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Abstract 

In this article, a new intra-host model of malaria that describes the dynamics of 

the blood stages of the parasite and its interaction with red blood cells and 

immune cells is formulated. The qualitative properties of solutions are 

established. We then extend the model to incorporate, in addition to immune 

response, three control variables. The existence result for the optimal control 

triple, which minimizes malaria infection and costs of implementation, is 

explicitly proved. Finally, we apply Pontryagin's Maximum Principle to the 

model in order to determine the necessary conditions for optimal control of the 

disease. 
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1. INTRODUCTION 

Intra-hosts models of malaria infection describe the dynamics of the blood-stage 

parasites and their interaction with host-cells, in particular red blood cells (RBC) and 

immune cells. In a given human, malaria begins when an infected female Anopheles 

mosquito injects plasmodial sporozoites into the blood stream during a blood meal. 

About 30 minutes later, the sporozoites migrate to the liver where they infect the liver 

cells [27]. They develop into schizonts (a developmental structure that contains 

merozoites) which rupture and the merozoites are released, then enter the blood stream. 

These merozoites infect red blood cells (RBCs) and undergo asexual reproduction, 

which is similar to but quicker and less prolific than that in the liver cells. This occurs 
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within the parasitophorous vacuole in the RBC [11]. After about 48 hours, the infected 

RBCs ruptures releasing daughter parasites that quickly invade fresh erythrocytes to 

renew the cycle [12]. Blood stage infection engages a network of interacting cells, 

cytokines, antibodies and other components of immune system [1]. When malaria 

parasites evolve in the host, they can stimulate the activity of immune cells in the host 

which produce an immune response to fight the infection. Immune response can either 

prevent the re-invasion of merozoites or increase the death rate of infected red blood 

cells [30, 32]. Intra-host models are used for different purposes: explanation of 

observations, prediction the impact of interventions (antimalarial drugs), estimating 

states or parameters. 

The model we analyze here was firstly given by Aminou M. L. et al [1] where stability 

analysis was presented. In particular, we computed the basic reproduction number 0R  

and investigated the existence and the stability of the disease free equilibrium (DFE). 

We showed that the DFE is locally and asymptotically stable when 10 R . 

In this paper, We then extend our intra-host model by incorporating three time-

dependent control to determine the optimal strategy for controlling the disease. Optimal 

control theory is used to establish conditions under which the spread of malaria can 

mitigate. The characterization of the optimal control triple is obtained by the application 

of Pontryagin’s maximum principle [25]. The rest of the paper is organized as follows: 

The next section is devoted to the model formulation, the positivity an boundedness of 

solutions are established. The optimal control problem is stated in Section 3 and 

conclusions are summarized in Section 4. 

 

2. MODEL FORMULATION 

Our model is developed to describe the dynamics of the blood stage malaria parasites 

and their interactions with the host cells, particularly red blood cells and immune cells. 

Our goal is to represent the basic processes of immune response to Plasmodium 
falciparum in the blood [1]. The following notations have been used: 

 

State variables  

X  =  normal red cells                              

Y  =  parasitized red cells 

m  =  merozoites 

4I   =  interleukin 4 (IL-4) 

10I   =  interleukin 10 

12I   =  interleukin 12 

I   =  interferon   (IFN- ) 
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N  =  nitric oxide (NO) 

A   =  antibodies (Ab) 

M  =  macrophages 

B  =  B cells   

0T  =  precursor Th cells 

1T   =  Th1 cells 

2T   =  Th2 cells 

 

Parameters 

X , M …=  immigrations rates of X , M  … 

X , m …= decay rates of X , m  … 

X , Y …= maximal growth rates of X , Y  

 

Normal red cells X are the susceptibles, entering circulation at rate X  and remove 

by death at rate X . Normal red cells become parasitized red cells when they are 

infected by merozoites [2].  

Parasitized red cells Y may be destroyed either by nitric oxide [30, 33] which 

production is enhanced by IFN-  [5] or by antibodies [16] which secretion is promote 

by IL-4 [8, 15].       

