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ABSTRACT

This paper investigates the existence of measurable multivalued mapping by
using the concept of Lusin properties and p-continuous mapping.

Keywords: p - continuous mapping, Lusin properties.

1. INTRODUCTION

CASTAING [3] JACOBS [6], HIMMELBERG [5], ROCKAFELLER [11]
and many others tried to highlight the different aspects of measurability of
multifunctions. They have tried to show the existence of measurable multivalued
function depend up on

(i) - Nature of the domain of multifunction as the measurable space

(ii) - Nature of the co-domain of multifunction which is in general may be any
topological space.

(iii) - Nature of the multivalued function.

Based on these condition, different form of measurable multivalued mapping
have been defined by various authors such as CASTAING [3], HIMMELBERG [5]
and MICHAEL [10] etc. MICHAEL also tried to show the different ways of defining
the continuity of multivalued mapping. JACOBS [6] has investigated a relationship
between continuity and measurability of multivalued mapping under different
situation. In his paper JACOBS [6], has taken the topological space as polish space as
well as applied the different form of Lusin - properties to establish the existence of
measurable multivalued function. Motivated by his investigation, we have tried to
generalise the existence of measurable multivalued function by taking the topological
space as locally compact metric space with countable base.
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2. PRELIMINARIES

2.1- Let T be any non empty set equipped with o- algebra M and X be any
topological space, then any mapping Q : T — X which assigns for any t €T, a
subset of X is called multifunction.

If for each closed subset B of X, the set
QlB)={teT:Q (t) " Bz¢}e M
then the multifunction F is said be measurable.
It is said to be weak measurable if
QLG ={teT:QH)NG = ¢} e M (1)
for every open subset G of X.

2.2 - Let (X, p) be any metrie space, the uniformity on X determined by p is I°= ( ]°
|€>0)

where J; = {(x, ¥) € X x X | p(x, y)<e¢} The uniformity I on X, determines a
uniformity 2l on 2%,

Letw (J9) = {( A, B) €2* x 2* | ][A] > J¢ [B] > A}.
Then the uniformity 20! is {w( J?)|e > 0}

The topology on 2% determined by 2! is called uniform topology determined by p.

2.3- Lettoe T and let T(to) denoted the filter base at to consisting of all s¢(t), €>0

where s¢ (to) ={t €T |d (t, to) < &}

Then the grill of T(to) denoted by T"(to) and consist of all sets S"(to)
contained in T s.t. S"(to) N Se (o) # ¢ foreverye >0

Let Q: T— 2* be a mapping then pseudo limit superior of Q as t — to (Abbr.
plimsupQ(t)) is defined to be -

t—)to

Al U Q@]

N |
se(tg) et(tp) tese(ty)

and pseudo-limit inferior of Q as t—to (Abbr. p limsupQ(t)) defined to be

t—>tg

dl U Q)]

M
S"S(to)e‘t(to) tESHS(to)
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24- Let Q : T—>2* be any multivalued mapping. Then it is called pseudo upper

semi continuous (Abbr : p-usc) at toeT if p—lim supQ(t) = Q (to).
t—>ty

Similerly it is also called pseudo- lower semi continuous

(Abbr : p-Isc) attoe T if Q(to) < pli{n tinf Q(t).
—To

Again mapping Q is called pseudo-continuous (Abbr : p-continuous) at toe T
if Q is p-usc as well as p-Isc.

Now we state three Lusin properties to be required in our main result.

1. Lusin-cp-property : For every €> 0 3 an open set EccT s.t. u(Ee) <O and Q | T/ Ee
isp-continuous.

2. Lusin-Cu-property : Let 2* have the uniform topology determined by p. For every
€ >0 3 an open set EeccT s.t. w(Ee) <e and Q|T/ E¢ is continuous.

3 Lusin-cr property: Let 2* have the finite topology determined by p. For every ¢ >
0 3 an open set E.CT s.t. u (Ee) <e and Q|T/ Ee¢ is continuous.

2.5. A family of mapping {fu: a€A, fo: T>X} is called almost equicontinuous if for
every ¢ > 0 there is an open set E.CT s.t. W(Ee) <¢ and s.t.{fo| T/Eg : a€A) is an
equicontinuous.

We state following lemmas without proof but to be required in our main
result-

Lemma-1 : LetQbe a mapping Q: T—2*. Then a necessary and sufficient condition
that QO be p-usc at each point ofT is that if < xn> and < tn> are sequences in X and T
respectively such that XneQ (tn) for every n and such that xp— x and th—>t as n—oo,
then xeQ(t)

Lemma - 2 : A mapping fa : X — R defined by fa(X) = p(x, A) is [fa (x) -
fa(Y)I<p(x,y) V X, Yy € A Where Ais non empty subset of X.

Lemma - 3 : Let X be any separable space; and F be a measurable mapping from T to
A (X), then for every ¢ > 03 an open set E.cT s.t. u(Ec) < € and restriction of the
mapping (t, x) = (x, F (1)) to ( T/E¢) xX is continuous.

