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Abstract

In this article, a new intra-host model of malaria that describes the dynamics of
the blood stages of the parasite and its interaction with red blood cells and
immune cells is formulated. The qualitative properties of solutions are
established. We then extend the model to incorporate, in addition to immune
response, three control variables. The existence result for the optimal control
triple, which minimizes malaria infection and costs of implementation, is
explicitly proved. Finally, we apply Pontryagin's Maximum Principle to the
model in order to determine the necessary conditions for optimal control of the
disease.
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1. INTRODUCTION

Intra-hosts models of malaria infection describe the dynamics of the blood-stage
parasites and their interaction with host-cells, in particular red blood cells (RBC) and
immune cells. In a given human, malaria begins when an infected female Anopheles
mosquito injects plasmodial sporozoites into the blood stream during a blood meal.
About 30 minutes later, the sporozoites migrate to the liver where they infect the liver
cells [27]. They develop into schizonts (a developmental structure that contains
merozoites) which rupture and the merozoites are released, then enter the blood stream.
These merozoites infect red blood cells (RBCs) and undergo asexual reproduction,
which is similar to but quicker and less prolific than that in the liver cells. This occurs
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within the parasitophorous vacuole in the RBC [11]. After about 48 hours, the infected
RBCs ruptures releasing daughter parasites that quickly invade fresh erythrocytes to
renew the cycle [12]. Blood stage infection engages a network of interacting cells,
cytokines, antibodies and other components of immune system [1]. When malaria
parasites evolve in the host, they can stimulate the activity of immune cells in the host
which produce an immune response to fight the infection. Immune response can either
prevent the re-invasion of merozoites or increase the death rate of infected red blood
cells [30, 32]. Intra-host models are used for different purposes: explanation of
observations, prediction the impact of interventions (antimalarial drugs), estimating
states or parameters.

The model we analyze here was firstly given by Aminou M. L. et al [1] where stability
analysis was presented. In particular, we computed the basic reproduction number R,

and investigated the existence and the stability of the disease free equilibrium (DFE).
We showed that the DFE is locally and asymptotically stable when R, <1.

In this paper, We then extend our intra-host model by incorporating three time-
dependent control to determine the optimal strategy for controlling the disease. Optimal
control theory is used to establish conditions under which the spread of malaria can
mitigate. The characterization of the optimal control triple is obtained by the application
of Pontryagin’s maximum principle [25]. The rest of the paper is organized as follows:
The next section is devoted to the model formulation, the positivity an boundedness of
solutions are established. The optimal control problem is stated in Section 3 and
conclusions are summarized in Section 4.

2. MODEL FORMULATION

Our model is developed to describe the dynamics of the blood stage malaria parasites
and their interactions with the host cells, particularly red blood cells and immune cells.
Our goal is to represent the basic processes of immune response to Plasmodium
falciparum in the blood [1]. The following notations have been used:

State variables

X = normal red cells

Y = parasitized red cells
m = merozoites

I, = interleukin 4 (IL-4)

interleukin 10

interleukin 12

| = interferon y (IFN-y)
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N = nitric oxide (NO)

A = antibodies (Ab)
M = macrophages
B = Bcells

T, = precursor Th cells
Th1 cells
Th2 cells

Tl

T

Parameters

Ay, Ay ...= immigrations rates of X, M ...
Uy, M ...=decayratesof X, m ...

ay , ay...=maximal growth rates of X, Y

Normal red cells X are the susceptibles, entering circulation at rate A, and remove
by death at rate s, . Normal red cells become parasitized red cells when they are
infected by merozoites [2].

Parasitized red cells Y may be destroyed either by nitric oxide [30, 33] which
production is enhanced by IFN-y [5] or by antibodies [16] which secretion is promote
by IL-4 [8, 15].

Merozoites m released following rupture of pre-erythrocytic schizonts enter the blood
circulation and infect red cells, x_additional merozoites are given when parasitized red

cells discharge newly formed merozoites into the blood. NO may have antimicrobial
activity against blood stage malaria parasite by killing of parasite [10] and parasitized
red cells [33].

Together with nitric oxide and antibodies, we model four cytokines known to play a
key role during malaria infection: pro-inflammatory Th1-cytokines IFN-y and IL-12

on the one hand, and anti-inflammatory Th2-cytokines IL-4 and IL-10 on the other
hand.

