyat  [16] 

carried out the solution of static bending analysis of circular and annular plates 

supported by variable Winkler-Pasternak foundation using the exact three dimensions 

theory of elasticity by considering different sets of the foundation subgrade modulus. 

Furthermore, practical applications can be simulated as plates partially resting on 

elastic foundation such as plates that are used to cover openings or cavities in 

structures. Alinaghizadeh et al. [17] highlighted the utilization of  plates partially 

resting on a two-parameter elastic foundation by investigating the bending behavior of 

two-directional FG circular/annular sector plates.  

Many numerical methods have been employed to analyze the dynamic and static 

behavior of circular plate. Differential quadrature method (DQM) was one among the 

numerical methods that grasp the attention of the researchers in various engineering 

fields. Liew and Han [18] adopted the DQM to study the static analysis of rectangular 

plates on Winkler foundation for a combination of boundary conditions. Hossenin and 

Akhavan [19] investigated the buckling and dynamic behavior of sectorial plate 

supported by Pasternak foundation under in-plane compressive loads using DQM. 

The results revealed the stability and accuracy of the DQM in comparison with other 
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numerical methods. Arshid et al. [20] employed the DQM to analyze the free 

vibration of circular plate made from porous material incorporated with piezoelectric 

actuators. Farhatnia and Saadat [21] studied the axisymmetric bending analysis of 

FGM sandwich plate supported by Winkler foundation via DQM. The numerical 

results of the transverse deflection in addition to the radial and tangential stress were 

compared with the results obtained by the finite-element method to demonstrate the 

efficiency of the proposed approach.  

As mentioned above in the literature, no research work has been published yet on 

plates partially resting on a non-uniform two-parameter elastic foundation using the 

DQM as previous studies are limited to circular plates fully resting on foundation. In 

the present work, an axisymmetric bending solution of a FGM circular plate with 

varying thickness along the radial direction and subjected to transverse loading at the 

upper face of the plate with restrained edge is carried out using the differential 

quadrature method. The mechanical properties of the material vary across the 

thickness direction corresponding to a power-law relation in terms of volume fraction 

of constituents. A parametric study is carried out to investigate the influence of 

different parameters on the bending of the plate such as variable thickness, volume 

fraction index, existence of elastic foundation, variation of the subgrade modulus and 

the partially contact between the lower face of the plate and the elastic foundation. 

The governed equation is developed based on the classical plate theory and the 

solution was obtained by the differential quadrature method. Numerical results of the 

transverse displacement and radial stress are compared with other numerical methods 

from well-known literature, demonstrating the efficiency of the adopted approach.   

 

2 MATHEMATICAL FORMULATION 

2.1 Axisymmetric bending problem 

Consider a FGM circular plate with outer radius b  and initial thickness 0h  at the 

center of the plate, the plate is fully or partially resting on elastic foundation with 

variable Winkler’s foundation modulus ( )wk r  represented by linear spring and 

Pasternak’s foundation modulus ( )pk r  represented by shear layer under the plate as 

shown in  

Fig. 1. The plate is assumed to be in continuous contact with the foundation except 

for the distance a  and subjected to a uniformly distributed transverse load denoted by 

0q . The cylindrical polar coordinate system ( , , )r z  is adopted in the analysis. The 

physical middle plane of the circular plate is located at 0z   and the top and bottom 

surfaces are / 2z h  and / 2z h  , respectively. 
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Fig. 1. FGM circular plate with variable thickness partially supported by a two-

parameter elastic foundation with variable modulus. 

 

The governing differential equation of circular plate with variable thickness resting on 

elastic foundation can be obtained by utilizing the classical plate theory (CPT) as [21], 

and by adding the term of Pasternak foundation obtained from [13]. Therefore, the 

equation can be written as: 

4 3 2 2
3 2 2

4 3 2 2

2
2 2 3 3

02

( ) ( ) ( )
( ) 2 ( ) ( ) (2 )

( ) ( )
( ) p w

d w dD r d w dD r d D r d w
r D r r D r r r D r r r

dr dr dr dr dr dr

dD r d D r dw d dw
D r r r k r r k r w q r

dr dr dr dr dr





  
        

   

   
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  

 (1) 

where w  is the out-plane deflection, D  is the flexural rigidity of the plate and   is 

Poisson’s ratio assumed to be constant. 