Lemma - 4 : Let X be a polish space and mapping Q : T— 2* has lusin cy- property
then Q2 is measurable.
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3. MAIN RESULT

Theorem 3.1 : Let X be a locally compact metric space with countable base and T be
a metric space. Let a multifunction F : T5>A(X) be a compact values with positive
Radon measure. Then we consider the following statement-

(1) Fis measurable;
(i1) Fis C-measurable;
(iii)  F is weak measurable;
(iv)  Each of mapping t—p (x, F(t)), X €eX is measurable;
%) t — cl(F(t)) has the Lusin-cp-property;
(vi)  t—cl(F(t)) is measurable;
Then [a] Statement (i) through (iv) are equivalent;
[b] Statement (iii) through (vi) are equivalent;
[C] Statement (i) implies any of the remainning five.
Proof:

Since X is locally compact and has countable base so X is metrizable and o
compact as [2] and that any space which is locally compact, c-compact and merizable
is a polish space.

Hence X is Polish space.............. (1)

Moreover X is metric space and every metric space is Housdraff space so any
compact subset of X will be closed.

As per Himmelberg [5], X is o-compact, therefore any multivalued mapping F
with compact values will satisfy the equivalence given by (i) through (iv)

Thus [a] holds.

To prove [b] we will take the following cycle order
(ii1) = (iv) = (V) =(vi) = (iil)

(ii1) = (iv) are equivalent by [a]

Now we will show (iv) =(V).

Let the mapping t—p (X, F(t)), Xxe X is measurable.

Since for each (t,x) €T x X, p(x, F(t)) = p(x, cl(F(t))
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= the mapping t—>p(x, F(t)), is measurable for every t e T.

Then by lemma - 3, for any €> 0 3 an open set E: c T sit. WwE:) < € and the
mapping

(t, x)—p(x, F (1)); (t, x) € (T \ EexX) is continuous.

SupposeT:(t) is neighbourhood filter base at te T/ Ec and 7T": (t) is grill of

neighbourhood filterbase of Te(t) also < xn> and < ti>be sequences in X and T\ Ee
respectively such that xnecl (F(tn)) for each n and xp— X and th—t.

Then by continuity property, p(xn, cl(F(tn))) =0 —p(xn, cl(Ftn))) = x ecl(F(t))

By using the lemma (1), the mapping t — cl(F(t) is p-usc at each te T\ E¢

Again we take toeT/Ec and choose xoecl(F(to)) and S"(to) € T:"(to)

then p(x, cl(F(to)) 2p(X, cl [Uses () CI(F(tn))]) V (t, x) €S" (to) xX

If we select an open sphere sun(to) €Te(to) forn=1, 2, 3,.........
Then an element the S"(to) N Sun(to) forn=1, 2, 3,......... s.t.
a sequence <th> converges to to.

Moreover if < xp> be any sequence in X s.t. Xn—>Xo,

then we have, p (xo, cl(F(to)) = 0 =lim p(xn, cl(F(tn))

> limp(xn, cl[Usesr(t,) CIF(S))])

= p(xn, cl[Uses(ry) CIEE)]) >=0

= Xoecl [Uses(ry)  CIF(S))]

This proves that cl(F(to)) cp- lirr% < infcl(F(to))
—%o

= the mapping t —>cl(F(t)) is p-Isc ateach te T\E:

It proves that the mapping t—cl(F(t)) is p-usc as well as p-Isc ateach t € T \E:
= the mapping t — cl(F(t)) is p-continuous at every t e T\Ee.

Hence the mapping t — cl(F(t)) has Lusin-Cp property.

we conclude (iv) = (V)
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Now we will show (V) = (Vi)

If <Tn,> be the sequence of compact subsets of T and N be the set of measure zero
contained in T s.t. cIF(t)/Tnis p - continuous for each n and Uy_; Tn=T\N

Then by applying the lemma (2), the mapping t—Cl(F(t))/Tn has a closed graph,
= cl(F(t))/Tnis measurable for every n.

Now we define a sequence of mapping Fj, : T— 2*U{¢}

clF(t)) ;ifteT,
o, ;ifteT,

such that Fj(t) = {
Then Fj(t) is measurable for each n
Since CIF(t)) = Up_,Fh(t)
= the mapping t—cl(Ft)) is measurable
we conclude (v) =(vi)
Again F is compact valued
=F(t) will be closed.
= clF(t)=F (t)
Thus F is measurable
Hence (vi) = (1)
since (i) = (iii) has already shown in [a].
Hence [b] is holds.
Condition [c] can be shown by the following scheme-
() = (i), (1) = (i), (i) = (iv) according as Himmelberg [5].
and (1) =(iv); (1v) =(v); implies (i) =(V)
and ()= (V); (V) =(vi); implies (1) = (vi)
Thus statement (i) implies any of the remainning five.
Hence the condition [c] holds.

