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Abstract

In this paper, we consider the equivalent conditions with W−m,p-version (m ≥ 0

integer and 1 < p < ∞) of the J. L. Lions lemma. As an applications, we consider
the Korn inequality. Furthermore, we consider the other fundamental results.
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1. INTRODUCTION

Assume that Ω is a bounded domain of Rd with a Lipcshitz-continuous boundary. In
this paper, this means that Ω is a bounded and connected open subset of Rd whose
boundary Γ = ∂Ω is Lipschitz-continuous and Ω is locally on the same side of Γ. The
classical J. L. Lions lemma asserts that any distribution in the space ofH−1(Ω) with the
gradient (in the distribution sense) belonging to H−1(Ω) is a function in L2(Ω).

Amrouche et al. [1] derived the equivalent conditions with the J. L. Lions lemma. The
conditions are the classical and the general J. L. Lions lemma, the Nec̆as inequality, the
coarse version of the de Rham theorem, the surjectivity of the operator div : H1

0(Ω) →
L2
0(Ω) and an approximation lemma. Some of these equivalent properties can be given

by a ”direct” proof.

However, these equivalent conditions of L2-version of the J. L. Lions lemma are
insufficient for considering the Maxwell-Stokes type system containing p-curlcurl
operator. Thus it is important for us to improve the result to the Lp-version of
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the equivalent relations with the J. L. Lions lemma. For an application to the
Maxwell-Stokes problem, see Aramaki [5, 3, 4] and Pan [12]. As an another
application, we derived the Korn inequality ofLp-version. In order to show an extension
of the Korn inequality in Lp toW−m,p-version, we have to extend the equivalent relation
to W−m,p-version (m ≥ 0 integer and 1 < p <∞) of the J. L. Lions lemma.

One of the purpose of this paper is an improvement of the result in the previous paper
[3] in which we derived the equivalent relation with the classical J. L. Lions lemma,
that is, if f ∈ W−1,p(Ω) satisfies ∇f ∈ W−1,p(Ω) (1 < p < ∞), then f ∈ Lp(Ω).
In this paper, we derive the classical J. L. Lions lemma: when m ≥ 0 integer and
1 < p < ∞, if f ∈ W−m−1,p(Ω) satisfies ∇f ∈ W−m−1,p(Ω), then f ∈ W−m,p(Ω),
and its equivalence relations. For example, W−m,p- version of the Nec̆as inequality
can be found in Nec̆as [11, Theorem 1], Geymonat and Suquet [10, Lemma 1] and
Amrouche and Girault [2]. We show that using the Galdi [9, Theorem 3.2], we can
derive W−m,p-version of the J. L. Lions lemma directly.

The paper is organized as follows. In section 2, we give some preliminaries. In section
3, we derive W−m,p version of the J. L. Lions lemma and its equivalent relations.
Section 4 is devoted to consider the Korn inequality. In section 5, we show the
equivalence between the J. L. Lions lemma and a simplified version of the de Rham
theorem. Finally, section 6 is devoted to the direct proof of the J. L. Lions lemma using
a result of [9].

2. PRELIMINARIES

In this section, we shall state some preliminaries that are necessary in this paper. Let Ω
be a bounded domain in Rd (d ≥ 2) (which means a bounded, connected open subset of
Rd) with a Lipschitz-continuous boundary Γ, let 1 < p <∞ and let p′ be the conjugate
exponent i.e., (1/p) + (1/p′) = 1. From now on we use D(Ω), Lp(Ω), Wm,p(Ω),
Wm,p

0 (Ω), W−m,p(Ω) = Wm,p
0 (Ω)′ = the dual space of Wm,p

0 (Ω), (m ≥ 0, integer),
for the standard real C∞ functions with compact supports in Ω, Lp and Sobolev spaces
of real valued functions. For any above space B, we denote Bd by boldface character
B. Hereafter, we use this character to denote vector and vector-valued functions. We
denote the standard inner product of vectors a and b in Rd by a ·b. We denote the space
of distributions in Ω by D′(Ω). Moreover, for the dual space B′ of B (resp. B′ of B),
we denote the duality bracket between B′ and B (resp. B′ and B) by ⟨·, ·⟩B′,B (resp.
⟨·, ·⟩B′,B).