 

Young’s modulus ( , )E r z  is smoothly varying from metal to ceramic according to the 

power-law distribution through the thickness of the plate as [10]: 

1
( , ) ( )

( ) 2

g

c m m

z
E r z E E E

h r

 
    

 
 (2) 

where the subscripts m and c refer to the metallic and ceramic constituents, 

respectively, and g is the volume fraction index. 

 

Due to non-homogeneity of material properties, the physical neutral surface and 

geometric middle surface do not coincide. As a result, we have to select a proper 

reference plane where the stress and strain are zero. This plane is located at distance 
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0( )z  from the middle surface of the plate, which can be obtained from [22]: 

( )/2

( )/2

0 ( )/2

( )/2

( , )
.

( , )

h r

h r

h r

h r

zE r z dz
z

E r z dz


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



 (3) 

Therefore, the flexural rigidity of the plate is determined as follows: 

 
2

( )/2
0

2( )/2

( , )
.

1
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Furthermore, following the classical plate theory, one can deduce relations describing 

the radial and tangential stress using appropriate derivatives of the deflection function 

based on the following equations: 
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 (5) 

 

2.2 Thickness and foundation modulus profiles 

The thickness of the circular plate is assumed to vary continuously along the radial 

direction according to prescribed function as [21]: 

2

0( ) 1 .
r

h r h
b


  

      

 (6) 

in which   is a geometrical parameter which controls the degree of curvature of the 

thickness profile. 

Similarly, Pasternak and Winkler coefficients are varying parabolically along the 

radial direction as [16]: 

2 2

( ) 1 , ( ) 1
o ow w p p

r r
k r k k r k

b b
 

      
                  

 (7) 

in which   and   are parameters controlling the curvature degree for thickness and 

foundation coefficients profiles, respectively. For better understanding of Eqs. (6) and 

(7), the variation of thickness profile and the distribution of the coefficients of the 
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elastic foundation are shown in Fig. 2. 

a) b) 

Fig. 2. Thickness profile and the distribution of foundation coefficients along the 

radial direction. 

2.3 Boundary and regularity conditions 

Two different types of boundary conditions are adopted in the present work as 

follows: 

- Clamped boundary condition: 

0, 0.
r b

r b

dw
w

dr


   (8) 

- Simply-supported boundary condition: 

2

2
0, 0rr b r b

d w dw
w M D

dr r dr


 

 
     

 
 (9) 

In order to ensure that the solution is avoided from singularity, regularity condition 

must be fulfilled as below: 

- Regularity condition at the center of the plate: 

0

0.
r

dw

dr 

  (10) 

3 DQ Method 

The differential quadrature method (DQM) approximates any derivative of a function 

with respect to a spatial variable at any grid point as a weighted linear summation of 
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their values at all the grid points selected in the solution domain. According to the 

differential quadrature rule, the nth-order derivative of ( )f r  can be discretely 

expressed at a grid point 
ir , as [19]: 

 ( )

1

( )
, 1,2,..., ,

i

n N
n

ij jn
jx x

d f r
c f r i N

dr 

   (11) 

in which ( )n

ijc  are the weighting coefficients associated with nth-order derivative of 

( )f x , and N is the number of discrete grid points in the solution domain. The 

weighting coefficients in Eq. (11) are given as follows: 
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3.1 Numerical discretization 

Several options can be employed to choose grid points location and the easiest 

method to select grid points in computational domain is uniform grid mesh, where all 

the grid points are equally spaced. However, in order to achieve more accurate results 

and reasonably convergence, non-uniform grid points are chosen. Shu and Richards 

[23] proposed a refined technique called Chebyshev-Gauss-Lobatto for selection of 

grid points. The grid points using this technique are given by:  

1
1 cos , 1,2,..., .

2 1
i

b i
r i N

N


   
    

  
 (16) 
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3.2 DQM applied to the governing equations  

The discretized form of Eq. (1) can be achieved easily by substituting relation (12) 

into Eq. (1) as: 
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(17

) 

Following the same procedure, the equations of radial and tangential stress can be 

transformed into the DQ formulation as [21]: 
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3.3 DQM applied to boundary and regularity conditions 

During the implementation of DQM to the boundary conditions, a problem arises. 