Merozoites m released following rupture of pre-erythrocytic schizonts enter the blood 

circulation and infect red cells, 
mk additional merozoites are given when parasitized red 

cells discharge newly formed merozoites into the blood. NO may have antimicrobial 

activity against blood stage malaria parasite by killing of parasite [10] and parasitized 

red cells [33].  

Together with nitric oxide and antibodies, we model four cytokines known to play a 

key role during malaria infection: pro-inflammatory Th1-cytokines IFN-  and IL-12 

on the one hand, and anti-inflammatory Th2-cytokines IL-4 and IL-10 on the other 

hand. 

IFN-  is produced by Th1 cells. Its production is enhanced by IL-12 [6, 35, 36].  

IL-4 is produced by Th2 cells [26]. Its production is increased by NO [4, 29].  

IL-10 is produced by Th2 cells and some APC’s. The production of IL-10 has been 

found to be particularly induced by IL-12 [35, 36].   
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IL-12 is produced by Th1 cells [34] and APC’s. Its production is enhanced by IFN-  

[7]. 

NO is produced by various cells including macrophages. Its production is triggered by 

IFN-  and inhibited by IL-4 [5, 13].  

Antibodies are produced by plasma cells which derive from B cells. Production of Ab 

is enhanced by IL-4 [8, 19, 20].      

The most notable cells that are involved in the immune regulation during malaria blood 

stage infection are macrophages, B cells and helper T cells. 

Macrophages population coming at the site of infection at rate M [6].  

B cells population accumulate at the site of infection at rate B  [6]. When activated 

by Th2-cytokines such as IL-4, B cells may proliferate and differentiate into either 
B memory cells or plasma cells [6, 8]. 

Th cells arrive at the site of infection as precursor cells (denote by 0Th ) at rate 0

. In   response to antigen in lymphoid tissues, 0Th  differentiates [19, 31, 32] into 

either 1Th  cells witch differentiation is enhanced by IL-12 [17, 21] or 2Th  cells 

witch differentiation is enhanced by IL-4 [28]. 

 

From the description above, we have the following system of differential 
equations: 

X
dt

dX


.

)()( tmtXX )(tXX                                                                                 


dt

dY
)()( tmtXX )(( tNY )(tAY )() tYY                                         


dt

dm
 )(tYk Ym )(( tNm )() tmm                                                          

)()()( 121

.

tItItT
dt

dI



   

)()()( 4424
4 tItNtT

dt

dI
                                                                                            

)()()( 101012210

10 tItItT
dt

dI
                                                                              
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)()()( 1212112
12 tItItT

dt

dI
                                                                        (1) 

)()()(

.

tNtItM
dt

dN
NN                                                                                           

)()()( 4 tAtItB
dt

dA
AA                                                                                            

)(tM
dt

dM
MM                                                                                                 

)()()( 4 tBtItB
dt

dB
BBB                                                                                   

0

0 
dt

dT
)()( 1201 tItT )()( 402 tItT )(00 tT                                                          


dt

dT1  )()( 1201 tItT )(11 tT                                                                               


dt

dT2   )()( 402 tItT 22T (t) 

 

2.1. Positivity of solutions 

Lemma : Solutions of system (1) with positive initial conditions )0(X , )0(Y , )0(m , 

)0(I )0(4I , )0(10I , )0(12I , )0(N , )0(A , )0(M , )0(B , )0(0T , )0(1T , )0(2T  remain 

positive for all  time 0t        

Proof : The first equation of system (1) gives rise to  

.

dt

dX
)(( tmX 0) XX   

which on integration yields  0))(exp()(
0

.














 tdssmtX

dt

d
X

t

X      

implying that ))(exp()0()(
0

tdssmXtX X

t

X       then 0)( tX ,  0 t   
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It can be shown, using similar method, that the remaining states variables )(tY , )(tm , 

)(tI , 

)(4 tI , )(10 tI , )(12 tI , )(tN , )(tA , )(tM , )(tB , )(0 tT , )(1 tT , )(2 tT  are positives for 

all time  0t              

 

2.2. Invariant region 

Consider 1 U 2 , where 

 