Theorem - 3.2 : Let X be locally compact metric space with countable base and T
be the metric space with +ve Radon measure and Q: T —2* be any multivalued
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mapping. Then thereexista metric P. on X s.t. the two topologies T(p) and T(p-)
o0

coincide and statements-

(1) QQ is measurable

(ii) Q has the Lusin cy-property, when 2* has the uniform topology determined by p

are equivalent.
Proof:

Since X is locally compact metric space with countable base so that by using
condition (1) of Theorem 3.1, X will be polish space. By lemma 4, if Q has the
Lusincy-property.

= is measurable.

Thus (ii) = (i) holds

It remains to prove (i) = (ii)

Let Q is measurable multivalued mapping

By corollary 2.1 of JACOBS [6] if X is taken as compact;

theorem holds.

Moreover, we assume X is not compact

Let X« denote the one point compactification such as Xw.= XU {0}
=X 1s metrizable by Dugundiji [4]

=X« 1s complete with respect to metric p (say) defined

on the topology of X« and also defining the topology X.

SinceQ) is measurable and let Qw: T>A(Xx) is s.t. Qu (f) is the image of Q(t)
under inclusion mapping i» : XcXw. Let G is be an open subset of X

ThenQ.! (Gwo) = QL' (Go\{o0})

since Go\{o0} is open in X and Q: T—>2* is measurable
=0, (Gx) is measurable

Therefore by (v) <>(vi) of theorem 3.1

the mapping t—pw (X, Qur) (1)) = pw (X, cl(Qu(t)) for
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eachteT, X eX are measurable.

For &> 03 an open subsct EccT s.t. p(Ee) <eand the mapping

t —=peo (X, Qo)) = pao(X, Cl(Qu0(t)); X € X

when restricted to T|Ee are equicontinuous.

Let I° = {J5'|6> 0} where J§' = {(X, y) €XwXxXwx |[p=(X, y) <0}

denote the uniformity which determines the topology of X«

Then I”"N(X x X) = { J§¥N (XxX)|&> 0} determines the topology of X .

For 6> 0 3> 0s.t., t, t' € T| Eg, d(t, t') <= | po (X, Qoo (1)) -po (X, Quo(t)) | <5, x€
Koo

Thus t,t'e T | Ee
d(t, t') <B= [J5 N (XxX)] Q(t') D€ (1) and [ J5N (XxX)] [Q1)]>€ (1)
= has the Lusincy property, when 2* has the uniform topology determined by p«

Theorem - 3.3 : Let X be locally compact metric space with countable base and T be
a metric space with +ve Radon measure. If a multivalued mapping Q : T —2* has the
Lusin-cy property then Q is measurable.

Proof : The space X is polish by theorem 3.1.

Let N be the set of measure zero contained in T and < Th>}_;be the sequence
of compact subsets of T s.t. Up—;Tn=T\N.

Let 2% has the uniform topology determined by p and mapping Q\Tn : Tn —52* are
continuous.

=mapping F | Tn are p-usc
Result follows by condition (v) = (vi) and (vi) = (i) of theorem 3.1

Theorem - 3.4 : Let X be locally compact metric space with countable base and T
be metric space with positive Radon measure and a multivalued mapping Q: T—2*
be measurable.

Let f be a continuous mapping f : TxX—Y where Y is Hausdorff space and fy be a
measurable mapping fy : ToY s.t. fy (t) ef (t, Q, (1)) for every te T. Then there exist
a mapping.

fy: T > X s.t. fx(t) €eQ(t) and fy, (t) = f(t, fx,(t)) for each teT.
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Proof : The space X is polish by theorem 3.1

We define a mapping F : T — 2Xby F (t) = {x eQ(t)| f (t, u) = fy(t)}
Since f is continuous, so F(t) is closed valued.

Thus F is measurable.

For each e> 0 3 an open set EecT s.t. u(Ee) < ¢ is satisfying

(a) Q(T|Eg) is p-continuous by theorem 3.1

(b) fy (T|Eg) is continuous by proposition of Bourbaki [2].

It follows by lemma 1, F is p-usc on T|Eg

.. F(T|Eg) is measurable and p(Ee)<e by lemma 3.2 of CASTING [3].
Since &> 0 is arbitrary, so that F is measurable.

By using theorem 1 of K. Kuratowski & Ryll-Nardzewski [9].

there exist a measurable mapping fx..T—>X s.t. fx(t)eQ(t) and fy(t) = f(t, fx(t)) for
eachte T

Hence the theorem.

Corollary 3.5 - Let X be locally compact metric with countable base and (Y, 0) be
any metric space, also T be the metric space with positive Radon measure and Q : T
— 2% be a measurable mapping. Again let f: T X X—Y be a mapping s.t. -

0] the mapping t—f (t, x), XeX are measurable
(1i1))  the mapping t—>f(t, x) te T are locally uniformly continuous

let fy : T>Y be a measurable mapping s.t. fy (t) e[(t,QQ(t)) for every t €T. Then
there exist a measurable mapping fx : T>X s.t. fi(t)eQ (t) and fy(t) = f{(t, fx(t)) for
every t eT.

Proof : Since by condition 1 of theorem 3.1, the space X is polish so that result
follows by theorem 2.5 of JACOBS [6].
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