This problem appears because of the existence of two boundary conditions at the 

same point. In order to overcome this problem, Bert [24] proposed δ-point technique 

as an appropriate way when applying DQM to the boundary conditions of beams and 

plates problems. In this technique, only one boundary condition is applied at the 

boundary grid point and the derivative condition is discretized at δ-point, where   

represents a very small distance. Then, boundary and regularity conditions can be 

discretized as follows: 

- Clamped boundary conditions: 

(1)

1

1

0, 0.
N

N N j

j

w C w



   (19) 

- Simply supported boundary condition: 
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- Regularity condition at the center of the plate: 

(1)

1

1

0.
N

j j

j

C w


  (21) 

4 SOLUTION TECHNIQUE  

In order to achieve the solution, the discretized forms of governing equation and 

boundary/regularity conditions result in a set of linear equations. This set can be 

expressed in a matrix form as follows: 

1,1 1,2 1, 1 1, 1

2,1 2,2 2, 1 1, 2 0

1,1 1,2 1, 1 1, 1

,1 ,2 1, 1 ,

0

,

0

0

N N

N N

N N N N N N N

N N N N N N N

A A A A w

A A A A w q

A A A A w

A A A A w





     

 

     
     
        
     
     
     
        

 (22) 

Obviously, Eq. (22) includes all the functional values in the whole analysis domain. 

Nevertheless, it is difficult to couple Eq. (19) or (20) and Eq. (21) to obtain the 

solution of 1Nw   and Nw . Hence, to overcome this problem, the governing equation 

and the boundary/regularity conditions must be solved simultaneously. The matrix of 

Eq. (22) can be reconstructed as: 

               00 , ,BB B BI I IB B II IA w A w A w A w q     (23) 

where B refers to boundary points and I refers to internal points. It is noted that the 

sizes of matrices    ,II BBA A and  BIA  are ( 3) ( 3), (3 3)N N     and  3 ( 3)N  . 

The functional values of the internal points were separated from the boundary points. 

The functional values at the internal points and the boundary points are denoted by 

 Iw  and  Bw , respectively.  

The functional values at the boundary points can be obtained as: 

      
1

.B BB BI Iw A A w


   (24) 

By substituting  Bw from Eq. (24) into the second part of Eq. (23), we get: 

          
1

0 .II IB BB BI IA A A A w q


   (25) 

The solving process was carried out by developing a MATLAB program to solve the 

set of the linear equation for the computational domain. The results are presented and 

discussed in the next section. 
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5 Numerical results 

The numerical results presented in this section employ a value of 0 0.01h  m, 0.6b 

m, 5

0 10q  kPa. The mechanical properties of the materials employed in the study are 

taken from Ref. [25] as Young’s modulus of elasticity of metal and ceramic are 

70mE  GPa, 380cE  GPa, respectively. However, the value of Poisson’s ratio is 

considered to be constant and taken as 0.3.   Furthermore, the following non-

dimensional quantities are adopted for presenting the results: 

0 0/ , / , / , / , /r r q q W w b R r b z h           

5.1 Comparison with  results of past literature 

In order to demonstrate the accuracy of the presented method, numerical results for 

the non-dimensional transversal displacement  shown in Table. 1 are compared with 

those reported in Ref. [10] for a clamped and simply supported circular plate. The 

plate is assumed to be fully rested on an elastic foundation in purpose of validation 

and subjected to uniform loading. The plate is assumed to be homogenous with 

uniform thickness and rested on one parameter elastic foundation (Winkler model). So 

as to reach the convergence and the stability of the proposed method, 20 grid points 

are adequate to obtain acceptable results for both clamped and simply supported 

conditions. The numerical results obtained by the differential quadrature method show 

excellent agreement with the differential transformation method (DTM) which reveals 

the accuracy and the efficiency of the adopted approach. 

Table. 1. Comparison of results for uniform thickness, ( 0)   rested on Winkler 

foundation ( 0).pk a    

wk   

Clamped edge Simply supported edge 

0g   1g   10g   100g   0g   1g   10g   100g   

0 
Present 0.0097 0.0195 0.0324 0.0470 0.0395 0.0793 0.1320 0.1915 

Ref. [10] 0.0097 0.0195 0.0324 0.0470 0.0395 0.0793 0.1320 0.1915 

5 
Present 0.0082 0.0141 0.0198 0.0243 0.0221 0.0306 0.0358 0.0386 

Ref. [10] 0.0082 0.0141 0.0198 0.0243 0.0221 0.0306 0.0358 0.0386 

10 
Present 0.0070 0.0110 0.0141 0.0161 0.0153 0.0186 0.0201 0.0206 

Ref. [10] 0.0070 0.0110 0.0141 0.0161 0.0153 0.0186 0.0201 0.0206 

50 
Present 0.0033 0.0038 0.0039 0.0038 0.0041 0.0041 0.0039 0.0037 

Ref. [10] 0.0033 0.0038 0.0039 0.0038 0.0041 0.0041 0.0039 0.0037 

In comparison to another study as shown in Table. 2, it was carried out to guarantee 

the accuracy of the presented results. In order to validate the obtained results, tapered 

thickness profile was studied with different values of   for homogenous metal 

material. The results were compared to the results reported in Ref. [21] for two 

numerical methods DQM and Finite Element method (FEM) using ABAQUS 

software. The results match those obtained by FEM with error percentage less than 