IEN- y is produced by Th1l cells. Its production is enhanced by IL-12 [6, 35, 36].
IL-4 is produced by Th2 cells [26]. Its production is increased by NO [4, 29].

IL-10 is produced by Th2 cells and some APC’s. The production of IL-10 has been
found to be particularly induced by IL-12 [35, 36].
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IL-12 is produced by Th1 cells [34] and APC’s. Its production is enhanced by IFN-y
[71.

NO is produced by various cells including macrophages. Its production is triggered by
IFN-» and inhibited by IL-4 [5, 13].

Antibodies are produced by plasma cells which derive from B cells. Production of Ab
is enhanced by IL-4 [8, 19, 20].

The most notable cells that are involved in the immune regulation during malaria blood
stage infection are macrophages, B cells and helper T cells.

Macrophages population coming at the site of infection at rate A,, [6].

B cells population accumulate at the site of infection at rate A, [6]. When activated
by Th2-cytokines such as IL-4, B cells may proliferate and differentiate into either
B memory cells or plasma cells [6, 8].

Th cells arrive at the site of infection as precursor cells (denote by Th,) atrate A,
.In response to antigen in lymphoid tissues, Th, differentiates [19, 31, 32] into

either Th, cells witch differentiation is enhanced by IL-12 [17, 21] or Th, cells
witch differentiation is enhanced by IL-4 [28].

From the description above, we have the following system of differential
equations:

C(Ij_>t( = Ay —a, X{OM(t) — 2, X (1)

dy

S X OmO (@, N© + B, AD + 44,V (O
‘Z_T = Kntt, Y (1) — (N + p1,)M(1)

dl
d_ty = ayTl(t)Ilz(t) _:uyl}'(t)

%L: = o, T,ON(®) - 12,1, )

dl
d_'to = a1, ()1, (1) — 015, (1)
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dl
d_iz =ay,T; (D)1 y (1) — 14,15, ()

‘Z_':'zaNM(t)ly(t)—ﬂNN(t)

‘:j_’;\ = 2, B()1, (t) - 1, Alt)

dM

g = A oM

‘l_? = A, +agBt)1, (1) — 15 B(t)

dT,

= Mm@l — T OLO - 4T, O
dT,

E = o To(O)1,(t) — T, (1)

o T, - 1T, (O

2.1. Positivity of solutions

1101

1)

LLemma : Solutions of system (1) with positive initial conditions X (0), Y (0), m(0),
1,(0) 1,(0), 1,(0), 1,,(0), N(0), A(0), M(0), B(0), T,(0), T,(0), T,(0) remain

positive for all time t >0

. . X
Proof : The first equation of system (1) gives rise to ~_~+ (axm(t) + w4, )X 20

which on integration yields at

d [X (9] exp(jax m(s)ds + yxt)J >0

t
implying that X (t) > X (0) exp(—j a,m(s)ds — s, t) then X(t)>0, Vt>0
0
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It can be shown, using similar method, that the remaining states variables Y (t), m(t),
L, (t)
}/ i)

1), 1), 1,(), N@), At), M(t), B(t), T,(t), T.(t), T,(t) are positives for
all time t>0

2.2. Invariant region
Consider Q=0Q,UQ,, where

le{osx <& 0<Y,0<m, 0<1, 0<I,, 0<l,, 0<l,, O<N, OgA}

Hy !

Theorem 2.2 : The region Q is positively invariant for the system (1)
Proof : One of the tools to be used in the proof that the solutions of the system (1) stays

bounded is the classical Gronwall’s inequality which states that if Y(t): [0,T] >R
dy (t)
dt

satisfies the differential inequality <a(t)Y(t) +b(t) with a and b continuous ,

then

Y (t) <Y (0)exp( j; a(s)ds) +Jt'b(s) exp( j‘ a(r)dr)ds

: : o dXx
The first equation of system (1) gives rise to —— < Ay — iy X

dt
. . . —#xt AX —#xt
From Gronwall’s inequality, it follows that X (t) < X (0)e™ + . A-e"),
X
. . . A
implying that lim X (t) < Ax . Particularly, X(t) < Ax if X(0)<—=*
to+o0 Hx Hx Hx

From the second equation of system (1), we have C:i_\t( < ay, X(E)m(t) — 2, Y (1)

Which yields
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t
Y(0) <Y(Q)e ™" +ae™ [ X(s)m(s)e” ds <Y (Q)e " + M”m"w (L—e ™) Thus
0 x My

Y(©) <Y(©0) + 2 |

x Hy

Following the same reasoning, we will deduce that the remaining states variables are
bounded and all solutions of (1) starting in Q approach, enter or stay in Q. Thus Q
IS an attracting positively invariant for the system (1).