The gradient operator grad = ∇ : D′(Ω) → D′(Ω) is defined by

⟨∇f,φ⟩D′(Ω),D(Ω) = −⟨f, divφ⟩D′(Ω),D(Ω) for f ∈ D′(Ω) and φ ∈ D(Ω).
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Since Ω is connected, we can see that if f ∈ D′(Ω) satisfies ∇f = 0 in D′(Ω), then
f is identified with a constant function (cf. Boyer and Fabrie [6, Chapter II. Lemma
II.2.44]). For f ∈ W−m,p(Ω), we can regard ∇f as an element of W−m−1,p(Ω) by the
definition, and

⟨∇f,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= −⟨f, divφ⟩

W−m,p(Ω),Wm,p′
0 (Ω)

(2.1)

for φ ∈ Wm+1,p′

0 (Ω). Then it is clear that ∇ : W−m,p(Ω) → W−m−1,p(Ω) is a
linear and continuous operator. Since ker∇ = R, we can also define an continuous
operator ∇ : W−m,p(Ω)/R → W−m−1,p(Ω) by the definition ∇[f ] = ∇f for
[f ] ∈ W−m,p(Ω)/R, where [f ] denotes the class in the quotient space W−m,p(Ω)/R
with a representative f .

We introduce the closed subspace of a reflexive Banach space Wm,p
0 (Ω) which is a

basic space in our argument.

Wm,p
0 (Ω, div 0) = {u ∈ Wm,p

0 (Ω); divu = 0 in Ω}.

Moreover, we define a closed subspace of Wm,p
0 (Ω) by

Ẇm,p
0 (Ω) =

{
f ∈ Wm,p

0 (Ω);

∫
Ω

fdx = 0

}
if m > 0,

Lp
0(Ω) :=

{
f ∈ Lp(Ω);

∫
Ω

fdx = 0

}
if m = 0

endowed with the norm of Wm,p(Ω). We note that the dual space (W−m,p(Ω)/R)′ of
W−m,p(Ω)/R is identified with Ẇm,p′

0 (Ω).

Now we state a theorem on the property of the domain Ω without its proof.

Theorem 2.1. Let Ω be a bounded domain of Rd. Then there exist domains Ωj

(j = 1, 2, . . .) of Rd such that the boundary ∂Ωj is of class C∞, Ωj ⊂ Ωj+1 ⊂ Ω

and Ω = ∪∞
j=1Ωj .

For the proof, see [6].

3. W−M,P -VERSION OF THE J. L. LIONS LEMMA AND ITS EQUIVALENT
RELATIONS

In this section, we assume that Ω is a bounded domain of Rd with a Lipschitz-continuous
boundary.

We derive the following theorem.
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Theorem 3.1. Assume that Ω is a bounded domain of Rd (d ≥ 2) with a
Lipschitz-continuous boundary. Let m ≥ 0 be an integer and 1 < p < ∞. Then
the following (a), (b), . . . , (f) are equivalent.

(a) Classical J. L. Lions lemma: if f ∈ W−m−1,p(Ω) satisfies

∇f ∈ W−m−1,p(Ω),

then f ∈ W−m,p(Ω).

(b) The Nec̆as inequality: there exists a constant C = C(m, p,Ω) such that

∥f∥W−m,p(Ω) ≤ C(∥f∥W−m−1,p(Ω) + ∥∇f∥W−m−1,p(Ω)) for all f ∈ W−m,p(Ω).

(c) The operator grad has a closed range: grad (W−m,p(Ω)/R) is a closed subspace
of W−m−1,p(Ω).

(d) A coarse version of the de Rham theorem: for any h ∈ W−m−1,p(Ω), there
exists a unique [π] ∈ W−m,p(Ω)/R, where [π] denotes the class in the quotient space
W−m,p(Ω)/R with the representative π, such that h = ∇π in W−m−1,p(Ω) if and only
if

⟨h,v⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0 for all v ∈ Wm+1,p′

0 (Ω, div 0).

(e) The operator div is surjective: the operator

div : Wm+1,p′

0 (Ω) → Ẇm,p′

0 (Ω).

is linear, continuous and surjective.

Consequently, for any f ∈ Ẇm,p′

0 (Ω), there exists a unique

[uf ] ∈ Wm+1,p′

0 (Ω)/Ker div ,

where Ker div = Wm+1,p′

0 (Ω, div 0) and [uf ] denotes the class in the quotient space
Wm+1,p′

0 (Ω)/Ker div with the representative uf such that div [uf ] := divuf = f in
Ω. Therefore, the operator

div : Wm+1,p′

0 (Ω)/Ker div → Ẇm,p′

0 (Ω)

is linear, continuous and bijective. Hence, by the Banach open mapping theorem, there
exists a constant c1(m, p,Ω) > 0 such that

∥[uf ]∥Wm+1,p′
0 (Ω)/Kerdiv

≤ c1(m, p,Ω)∥f∥Wm,p′ (Ω) for all f ∈ Ẇm,p′

0 (Ω).



On the Equivalent Relations with the J. L. Lions Lemma and an Application... 1155

In addition, for φ ∈ Ḋ(Ω), where

Ḋ(Ω) =

{
ψ ∈ D(Ω);

∫
Ω

ψdx = 0

}
,

we can choose uφ ∈ D(Ω) such that divuφ = φ.