0.02.  
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Table. 2. Validation of results for tapered section profile for homogeneous metal 

material, ( , 0).w pg k k    

Edge 

condition 
 

Non-dimensional transversal displacement at the center of the 

plate (W) 

0.5    0.3    0.3   0.5   

Clamped 

Present (DQM) 0.1688 0.0987 0.0319 0.0240 

Ref.[21] (DQM) 0.1688 0.0987 0.0319 0.0240 

Ref.[21] (FEM) 0.1683 0.0985 0.0316 0.0237 

Simply 

supported 

Present (DQM) 0.5046 0.3446 0.1438 0.1133 

Ref.[21] (DQM) 0.5044 0.3445 0.1438 0.1132 

Ref.[21] (FEM) 0.5040 0.3441 0.1434 0.1129 

 

5.2 Parametric studies on bending analysis 

To assess the influence of  geometrical and foundation parameters on the absolute 

value of central displacement of the FGM circular plate, effects of different values of 

k-coefficients with different values of volume fraction index are shown in Table. 3 for 

clamped and simply supported edges denoted by C and SS, respectively. In case of 

clamped edge, it can be observed that the central displacement decreases with 

increasing values of k-coefficients for negative values of geometrical parameter   

(concavity goes upward). In contrast, central displacement increases with increasing 

values of k-coefficients for positive values of geometrical parameter   (concavity 

goes downward). In case of simply supported edge, a significant decrease of the value 

of central displacement with increasing values of k-coefficients is observed for 

negative values of  . However, the decrease of the value of central displacement is 

weak with increasing values of k-coefficients. Moreover, for higher values of k-

coefficients, a significant decrease of the value of central displacement during 

increasing values of k-coefficients when 1g   is observed. For better understanding 

of the effects of volume fraction index g, see Fig. 3. 

In case of circular plate partially rested on an elastic foundation, numerical results for 

the non-dimensional central displacement are provided in Table. 4. For clamped edge, 

the central displacement increases for positive values of  (max values of the  

two-parameters foundation at the center of the plate). Furthermore, this increase is 

more noticeable when / 0.5.a b   In contrast, for simply supported edge, the central 

displacement decreases for positive values of  and the decrease is significant when 

/ 0.2.a b   

The influences of the two-parameter elastic foundation are studied in Fig. 4 for 

various combinations of foundation coefficients. In case of a clamped edge, 

unexpectedly, the values of the transverse displacement increase with increasing 

values of k-coefficients. This happens because the plate was partially rested on the 

elastic foundation. In addition, a sudden increase of transverse displacement takes 
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place when ( , ) (10,5).w pk k   On the other hand, for simply supported edge, the 

values of the transverse displacement decrease with increasing values of k-

coefficients.  

In order to investigate the effects of foundation coefficients variation parameter   in 

the radial direction on the transverse displacement of the plate, a plate with a negative 

value of geometric parameter  (concavity goes downward) is considered in Fig. 5. 

The influence of   on the transverse displacement appears more clearly when higher 

values of   are used. As a result, it is recommended for a foundation with a variable 

stiffness specification to pick out a plate with cross section with positive values of   

taking into account that this variation will not significantly affect the transverse 

displacement in addition to minimizing the overall cross section of the plate. 

Furthermore, the bending behavior is almost the same in both clamped and simply 

supported edges. This happens because the flexural stiffness of the plate at the edge is 

minima in comparison with its value at the center of the plate.       

Table. 3. Variation of the non-dimensional transversal displacement at the center of 

the plate of FGM circular plate fully rested on non-uniform two-parameter elastic 

foundation for 0.5.   