 ANIIIImYX
X

X 


0,0,0,0,0,0,0,0,0 121041 
  

 

 2102 0,0,0,0,0
0

0 TTTBM
B

B

M

M 



  

 

Theorem 2.2 : The region   is positively invariant for the system (1)  

 

Proof : One of the tools to be used in the proof that the solutions of the system (1) stays  

 

bounded is the classical Gronwall’s inequality which states that if RTtY ],0[:)(  

satisfies the differential inequality  )()()(
)(

tbtYta
dt

tdY
  with a and b continuous , 

then  

     
t

t
t

s
dsdrrasbdssaYtY

0
0

))(exp()())(exp()0()(                                  

The first equation of system (1) gives rise to  X
dt

dX
XX    

From Gronwall’s inequality, it follows that )1()0()(
t

X

Xt XX eeXtX








 , 

implying that  
X

X

t

tX







)(lim .  Particularly, 
X

XtX



)(   if  

X

XX



)0(  

From the second equation of system (1), we have  
dt

dY
)()( tmtXX )(tYY                                             

 Which yields 
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)1()0()()()0()(
0

t

YX

XXts

t

t

X

t YYYYY emeYdsesmsXeeYtY





 







   Thus 




 mYtY

YX

XX




)0()(    

Following the same reasoning, we will deduce that the remaining states variables are 

bounded  and all solutions of (1) starting in   approach, enter or stay in  . Thus   

is an attracting  positively invariant for the system (1). 

 

3.  ANALYSIS OF THE OPTIMAL CONTROL MODEL 

3.1.   Optimal control model 

In this section, we incorporate in the system (1) three time-dependent controls functions 

u1, u2  and u3. The control u1 represent the use of personal protection measures such as 

the use of insecticide-treated nets, application of repellents or insecticides to skin and 

the use of windows and doors screens to prevent mosquito’s bites both during the day 

and at night. These measures protect the normal red blood cells, preventing their 

infection i.e. keeping them from turning into parasitized red blood cells. The control u2 

simulates the effect of the nitric oxide or antibodies which destroy parasitized red blood 

cells, preventing them from releasing new merozoites in the blood circulation. The 

control u3 represents the efficiency of drug therapy in killing the merozoites in the 

blood. With these modifications, the system (1) can be reformulated as:                  

X
dt

dX


.

)()()1( 1 tmtXu X )(tXX                                                                                 


dt

dY
)()()1( 1 tmtXu X )(( tNY )(tAY )()2 tYuY                                           


dt

dm
 )()1( 3 tYku Ym )(( tNm )() tmm                                                          

)()()( 121

.

tItItT
dt

dI



   

)()()( 4424
4 tItNtT

dt

dI
                                                                                            

)()()( 101012210

10 tItItT
dt

dI
                                                                              

)()()( 1212112
12 tItItT

dt

dI
                                                                        (2) 
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)()()(

.

tNtItM
dt

dN
NN                                                                                           

)()()( 4 tAtItB
dt

dA
AA                                                                                            

)(tM
dt

dM
MM                                                                                                 

)()()( 4 tBtItB
dt

dB
BBB                                                                                   

0

0 
dt

dT
)()( 1201 tItT )()( 402 tItT )(00 tT                                                          


dt

dT1  )()( 1201 tItT )(11 tT                                                                               


dt

dT2   )()( 402 tItT )(22 tT     

 

3.2.   Objective function 

We use an approach similar to the one in Barret and Hoel [3] which consists in applying 

the Pontryagin’s maximum principle [25] to determine the conditions under which 

eradication of the disease can be achieved in finite time. The use is to minimize the 

following objective or cost functional by increasing the number of normal red blood 

cells, decreasing the number of parasitized red blood cells and merozoites and 

minimizing the costs of implementing the control strategies ui (t) (i = 1,2,3). Denote u(t) 
= (u1(t),u2(t),u3(t)) 

            dttuBtmAtYAtXAuJ

T

i

ii ))(
2

1
)()()(()(

0

3

1

2

321 


                                  (3) 

where Ai and Bi (i=1,2,3) are positive weight constants. The expected final time for 
the control implementation is represented by T. The objective functional (3) 

includes the cost control function for personal protection 
)(2

112
1 tuB

, the cost 
control function for application of prophylaxis (destroying the parasitized red 

blood cells) 
)(2

222
1 tuB

 and the cost of treating infectious humans which represents 

the cost control function of drug therapy 
)(2

332
1 tuB

. In this work, as in other studies 
[18, 22], the cost control functions take a quadratic form. 