(f) The J. L. Lions lemma: if f ∈ D′(Ω) satisfies ∇f ∈ W−m−1,p(Ω), then
f ∈ W−m,p(Ω).

Remark 3.2. Though the authors of [1] derived this theorem in L2-framework in the
classical J. L. Lions lemma in the sense that f ∈ H−1(Ω) and ∇f ∈ H−1(Ω)

implies f ∈ L2(Ω), our Theorem 3.1 is an improvement of [1]. In the previous
paper [3], we extended the results of [1] to Lp-version and applied the results to
the Maxwell-Stokes problem containing p-curlcurl equation and the Korn inequality
in Lp-version. However, according to Theorem 3.1, we will show the Korn inequality in
W−m,p-version in section 4.

Proof of Theorem 3.1

(a) implies (b). Define a Banach space

V (Ω) = {f ∈ W−m−1,p(Ω);∇f ∈ W−m−1,p(Ω)},

equipped with the norm

∥f∥V (Ω) = ∥f∥W−m−1,p(Ω) + ∥∇f∥W−m−1,p(Ω).

The canonical injection i : W−m,p(Ω) → V (Ω) is linear, continuous and bijective
according to (a). Hence, it follows from Banach open mapping theorem that i−1 is also
linear and continuous, that is, there exists a constant c0(m, p,Ω) > 0 such that

∥f∥W−m,p(Ω) ≤ c0(m, p,Ω)(∥f∥W−m−1,p(Ω) + ∥∇f∥W−m−1,p(Ω))

for all f ∈ W−m,p(Ω).

(b) implies (c). It suffices to show that there exists a constant C(m, p,Ω) > 0 such that

∥[f ]∥W−m,p(Ω)/R ≤ C(m, p,Ω)∥∇f∥W−m−1,p(Ω) (3.1)

for all [f ] ∈ W−m,p(Ω)/R. If the inequality (3.1) is false, then there exists a sequence
{[fk]} ⊂ W−m,p(Ω)/R such that

∥[fk]∥W−m,p(Ω)/R = 1 for k = 1, 2, . . . and ∥∇fk∥W−m−1.p(Ω) → 0 as k → ∞.
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We can easily see that the quotient norm ∥[f ]∥W−m,p(Ω)/R = inf{∥f + c∥W−m,p(Ω); c ∈
R} is achieved, so we may assume that fk ∈ W−m,p(Ω), ∥fk∥W−m,p(Ω) = 1 and
∇fk → 0 in W−m−1,p(Ω) as k → ∞. Since {fk} is bounded in W−m,p(Ω), there
exist a subsequence {fkl} of {fk} and f ∈ W−m,p(Ω) such that fkl → f weakly in
W−m,p(Ω). Since the canonical injection operator

i0 : W
−m,p(Ω) ↪→ W−m−1,p(Ω)

is compact, because i0 is the dual operator of the compact canonical injection operator
Wm+1,p′

0 (Ω) ↪→ Wm,p′

0 (Ω), thus we see that fkl → f strongly in W−m−1,p(Ω). On the
other hand, since ∇fkl → 0 in W−m−1,p(Ω), it follows from the hypothesis (b) that
we can see that {fkl} is a Cauchy sequence in W−m,p(Ω). Hence fkl → f strongly in
W−m,p(Ω) as l → ∞. Since ∇ : W−m,p(Ω) → W−m−1,p(Ω) is continuous, we have
∇fkl → ∇f = 0 in W−m−1,p(Ω). This implies that f = const., so [f ] = 0. Thus
∥[fkl ]∥W−m,p(Ω)/R = ∥[fkl − f ]∥W−m,p(Ω)/R ≤ ∥fkl − f∥W−m,p(Ω) → 0 as l → ∞. This
is a contradiction.

(c) is equivalent to (d). We note that the operator grad = ∇ : W−m,p(Ω)/R →
W−m−1.p(Ω) is the dual operator of

−div : Wm+1,p′

0 (Ω) → (W−m,p(Ω)/R)′ = Ẇm,p′

0 (Ω)

and satisfies

⟨∇[f ],φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= ⟨∇f,φ⟩

W−m−1,p(Ω),Wm+1,p′
0 (Ω)

= −⟨f, divφ⟩
W−m,p(Ω),Ẇm,p′

0 (Ω)
.

for all [f ] ∈ W−m,p(Ω)/R and φ ∈ Wm+1,p′

0 (Ω). Therefore, if we apply the Banach
closed range theorem, Im∇ is a closed subspace of W−m−1,p(Ω) if and only if

Im∇ =⊥(Ker div ) := {h ∈ W−m−1,p(Ω); ⟨h,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0

for all φ ∈ Kerdiv = Wm+1,p′

0 (Ω, div 0)}.