3. ANALYSIS OF THE OPTIMAL CONTROL MODEL
3.1. Optimal control model

In this section, we incorporate in the system (1) three time-dependent controls functions
uz, u2 and usz. The control u; represent the use of personal protection measures such as
the use of insecticide-treated nets, application of repellents or insecticides to skin and
the use of windows and doors screens to prevent mosquito’s bites both during the day
and at night. These measures protect the normal red blood cells, preventing their
infection i.e. keeping them from turning into parasitized red blood cells. The control u.
simulates the effect of the nitric oxide or antibodies which destroy parasitized red blood
cells, preventing them from releasing new merozoites in the blood circulation. The
control us represents the efficiency of drug therapy in killing the merozoites in the
blood. With these modifications, the system (1) can be reformulated as:

% = Ay —@—Up)a X OME) — a1, X (1)
% — (L—u)ay, XOME) — (e, N(E) + By A) + 2, +U,)Y ()
dm

T = @ruka Y (O — (@ N + p)m(e)

dl
d_ty = ayTl(t)Ilz(t) _:uyl}'(t)

%{1 = a,T,ON®) - 4,1,

dl
d_io = AT, (D15 (t) = 46155 (t)

S = T O1, 0 ol o0 @
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Z_[:I=aNM(t)Iy(t)—,uNN(t)

‘:j_’;\ = 2, B()1, (t) - 1, Alt)

dM

E = AM — Uy M (t)

9B A+, BOIL, M) - 1 B(D)

at

dT,

A =Ty 010 ~ T, 10 46T, O
dT,

Tt = ayTo ()1, () — 4T, (1)

dd% = a,T,O1,0) - 1T,

3.2. Obijective function

We use an approach similar to the one in Barret and Hoel [3] which consists in applying
the Pontryagin’s maximum principle [25] to determine the conditions under which
eradication of the disease can be achieved in finite time. The use is to minimize the
following objective or cost functional by increasing the number of normal red blood
cells, decreasing the number of parasitized red blood cells and merozoites and
minimizing the costs of implementing the control strategies u; (¢) (i = 1,2,3). Denote u(f)

= (ur()2020) ()
2 = [(AX Q)+ AY () + Am(O) + 3 Bu? ) -

where Ai and Bi (i=1,2,3) are positive weight constants. The expected final time for

the control implementation is represented by 7. The objective functional (3)
1 2
includes the cost control function for personal protection 2 B,U; (t), the cost

control function for application of prophylaxis (destroying the parasitized red

1B,u;(t)

blood cells) 2 and the cost of treating infectious humans which represents

1 2
the cost control function of drug therapy 2 B;u, (1) . In this work, as in other studies

[18, 22], the cost control functions take a quadratic form.

Our target is to find an optimal triple control U= (U, Uz, U;) such that
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J(u") =min{J(u,,u,,u;)/u=(u,u,,u,) eU} (4)

where U = {u(t) = (u (t),u, (t),u,(t)), 0O<u;(t) <1 te[0,T], Lebesgue measurable}
is the control set

3.3. Existence of an optimal control

Theorem 3.3: Given the objective functional (3), defined on the control set U, and
subject to the system (2) with non-negative initial conditions at ¢+ = 0, there exists an

optimal control U = (U1:U2,Us) gch that

J(u") =min{J(u,,u,,u;)/u=(u,u,,u,) €U}

Proof"

The proof of theorem 3.3 is based in satisfying following properties, using a result by
Fleming and Rishel in [9] and by Lukes in [14] :

(i) The set of controls and corresponding state variables is non-empty

(it) The control set U is convex and closed

(iii) The state system is bounded by a linear function in the state and controls variables
(iv) The integrand of the objective functional is convex on U

(v) There exists constants c,,c, >0 and £ >1 such that integrand of the objective

. . b
functional is bounded below by ¢,(> u?)* —c,

(i) We use a result by Lukes in [14] to give the existence of solutions of system (2)
corresponding to the every admissible control set U. We note that all the solutions are
bounded.