Our target is to find an optimal triple control 
),,( *

3

*

2

*

1

* uuuu 
 such that  
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             UuuuuuuuJuJ  ),,(/),,(min)( 321321

*                                                           (4) 

 

where  measurableLebesgueTttututututuU i ],,0[,1)(0)),(),(),(()( 321   

is the control set 

 

3.3.   Existence of an optimal control 

Theorem 3.3: Given the objective functional (3), defined on the control set U, and 

subject to the system (2) with non-negative initial conditions at t = 0, there exists an 

optimal control ),,( *

3

*

2

*

1

* uuuu   such that  

 UuuuuuuuJuJ  ),,(/),,(min)( 321321

*

  

 

Proof : 
The proof of theorem 3.3 is based in satisfying following properties, using a result by 

Fleming and Rishel in [9] and by Lukes in [14] : 

(i)    The set of controls and corresponding state variables is non-empty 

(ii)   The control set U is convex and closed 

(iii)  The state system is bounded by a linear function in the state and controls variables  

(iv)  The integrand of the objective functional is convex on U 

(v)   There exists constants 0, 21 cc  and 1  such that integrand of the objective  

        functional is bounded below by 
2

2

1
2)( cuc i 


  

(i) We use a result by Lukes in [14] to give the existence of solutions of system (2) 

corresponding to the every admissible control set U. We note that all the solutions are 

bounded.  

(ii)     Given that the control set 3]1,0[U , U is convex and closed by definition 

(iii)    Let  ,,( YXx  m , I , 4I , 10I , 12I , N , A , M , B , 0T , 1T , )2T  

  and ),,( uxtf  the right-hand side of system (2) given by 
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   It is clear from (5) that uxthxtguxtf ),(),(),,(  , where 
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and 
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Hence,     

uaauxthxtguxtf 21),(),(),,(     where 
1a  and 

2a  are positive constants. 

 

(iv)  The integrand of the objective functional is the Lagrangian of the form: 

 

 ),(),()(
2

1
)()()(),,( 11

2
3

1

321 uthxtgtuBtmAtYAtXAuxtL i

i

i  


  

It suffices to show that 



3

1

2

1 )(
2

1
),(

i

ii tuButh  is convex on the control variable Uu . 

Since ),( uth  is a finite linear combination with positive coefficients of the function  

2

2

1
)( ii uuq   , it is more convenient to show that the function 2

2

1
)( uuq   is convex. 
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To do this, let ]1,0[],0[:, Tvu  and ]1,0[ . Then, 
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1
))1((

2

1
))()1()(())1(( 222 vuvuvquqvuq    

         0))(1(
2

1
)2)((

2

1 2222  vuvuvu    

(v)  
2

3

1

2

1

2
3

1

2
3

1

321

2

2

1
)(

2

1
)()()(),,( cucuBtuBtmAtYAtXAuxtL

i

ii

i

ii

i

i 







 





   

 

       where  3212
1

1 ,,min BBBc  ,  2   and  02 c   

 

3.4   Characterisation of an optimal control     

In a attempt to obtain necessary conditions for the optimal control of malaria governed 

by the system (2), the use is made of the Pontryagin’s Maximum Principle [25] which 

converts the state system (2), with the objective functional (3) and (4) into a problem 

of minimizing point wise, with respect to the controls 
1u , 

2u  and 3u , a Hamiltonian H 

given by the following: 

H  )()()(
2

1
)()()( 2

33

2

22

2

11321 tuBtuBtuBtmAtYAtXA    

+ 
X [ X )()()1( 1 tmtXu X )(tXX ]  

 