This means that (c) and (d) are equivalent.

(d) implies (e). Assume that (d) and (c) hold. Since grad (W−m,p(Ω)/R) is a closed
subspace of W−m−1,p(Ω) from (c), it follows from the Banach closed range theorem
that we have Imdiv = (Ker∇)⊥. Since Ker∇ = R, we have Imdiv = Ẇm,p′

0 (Ω), so
we can see that

div : Wm+1,p′

0 (Ω)/Ker div → Ẇm,p′

0 (Ω)
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is a continuous and bijective linear operator. Therefore, from the Banach open mapping
theorem, the inverse operator is continuous. Thus for any f ∈ Ẇm,p′

0 (Ω), there exists
a unique [uf ] ∈ Wm+1,p′

0 (Ω)/Ker div such that divuf = f in Ẇm,p′

0 (Ω), and there
exists a constant C(m, p,Ω) such that

∥[uf ]∥Wm+1,p′
0 (Ω)/Kerdiv

≤ C(m, p,Ω)∥f∥
Ẇm,p′

0 (Ω)
.

In particular, if φ ∈ Ḋ(Ω), according to the Diening et al. [8, Thereom 14.3.15], we
can choose uφ ∈ D(Ω) such that divuφ = φ.

(e) implies (f). Let f ∈ D′(Ω) satisfy ∇f ∈ W−m−1.p(Ω). It suffices to prove that
there exists a constant C0 = C0(m, p, f,Ω) such that

|⟨f, φ⟩D′(Ω),D(Ω)| ≤ C0∥φ∥Wm,p′
0 (Ω)

for all φ ∈ D(Ω). (3.2)

Indeed, assume that (3.2) holds. Since D(Ω) is contained in Wm,p′

0 (Ω) densely, for any
φ ∈ Wm,p′

0 (Ω), there exists a sequence {φn} ⊂ D(Ω) such that φn → φ in Wm,p′

0 (Ω).
From (3.2), we have

|⟨f, φn⟩D′(Ω),D(Ω) − ⟨f, φm⟩D′(Ω),D(Ω)| ≤ C0∥φn − φm∥Wm,p′
0 (Ω)

.

Therefore, {⟨f, φn⟩D′(Ω),D(Ω)} is a Cauchy sequence in R. Define a linear functional f̂
on Wm,p′

0 (Ω) by

⟨f̂ , φ⟩ = lim
n→∞

⟨f, φn⟩D′(Ω),D(Ω) for φ ∈ Wm,p′

0 (Ω). (3.3)

We can clearly recognize that the definition is independent of the choice of {φn} with
φn → φ in Wm,p′

0 (Ω). From (3.2),

|⟨f̂ , φ⟩| = lim
n→∞

|⟨f, φn⟩D′(Ω),D(Ω)|

≤ C0 lim
n→∞

∥φn∥Wm,p′
0 (Ω)

= C0∥φ∥Wm,p′
0 (Ω)

for all φ ∈ Wm,p′

0 (Ω).

Thus f̂ ∈ (Wm,p′

0 (Ω))′ = W−m,p(Ω). In particular, if we choose φ ∈ D(Ω) in (3.3), we
have

⟨f̂ , φ⟩ = ⟨f, φ⟩D′(Ω),D(Ω) for all φ ∈ D(Ω).

That is to say, f = f̂ ∈ W−m,p(Ω).

We derive (3.2). Let φ1 ∈ D(Ω) such that
∫
Ω
φ1dx = 1. For any φ ∈ D(Ω), define

φ0 = φ−
(∫

Ω

φdx

)
φ1 ∈ Ḋ(Ω).



1158 Junichi Aramaki

Then it follows from the Hölder inequality that

∥φ0∥Wm,p′
0 (Ω)

≤ ∥φ∥
Wm,p′

0 (Ω)
+

∫
Ω

|φ|dx∥φ1∥Wm,p′
0 (Ω)

≤ ∥φ∥
W

m,p′(·)
0 (Ω)

+ C1∥φ∥Lp′(·)(Ω)∥φ1∥Wm,p′
0 (Ω)

≤ C2∥φ∥Wm,p′
0 (Ω)

.

Here we note that for any v ∈ D(Ω),

|⟨f, div v⟩D′(Ω),D(Ω)| = |⟨∇f,v⟩D′(Ω),D(Ω)| ≤ ∥∇f∥W−m−1,p(Ω)∥v∥Wm+1,p′
0 (Ω)

.

From (e), there exists v ∈ D(Ω) such that div v = φ0 and

∥[v]∥
Wm+1,p′

0 (Ω)/Kerdiv
≤ C3∥φ0∥Wm,p′

0 (Ω)
≤ C2C3∥φ∥Wm,p′

0 (Ω)
.