( , )w pk k    

Non-dimensional transversal displacement at the center of the plate (W) 

0g   1g   10g   Metal 

C SS C SS C SS C SS 

(0,0) 

-0.5 0.0241 0.0642 0.0483 0.1288 0.0803 0.2143 0.1306 0.3485 

-0.3 0.0159 0.0521 0.0319 0.1046 0.0531 0.1740 0.0863 0.2830 

0 0.0097 0.0395 0.0195 0.0793 0.0324 0.1320 0.0526 0.2146 

0.3 0.0065 0.0307 0.0131 0.0616 0.0218 0.1024 0.0355 0.1666 

0.5 0.0052 0.0261 0.0105 0.0525 0.0174 0.0873 0.0283 0.1419 

(5,1) 

-0.5 0.0184 0.0234 0.0258 0.0278 0.0291 0.0297 0.0309 0.0310 

-0.3 0.0151 0.0247 0.0245 0.0299 0.0298 0.0317 0.0321 0.0325 

0 0.0105 0.0253 0.0203 0.0331 0.0287 0.0354 0.0337 0.0354 

0.3 0.0073 0.0244 0.0155 0.0355 0.0249 0.0394 0.0335 0.0392 

0.5 0.0059 0.0230 0.0127 0.0361 0.0218 0.0420 0.0321 0.0421 

(10,5) 

-0.5 0.0127 0.0130 0.0145 0.0145 0.0155 0.0153 0.0165 0.0158 

-0.3 0.0136 0.0144 0.0153 0.0154 0.0159 0.0159 0.0162 0.0162 

0 0.0142 0.0174 0.0172 0.0173 0.0172 0.0171 0.0170 0.0169 

0.3 0.0103 0.0221 0.0195 0.0202 0.0191 0.0186 0.0180 0.0178 

0.5 0.0113 0.0266 0.0209 0.0229 0.0208 0.0200 0.0190 0.0184 

(20,10) 

-0.5 0.0072 0.0073 0.0079 0.0077 0.0085 0.0080 0.0092 0.0081 

-0.3 0.0077 0.0077 0.0080 0.0080 0.0082 0.0081 0.0084 0.0082 

0 0.0086 0.0087 0.0085 0.0085 0.0084 0.0084 0.0084 0.0084 

0.3 0.0097 0.0101 0.0093 0.0091 0.0089 0.0088 0.0086 0.0086 

0.5 0.0105 0.0115 0.0100 0.0096 0.0092 0.0090 0.0088 0.0087 
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Table. 4. Variation of the non-dimensional transversal displacement at the center of 

the plate of FGM circular plate partially rested on non-uniform two-parameter elastic 

foundation for ( 0.5, 1, 10, 1).w pg k k      

  

Non-dimensional transversal displacement at the center of the plate (W) 

/ 0.1a b   / 0.2a b   / 0.3a b   / 0.4a b   / 0.5a b   

C SS C SS C SS C SS C SS 

-0.5 0.0098 0.0218 0.0106 0.0251 0.0114 0.0302 0.0120 0.0372 0.0121 0.0451 

-0.25 0.0099 0.0214 0.0107 0.0246 0.0116 0.0297 0.0122 0.0367 0.0123 0.0450 

0 0.0100 0.0209 0.0108 0.0241 0.0117 0.0292 0.0124 0.0362 0.0125 0.0448 

0.25 0.0101 0.0205 0.0109 0.0236 0.0119 0.0287 0.0126 0.0357 0.0127 0.0445 

0.5 0.0102 0.0201 0.0110 0.0232 0.0121 0.0282 0.0128 0.0352 0.0130 0.0443 

 

a) b) 

 
 

Fig. 3. Effects of volume fraction index (g) on the non-dimensional displacement of the circular plate 

for: a) clamped edge, b) simply supported edge; ( 0.5  , 0.5, 5, 1, / 0).
w p

k k a b      
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a) b) 

  

Fig. 4. Effects of a two-parameter elastic foundation on the transverse displacement of the plate for: a) 

clamped edge, b) simply supported edge; ( 0.5, 1, 0.5, / 0.2).g a b      

 

a) b) 

  

Fig. 5. Effects of the variation in the two-parameter elastic foundation coefficients on the transverse 

displacement of the plate for: a) clamped edge, b) simply supported edge; 

( 0.5, 1, , / 0.2).20, 2w pg k a bk       

5.3 Parametric studies on stress analysis 

In this subsection, a parametric study has been conducted to investigate the influence 

of the ratio of contacting surface with the two-parameter elastic foundation, gradient 

index materials and geometric parameters on the radial stress of the FGM circular  
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a) b) 

 
 

Fig. 6. Distribution of non-dimensional radial stress of FGM circular plate partially rested on elastic 

foundation plate for: a) clamped edge, b) simply supported edge; 