+ 
Y [ )()()1( 1 tmtXu X )(( tNY )(tAY )()2 tYuY   ] 

 

+ m [ )()1( 3 tYku Ym )(( tNm )() tmm ] 

 

+ 


I [ )()()( 121 tItItT    ] 

 

+ 
4I [ )()()( 4424 tItNtT   ] 

 

+ 
10I [ )()()( 101012210 tItItT   ] 
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+ 
12I [ )()()( 1212112 tItItT    ] 

 

+ N [ )()()( tNtItM NN    ]     

 

+ 
A [ )()()( 4 tAtItB AA   ]  

 

+ 
M [ )(tMMM  ]  

 

+ 
B [ )()()( 4 tBtItB BBB   ]    

 

+ 
0T [ 0 )()( 1201 tItT )()( 402 tItT )(00 tT ]         

                                               

+ 
1T [ )()( 1201 tItT )(11 tT ]                       

                                                       

+ 
2T [ )()( 402 tItT 22T (t)]                                                                                 (6) 

                                                                         

where 
X , 

Y , m , 


I , 
4I , 

10I , 
12I , N , 

A , 
M , 

B , 
0T , 

1T , 
2T  

are the adjoint 

variables or co-state variables. The following result gives the necessary conditions for 

the optimal control. 

 

Theorem 3.4: Given an optimal control triple ),,( *

3

*

2

*

1

* uuuu   that minimizes objective 

functional (3) over the control set U subject to the system (2), then there exist adjoint 

variables 
X , 

Y , m , 


I , 
4I , 

10I , 
12I , N , 

A , 
M , 

B , 
0T , 

1T , 
2T  satisfying:

  

 

.

dt

d X ))(()1( 1 YXX tmu   1AXX                                                           


dt

d Y
)(( tNYY  )(tAY )2uY  

23 )1( Aku Ymm            


dt

d m ))(()1( 1 YXX tXu  
3))(( AtN mmm                                                          



1110 Aminou M. Layaka et al. 







 INNI

I
tMtT

dt

d
 )()(112

.

12
 

420

4

402 ))(()()( ITTBBAA

I
tTtB

dt
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


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10

10

10 I

I

dt

d



                                                                         

121010

12

12012101 ))(()()( ITTII

I
tTtTtT

dt

d





                                     (7)                                                               

NNImmYY

N tTtmtY
dt
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.
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AAYY
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dt
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


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dt
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
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dt
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02010
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112

1

11212 )()( TII

T
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dt
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



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2104

2

212104 )()( TII

T
tItN

dt

d



   

 

 with transversality conditions:  

 

0)( TX , 0)( TY , 0)( Tm , 0)( TI
 , 0)(

4
TI , 0)(

10
TI , 0)(

12
TI , 

0)( TN , 0)( TA , 0)( TM , 0)( TB , 0)(
0

TT , 0)(
1

TT , 0)(
2

TT     (8) 

  

and 

 


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,0maxmin)(
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Proof :  
 

The adjoint equations (7) are obtained by taking partial derivates of the Hamiltonian H 

given by (6) with respect to the associated state variables, so that 
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dt
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with transversality or terminal conditions (8). Moreover, the optimal control 

characterization given by (9) is determined by solving the following partial differential 

equations: 
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
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By standard control arguments involving bounds on the control, then 
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for  3,2,1i
 
 and  where 
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            3
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B

tYk
v Ymm 
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This completes the proof.  

 

4.  CONCLUSION 

In this paper, we formulated an intra-host model of malaria infection and analyzed the 

qualitative properties of the solutions. The effective eradication or control of malaria 

may be too costly because it means that for constant controls, one needs to keep 

prophylaxis and treating for infinite time. Therefore, we considered time dependent 

controls as a way out, to ensure the eradication of the disease in a finite time, and in a 

situation where eradication is impossible or of less benefit compared with the cost of 

intervention, we also derived and analyzed the necessary conditions for optimal control 

of the disease.  

However this conclusion must be taken with caution: The theoretical results obtained 

here were not observed from numerical simulation because of uncertainties around the 

parameter values. 
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