(i)  Given that the control set U =[0,1]°, U is convex and closed by definition
(lll) Let XZ(X,Y, m,ly, |4, IlO’ |127 N ,A'M ,B,TO,Tl,TZ)

and f(t,x,u) the right-hand side of system (2) given by
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Ay = (@=up)ay X(E)m(t) -y X ()

@ —up)ay X(OM() — (g N(t) + By At) + 1y +U,)Y (1)
(LU, )k 21, (8) — (g NGO + 21 )m(D)

&, Ol 0,1, )

o, T (ON (L) — 2,1, (1)

10T, (D)1, (t) = #4116 (1)

a,T ()] y (t) — 1, (1)

R PRVICTRO R ©)
2, BO)1, (1) - 1, A

Ay =M (1)

Ag +agB()I1,(t) — g B(t)

Ay =y To(O)1, () = a, To ()1, (1) — 20T, (1)
o, To (D)1, (t) — 24T, (1)

a,Tol, (1) — 1,T, (1)

It is clear from (5) that f (t,x,u) = g(t, x) + h(t, X)u, where
Ay —ay X(EOM(t) — uy X(t)

oy X (O)m(t) — (ry N(t) + By Alt) + 1 )Y (1)
Koty Y () = (@2 N (1) + 2, )M(Y)

a,Ty (t)1,,(t) - !, ®
CAROLIOESANG

a0l ()11, (1) — 10116 (1)

a1, (1) y (1) — 11, (1)

2 MO, (1) - N

2, BO1, () - 1, A

Ay — iy M)

Ay +agBOL, 0 - 1B

Ay = To ()1, (1) =, To (D)1, (1) — 1o To (1)
oy Ty (D)1, (t) — 24T, (1)

o, Tol, () — 1,7, (1)

g(t,x) =
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and
ay X (t)m(t) 0 0
—a, x@m@)  =Y({) 0
0 0 — k1, Y (1)
0 0 0
0 0 0
0 0 0
0 0 0
h(t,x) =
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Hence,

|1t x,u)| <[ gt x)|+[hct, x)||u]| < a, +a,|u| where a, and a, are positive constants.

(iv) The integrand of the objective functional is the Lagrangian of the form:

L(t, x,u) = A X(t)+ AY (t) + A,m(t) + %ZSZ Biui2 (t) =g, (t,x) + h.(t,u)

. 13 . .
It suffices to show that h, (t,u) = EZ B,u’(t) is convex on the control variable u e U .
i=1

Since h(t,u) is a finite linear combination with positive coefficients of the function

g, (u) = %uf , it is more convenient to show that the function q(u) = %uz is convex.
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To do this, let u,v:[0,T]—[01] and 1 €[0,1]. Then,

QU + (L= AWV) — (Aq(U) + (L— (V) = %(/lu (1= V) —%(ﬂuz + (1= V)

:%(/12 —A)(U® - 2uv +v?) :%1(/1—1)(u -v)* <0

(V) L(t,x,u)=A1X(t)+A2Y(t)+A3m(t)+%ZB:B ul(t)== ZBu >C1(iU|2J2_C2

i=1
where ¢, = imin{B,,B,,B,}, #=2 and c, >0

3.4 Characterisation of an optimal control

In a attempt to obtain necessary conditions for the optimal control of malaria governed
by the system (2), the use is made of the Pontryagin’s Maximum Principle [25] which
converts the state system (2), with the objective functional (3) and (4) into a problem
of minimizing point wise, with respect to the controls u,, u, and u,, a Hamiltonian H

given by the following:
H = AX O+ AY D+ AMO -+ (Bu2 0+ BU:©) + Bl ®)

+ 2, Ay — (L), XOME) — 1, X O]
+ 2, [L-)a, XOME) — @y N + B, A) + 2, +U,)Y ()]
+ 2 [ UKo tty Y(O) = (@ N(D) + 42, )(D)

+ 2, [ TOlL,0 - x,1,0)]

+ 2, [ aT,ON® - 1,1, 0]

+ llm [ao T, (O)15,(t) — £0110(t)]
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+ A, Lo, Ty (O, (O) = 24,15, (1) ]

+ Ay [ayMO1, (©) -y N(O)]

+ AalaBO1L O — 1AM ]