Hence

⟨f, φ⟩D′(Ω),D(Ω) = ⟨f, φ0⟩D′(Ω),D(Ω) +

∫
Ω

φdx⟨f, φ1⟩D′(Ω),D(Ω)

= ⟨f, div v⟩D′(Ω),D(Ω) +

∫
Ω

φdx⟨f, φ1⟩D′(Ω),D(Ω).

So, we have

|⟨f, φ⟩D′(Ω),D(Ω)| =

∣∣∣∣⟨f, φ0⟩D′(Ω),D(Ω) +

∫
Ω)

φdx⟨f, φ1⟩D′(Ω),D(Ω)

∣∣∣∣
≤ |⟨∇f,v⟩D′(Ω),D(Ω)|+ |Ω|1/p∥φ∥Lp′ (Ω)|⟨f, φ1⟩D′(Ω),D(Ω)|
≤ ∥∇f∥

(Wm+1,p′
0 (Ω)/Kerdiv )′

∥[v]∥
Wm+1,p′

0 (Ω)/Kerdiv

+C4∥φ∥Lp′ (Ω)|⟨f, φ1⟩D′(Ω),D(Ω)|
≤ C5∥∇f∥W−m−1,p(Ω)∥φ∥Wm,p′

0 (Ω)

+C6|⟨f, φ1⟩D′(Ω),D(Ω)|∥φ∥Wm,p′
0 (Ω)

≤ C7(∥∇f∥W−m−1,p(Ω) + 1)∥φ∥
Wm,p′

0 (Ω)
.

Here we identified (Wm+1,p′

0 (Ω)/Kerdiv )′ with

(Kerdiv )⊥ = {g ∈ W−m−1,p(Ω); ⟨g,v⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0 for all v ∈ Kerdiv }.

Thus (3.2) holds.

(f) implies (a). Clear.

This completes the proof of Theorem 3.1.
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Remark 3.3. Since we can prove that the classical J. L. Lions lemma (a) holds (cf.
Ciarlet [7, p. 381 and the footnote]), or the Nec̆as inequality (b) (cf. [11, Theorem
1] or [6, Remark IV.1.1]) directly, consequently if Ω is a bounded domain with a
Lipschitz-continuous boundary, then all of (a), ..., (f) are true. In section 6, we prove
that the J. L. Loins lemma (Theorem 3.1 (f)) holds using [9, Theorem 3.2]. According
to our best knowledge, it seems that the proof is new.

4. AN APPLICATION OF THE J. L. LIONS LEMMA TO THE KORN
INEQUALITY

In this section, we consider the Korn inequality which plays a crucial role in linearized
elasticity.

We introduce the following Korn inequality in W 1,p(Ω) which is proved in the previous
paper [3].

Theorem 4.1. Assume that Ω is a bounded domain of Rd (d ≥ 2) with a
Lipschitz-continuous boundary and 1 < p < ∞. Then the J. L. Lions lemma (Theorem
3.1 (a) with m = 0) implies the following Korn inequality in W 1,p(Ω): there exists a
constant C = C(p,Ω) > 0 such that

∥v∥W 1,p(Ω) ≤ C(∥v∥Lp(Ω) + ∥e(v)∥Lp(Ω)) for all v ∈ W 1,p(Ω), (4.1)

where e(v) = (eij(v))1≤i,j≤d with

eij(v) =
1

2
(∂jvi + ∂ivj), v = (v1, . . . , vd).

For the proof, see [3, Theorem 5.1].

In this paper, we consider the Korn inequality in W−m,p(Ω).

Theorem 4.2. Assume that Ω is a bounded domain of Rd (d ≥ 2) with a
Lipschitz-continuous boundary, m ≥ −1 is an integer and 1 < p < ∞. Then the
classical J. L. Lions lemma (Theorem 3.1 (a)) implies the following Korn inequality:
there exists a constant C = C(p,m,Ω) > 0 such that

∥v∥W−m,p(Ω) ≤ C(∥v∥W−m−1,p(Ω)+∥e(v)∥W−m−1,p(Ω)) for all v ∈ W−m,p(Ω), (4.2)

Conversely, (4.2) with m ≥ 0 implies the classical J. L. Lions lemma in Theorem 3.1
(a).