( 0.5, 1, , 0.5, 0.5).20, 2w pg k k        
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plate across the thickness of the elastic foundation ( )./a b It is observed that the radial 

stress increases uniformly with increasing ratio /a b  at both edge and center of the 

plate in case of clamped edge. This happens as a result of the absence of elastic 

foundation. On the other hand, for a simply supported edge, a sudden increase in the 

radial stress occurs for ratio /a b  greater than 0.4.    

a) b) 

  

Fig. 7. Distribution of non-dimensional radial stress of FGM circular plate partially rested  

on elastic foundation plate for: a) clamped edge, b) simply supported edge; 

( 0.5, , 0.5, / 0.2, 0.5).20, 2w pk a bk        

a) b) 

  

Fig. 8. Distribution of non-dimensional radial stress of FGM circular plate partially rested on elastic 

foundation plate for: a) clamped edge, b) simply supported edge; 

( 0.5, , 0.5, / 0.2, 0.5).1 a bg       
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Fig. 7 shows the variation of non-dimensional radial stress at the top surface of the 

FGM circular for different values of volume fraction index g ( 0,1,5,10).g   In case of 

clamped edge, it can be seen that maximum stresses at the edge and center of the plate 

occur when 1g   and 10g  , respectively. For a simply supported edge, a uniform 

increase is noticed in both of stress at the center of the plate and in the rate of change 

of stress during increasing the value of g . 

The compound effect of four different sets of two-parameter foundation coefficients 

( , )w pk k  is plotted in Fig. 8. It is obvious that the influence of increasing the values of 

( , )w pk k  on the radial stress is more obvious at the edge of the plate while it is barely 

noticeable at the center of the plate in case of clamped edge. On the contrary, 

increasing the value of ( , )w pk k  meets a uniform decrease of the radial stress.  

In Fig. 9, distribution of the radial stress through the thickness direction is plotted to 

demonstrate the effect of two-parameters elastic foundation on the variation of the 

radial stress corresponding to sections at R = 0 and R = 1 for FGM circular plate with 

clamped edge. As shown in Fig. 9, the degradation of the radial stress at the center of 

the plate (R = 0) is remarkable for higher sets of ( , )w pk k  while the values of radial 

stress go up by increasing values of ( , )w pk k . However, for an elastic foundation with 

higher shear coefficient ( )pk , the values of the radial stress are slightly decreased by 

increasing values of ( , )w pk k .   

a) b) 

  

Fig. 9. Distribution of the radial stress through the thickness of the plate at: a) center of the plate, b) 

plate edge; ( 0.5, , 0.5, / 0).10 a bg     
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CONCLUSION 

In the present paper, the differential quadrature method (DQM) was adopted to study 

the bending and stress analyses of axisymmetric functionally graded material circular 

plate with variable thickness partially resting on a non-uniform two-parameter elastic 

foundation subjected to uniform transverse pressure. The validity of the present work 

has been investigated for static analysis of the simply supported and clamped plate 

under various parameters. The obtained numerical results show excellent agreement 

with the results tabulated in the literature. Based on this study results, the main 

conclusions can be summarized as follows.  

 The profile of the circular plate can affect the values of the central 

displacement. As for clamped edge it is better to choose a profile with 

concavity going upward ( ) , while for a simply supported edge, it is better to 

choose a profile with concavity going downward ( ) . 

 The values of transverse displacement increase by increasing volume fraction 

index g  toward metal material.  

 For a variable elastic foundation, the central displacement of clamped circular 

plate increases for positive values of   where the values of the foundation 

coefficients ( , )w pk k  are maximum, while the central displacement decreases 

in case of a simply supported plate.  

 A gradual stress distribution occurs by varying the contact surface ratio /a b  

for clamped edge while a sudden increase in the stress for a simply supported 

plate takes place. Thus, for plates partially resting on elastic foundation, it is 

recommended to choose plates with a clamped edge.  

 The gradient of the material properties significantly influences the radial stress 

for both clamped and simply supported edges. In addition, the effect of the 

ratio /a b  appears clearly in case of a simply supported edge. As a result, by 

proper choice of the gradient of the material, a uniform stress distribution may 

be achieved without the need to change the thickness profile.  

 By increasing the values of foundation coefficients ( , )w pk k , the radial stress 

increases at the edge of the plate for clamped edge and decreases at the center 

of the plate for simply supported edge.   
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