+ A [ Ay —uyM@®)]

+ Ag[Ag +aBM)1, (1) - 1:B1)]

+ A LA =T (01, (t) — e, To (1, (1) — 15T, ()]

+ A Lo To (01, () — 4T, (1) ]

+ A, Lo, ToO1,(0) — 22,T, (V)] (6)

where A, , Ay, Any Ay Ay Ay A,y A Aas Aus Ay Ay Ay, Ay, are the adjoint

variables or co-state variables. The following result gives the necessary conditions for
the optimal control.

|12

Theorem 3.4: Given an optimal control triple u” = (u;,u,,u;) that minimizes objective
functional (3) over the control set U subject to the system (2), then there exist adjoint
variables 4, , Ay, Ay Ay Ay Ay Ay Avs Aas Ay Ay Ay Ay Ay, sattisfying:

da

th = (1-u)aymt) (A — A ) + a3 A — A
% = A (ay N + B A + sty +Uy) = A (L= U)Kty = Ay
da,

= A-up)ay XOA —A,) + A, (o, N(©) + p1,,) — A
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dA
dt‘f =00, 1, (1) = Ay M (1) + 12, 4,
dA
dtl4 = (A + Ag05)B() + @, Ty (O)(Ar, —Ar)) + 1144,
d,I[w = /uloﬂbl10
dA
d‘l:lz - _ﬂvl,a}/Tl (t) - ﬂ“lloaloTZ (t) + alTO (t)(ﬂ’To - 2’[1 ) + ’ulz/lhz (7)
da
dtN = Aoy Y () + Ana,m(t) — 4, o, T, (t) + gy Ay
dA
= A BY O+ il
dlM — _ZNaN |y(t)+uMﬁM
dt
dth =—(Apap + Agap)l, (1) + A5
7,
dtO = ayl, (O, =4 ) + a1, (O, = Ar,) + 1oy,
dA;
d_tl - _llya}/ |12(t) - //tllzalz I 4 (t) + 'ulﬂrrl
a2,
dt2 = =4, N () = Ay al1, (1) + 154y,

with transversality conditions:

A (M) =0, 2,(T) =0, 4,(T) =0, 4, (T)=0, 4, (T) =0, 4, (T)=0, 4, (T) =0,
() =0, 4,(T)=0, 4, (T)=0, 4,(T) =0, 2, () =0, 4, (1) =0, 4, (T)=0 (§)

and

() = min {max{o oy X (Om(B)(4, —m} 1}

Bl
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uZ(t)=min{max{0, Ag(t)}, 1} 9)

2

us (t) = min{max{o, M} 1}

Proof .

The adjoint equations (7) are obtained by taking partial derivates of the Hamiltonian H
given by (6) with respect to the associated state variables, so that

diy _ _oH a, __oH i, __oH A, __oH
dt ox ' dt oy’ dt  om’ dt  al,
d/lu __ﬁ (Hﬂ10 __ﬁ dﬂ’llz _ oH dA, __ﬁ
dt al,’ dt ol dt aly, dt N’
di, __oH 44, oH  dh o Ok
dt oA’ dt oM dt B’ dt T,
dh __oH Ok

dt oT, dt T,

with transversality or terminal conditions (8). Moreover, the optimal control
characterization given by (9) is determined by solving the following partial differential
equations:

oH

H * oH _ * oH
ou,

0 for u;, p 0 for u,, 5 0 for u;
u2 u3

By standard control arguments involving bounds on the control, then
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0 if v, <0
u =< v, if 0<v <1
1 if v >
for i = 1 2, 3 and where
S _ @ XOMO@, - 4,) ALY A SAL0
1~ ) 2 = ) 3 - 5
Bl BZ BB

This completes the proof.

4. CONCLUSION

In this paper, we formulated an intra-host model of malaria infection and analyzed the
qualitative properties of the solutions. The effective eradication or control of malaria
may be too costly because it means that for constant controls, one needs to keep
prophylaxis and treating for infinite time. Therefore, we considered time dependent
controls as a way out, to ensure the eradication of the disease in a finite time, and in a
situation where eradication is impossible or of less benefit compared with the cost of
intervention, we also derived and analyzed the necessary conditions for optimal control
of the disease.

However this conclusion must be taken with caution: The theoretical results obtained
here were not observed from numerical simulation because of uncertainties around the
parameter values.
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