Proof. If m = −1, the theorem is just Theorem 4.1. Hence let m ≥ 0.
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Step 1. If we define

F−m−1,p(Ω) = {v ∈ W−m−1,p(Ω); e(v) ∈ W−m−1,p(Ω)}

equipped with the norm ∥v∥F−m−1,p(Ω) = ∥v∥W−m−1,p(Ω) + ∥e(v)∥W−m−1,p(Ω), then we
can see that F−m−1,p(Ω) is a Banach space. We claim that F−m−1,p(Ω) = W−m,p(Ω).
Indeed, clearly we can see that W−m,p(Ω) ⊂ F−m−1,p(Ω). Let v = (v1, . . . , vd) ∈
F−m−1,p(Ω). Since vi ∈ W−m−1,p(Ω), we have ∂kvi ∈ W−m−2.p(Ω) and

∂j(∂kvi) = ∂jeik(v) + ∂keij(v)− ∂iejk(v) ∈ W−m−2,p(Ω).

By Theorem 3.1 (a), we have ∂kvi ∈ W−m−1,p(Ω) for every k = 1, . . . , d, so
∇vi ∈ W−m−1,p(Ω). Using again Theorem 3.1 (a), we can see that vi ∈ W−m,p(Ω) for
every i = 1, . . . , d, so v ∈ W−m,p(Ω).

Step 2. The canonical injection i : W−m,p(Ω) → F−m−1,p(Ω) is linear, injective and
continuous. From Step 1, we see that i is surjective. Using again the Banach open
mapping theorem, i−1 is also continuous. This implies the estimate (4.2).

Step 3. Conversely, let m ≥ 0 be an integer and assume that (4.2) holds. Since

e(v) =
1

2
((∇v)T +∇v),

where (∇v)T denotes the transposed matrix of ∇v. Thus

∥e(v)∥W−m−1,p(Ω) ≤ ∥∇v∥W−m−1,p(Ω).

From (4.2), we have

∥v∥W−m,p(Ω) ≤ C(∥v∥W−m−1,p(Ω) + ∥∇v∥W−m−1,p(Ω)) for all v ∈ W−m,p(Ω). (4.3)

For f ∈ W−m,p(Ω), if we put v = (f, 0, . . . , 0), then it follows from (4.3) that

∥f∥W−m,p(Ω) ≤ C(∥f∥W−m−1,p(Ω) + ∥∇f∥W−m−1,p(Ω)) for all f ∈ W−m,p(Ω).

This is the Nec̆as inequality in Theorem 3.1 (b). Thus it follows from Theorem 3.1 that
the classical J. L. Lions lemma (Theorem 3.1 (a)) holds.

5. RELATION BETWEEN THE J. L. LIONS LEMMA AND A SIMPLIFIED
VERSION OF THE DE RHAM THEOREM

In this section, we discuss on a relation between the J. L. Lions lemma and a simplified
version of the de Rham theorem, which is a the fundamental result.

We have the following theorem.
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Theorem 5.1. Assume that Ω is a bounded domain of Rd (d ≥ 2) with a
Lipschitz-continuous boundary, m ≥ 0 is an integer and 1 < p < ∞. Then the
J. L. Lions lemma (Theorem 3.1 (a)) implies that the following simplified version of
the de Rham theorem: for any h ∈ W−m−1,p(Ω) satisfying

⟨h,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0 for all φ ∈ D(Ω) with divφ = 0 in Ω,

there exists π ∈ W−m,p(Ω) such that h = ∇π in W−m−1.p(Ω).

Conversely, the simplified version of the de Rham theorem implies the J. L. Lions lemma
(Theorem 3.1 (a)).

Proof. Let h ∈ W−m−1,p(Ω) satisfy

⟨h,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0 for all φ ∈ D(Ω) with divφ = 0 in Ω. (5.1)

From Theorem 2.1, choose bounded domains Ωj ⊂ Ω (j = 1, 2, . . .) such that ∂Ωj

is of class C∞, Ωj ⊂ Ωj+1 and Ω = ∪∞
j=1Ωj . For any vj ∈ Wm+1,p′

0 (Ωj) satisfying
div vj = 0 in Ωj , define ṽj ∈ Wm+1,p′

0 (Rd) as an extension of vj by 0 on Rd \ Ωj . Let
{ρn}∞n=1 be the standard mollifier, that is, choose ρ ∈ D(Rd) such that ρ ≥ 0, supp ρ ⊂
{x ∈ Rd; |x| ≤ 1} and

∫
Rd ρ(x)dx = 1, then ρn is defined by ρn(x) = ndρ(nx).

Then there exists n0(j) and a compact set Kj ⊂ Ω such that supp(ṽj ∗ ρn) ⊂ Kj ,
so ṽj ∗ ρn

∣∣
Ω
∈ D(Ω) for any n ≥ n0(j), div (ṽj ∗ ρn) = (div ṽj) ∗ ρn = 0 in

Rd for any n ≥ n0(j) and limn→∞ ∥ṽj ∗ ρn − ṽj∥Wm+1,p′ (Rd) = 0. For j ≥ 1, let
hj ∈ W−m−1,p(Ωj), where hj is defined by

⟨hj,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨h,φ⟩W−m−1,p(Ω),Wm+1,p′ (Ω) for all φ ∈ Wm+1,p′

0 (Ωj),

where we identified Wm+1,p′

0 (Ωj) with a subspace of Wm+1,p′

0 (Ω). Then from (5.1),
we have

⟨hj,vj⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨h, ṽj

∣∣
Ω
⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)

= lim
n→∞

⟨h, ṽj ∗ ρn
∣∣
Ω
⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)
= 0

for all vj ∈ Wm+1,p′

0 (Ωj) satisfying div vj = 0 in Ωj . By Theorem 3.1 (d), there exists
πj ∈ W−m,p(Ωj) such that hj = ∇πj in W−m−1,p(Ωj). Fix φ0 ∈ D(Ω1) such that∫
Ω1
φ0dx = 1. Since

⟨πj − ⟨πj, φ0⟩W−m.p(Ωj),W
m,p′
0 (Ωj)

, φ0⟩W−m.p(Ωj),W
m,p′
0 (Ωj)

= 0,

if we replace πj with πj − ⟨πj, φ0⟩W−m.p(Ωj),W
m,p′
0 (Ωj)

, then we can assume that

⟨πj, φ0⟩W−m.p(Ωj),W
m,p′
0 (Ωj)

= 0 for every j.
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For j, k ≥ 1 and any φ ∈ Wm+1,p′

0 (Ωj), we have

⟨∇πj+k,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨hj+k,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨h,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)

= ⟨hj,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨∇πj,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

.

Hence we have ∇(πj+k − πj) = 0 in W−m−1,p(Ωj), so πj+k − πj = cj,k ∈ R. Since
⟨πj, φ0⟩W−m,p(Ω),Wm,p′

0 (Ω)
= 0 for every j, we see that πj+k = πj in W−m,p(Ωj), that is,

πj+k ∈ W−m,p(Ωj+k) is an extension of πj ∈ W−m,p(Ωj). Define a linear functional π
on D(Ω) as follows. For φ ∈ D(Ω), there exists j ∈ N such that suppφ ⊂ Ωj . Then
we define

⟨π, φ⟩ = ⟨πj, φ⟩W−m,p(Ωj),W
m,p′
0 (Ωj)

.

This definition is well defined and we can easily see that π ∈ D′(Ω). For any
φ ∈ D(Ω), choose j(φ) ≥ 1 such that suppφ ⊂ Ωj for j ≥ j(φ). Hence we
have

⟨∇π,φ⟩D′(Ω),D(Ω) = −⟨π, divφ⟩D′(Ω),D(Ω)

= −⟨πj, divφ⟩W−m,p(Ωj),W
m,p′
0 (Ωj)

= ⟨∇πj,φ⟩W−m−1,p(Ωj),W
m+1,p′
0 (Ωj)

= ⟨hj,φ
∣∣
Ωj
⟩
W−m−1,p(Ωj),W

m+1,p′
0 (Ωj)

= ⟨h,φ⟩
W−m−1,p(Ω),Wm+1,p′

0 (Ω)

= ⟨h,φ⟩D′(Ω),D(Ω).

So we get ∇π = h ∈ W−m−1,p(Ω). It follows from (f) in Theorem 3.1 that
π ∈ W−m.p(Ω).

Conversely, if the simplified version of the de Rham theorem holds, then (d) in Theorem
3.1 holds, so the J. L. Lions lemma in Theorem 3.1 (a) follows.

6. THE DIRECT PROOF OF THEOREM 3.1 (F)

We can directly derive Theorem 3.1 (f) from the following result of [9].

Theorem 6.1. Let Ω be a bounded domain of Rd with a Lipschitz-continuous boundary,
m ≥ 0 integer and 1 < p <∞. For any f ∈ Ḋ(Ω), there exists v ∈ D(Ω) such that

div v = f in Ω,

and moreover, there exists a constant C = C(d, p,Ω) > 0 such that

∥v∥Wm+1,p(Ω) ≤ C∥f∥Wm,p(Ω).
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For the proof, see [9, Theorem 3.2].

Now we derive the J. L. Lions lemma (Theorem 3.1 (f)).

Theorem 6.2. Let Ω be a bounded domain of Rd (d ≥ 2) with a Lipschitz-continuous
boundary, m ≥ 0 integer and 1 < p < ∞. If f ∈ D′(Ω) satisfies ∇f ∈ W−m−1,p(Ω),
then f ∈ W−m,p(Ω), that is, the J. L. Lions lemma (Theorem 3.1 (f)) holds.

Proof. Let f ∈ D′(Ω) satisfy ∇f ∈ W−m−1,p(Ω). It suffices to show that there exists
a constant C0 = C0(m, p, f,Ω) such that

|⟨f, φ⟩D(Ω),D(Ω)| ≤ C0∥φ∥Wm,p′
0 (Ω)

for all φ ∈ D(Ω). (6.1)

Indeed, let (6.1) be true. Since D(Ω) is dense in Wm,p′

0 (Ω), for any φ ∈ Wm,p′

0 (Ω),
there exists a sequence {φn} ⊂ D(Ω) such that φn → φ in Wm,p′

0 (Ω). By (6.1),

|⟨f, φn − φm⟩D′(Ω),D(Ω)| ≤ C0∥φn − φm∥Wm,p′ (Ω) as n,m→ ∞.

Hence {⟨f, φn⟩D′(Ω),D(Ω)} is a Cauchy sequence in R. Define a linear functional f̂ on
Wm,p′

0 (Ω) by
⟨f̂ , φ⟩ = lim

n→∞
⟨f, φn⟩D′(Ω),D(Ω) for φ ∈ Wm,p′

0 (Ω).

The definition is well defined, that is, it is independent of the choice of {φn} ⊂ D(Ω)

with φn → φ in Wm,p′

0 (Ω). Since

|⟨f̂ , φ⟩| = lim
n→∞

|⟨f, φn⟩D′(Ω),D(Ω)| ≤ C0 lim
n→∞

∥φn∥Wm,p′
0 (Ω)

≤ C0∥φ∥Wm,p′
0 (Ω)

for any φ ∈ Wm,p′

0 (Ω). Hence f̂ ∈ W−m,p(Ω) and

⟨f̂ , φ⟩W−m,p(Ω),Wm,p′ (Ω) = ⟨f̂ , φ⟩D′(Ω),D(Ω) for any φ ∈ D(Ω).

Thus if φ ∈ D(Ω), then ⟨f̂ , φ⟩D′(Ω),D(Ω) = ⟨f, φ⟩D′(Ω),D(Ω). This implies that
f = f̂ ∈ W−m,p(Ω).

Now we derive the estimate (6.1). Choose φ1 ∈ D(Ω) such that
∫
Ω
φ1dx = 1. For any

φ ∈ D(Ω), define

φ0 = φ−
(∫

Ω

φdx

)
φ1 ∈ Ḋ(Ω). (6.2)

Then using the Hölder inequality, we have

∥φ0∥Wm,p′ (Ω) ≤ ∥φ∥Wm,p′ (Ω) +

∫
Ω

|φ|dx∥φ1∥Wm,p′ (Ω)

≤ ∥φ∥Wm,p′ (Ω) + |Ω|1/p∥φ∥Lp′ (Ω)∥φ1∥Wm,p′ (Ω)

≤ (1 + |Ω|1/p∥φ1∥Wm,p′ (Ω))∥φ∥Wm,p′ (Ω)

= C1∥φ∥Wm,p′ (Ω). (6.3)
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For any v ∈ D(Ω),

|⟨f, div v⟩D′(Ω),D(Ω)| = |⟨∇f,v⟩D′(Ω),D(Ω)| ≤ ∥∇f∥W−m−1,p(Ω)∥v∥Wm+1,p′
0 (Ω)

.

By Theorem 6.1, there exists v ∈ D(Ω) such that div v = φ0 in Ω and

∥v∥
Wm+1,p′

0 (Ω)
≤ C∥φ0∥Wm,p′

0 (Ω)
≤ CC1∥φ∥Wm,p′

0 (Ω)
.

By (6.2), we have

⟨f, φ⟩D′(Ω),D(Ω) = ⟨f, φ0⟩D′(Ω),D(Ω) +

∫
Ω

φdx⟨f1, φ⟩D′(Ω),D(Ω)

= ⟨f, div v⟩D′(Ω),D(Ω) +

∫
Ω

φdx⟨f1, φ⟩D′(Ω),D(Ω)

= −⟨∇f,v⟩D′(Ω),D(Ω) +

∫
Ω

φdx⟨f1, φ⟩D′(Ω),D(Ω).

Thereby,

|⟨f, φ⟩D′(Ω),D(Ω)| ≤ ∥∇f∥W−m−1,p(Ω)∥v∥Wm+1,p′
0 (Ω)

+|Ω|1/p∥φ∥Lp′ (Ω)|⟨f, φ1⟩D′(Ω),D(Ω)|
≤ CC1∥∇f∥W−m−1,p(Ω)∥φ∥Wm,p′

0 (Ω)

+|Ω|1/p∥φ∥
Wm,p′

0 (Ω)
|⟨f, φ1⟩D′(Ω),D(Ω)|

≤ C2(∥∇f∥W−m−1,p(Ω) + 1)∥φ∥
Wm,p′

0 (Ω)
.

Hence (6.2) holds.
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