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Abstract

In this paper, we recall and show the convergence of the Adomian algorithm
applied to the Volterra second kind integrodifferential equation and compare the
results obtained with those obtained with the variational iterative method (VIM).
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1. INTRODUCTION

In this paper, we are interested in the following

d‘ii;“") = f(z) + )\/ K(x,t)gP (t)dt ; p € N*

pla) =

second species Volterra integrodifferential equation. In a first step, we study the
convergence and uniqueness of the Adomian algorithm under certain conditions, in a
second step, we make some numerical applications and finally we compare the solutions
obtained with these two methods.
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2. RECALL THE ADOMIAN DECOMPOSITIONAL METHOD (ADM) AND
VARIATIONAL ITERATIVE METHOD (VIM)

2.1. The Adomian Decompositional Method
Let’s consider the functional equation :

Fo(t)=f(t) (D)

where F' is a nonlinear operator of a Hilbert space [ in H, comprising a linear term
L — R, Ris the linear remainder and a nonlinear term N, ((¢) is the unknown function
and f(t) a given function in H.

By posing
F=L-R-N (2)

hence

Lo (t) = f () + Re (t) + Ne (t) 3)
then applying L~ to (3), we obtain :

o) =0+L ' f(t)+ L 'Rp(t)+ L 'Np(t). (4)

The Adomian method consists in looking for the solution of equation (1) in the form of
a series :

e =" ot

and then decompose the nonlinear Np(¢) term into a series :

No) =3 " A, (1)

n=0

Where

)= i [V (E5 9 0)] im0

The terms A, (t) are Adomian [1 — 8] polynomials that depend exclusively on :
Po(t)spr(t), - al).
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2.1.1 Convergence study of the Adomian method

Consider the following integrodifferential problem :

dy (z)
= K (x,t) P (t) dt;
(P) : Iy —|—)\/ (, (t)dt; A\ >0

p(a) =8

let us determine the canonical form of Adomian :

:?+/:f(z)dz+A/ (/Kzt )dt)d

g(x)

let us determine the canonical form of Adomian :

o) =g /(/Kzt )dt)d

If p = 1,then we have :

s s [ ([ Keosa)a

we get the Adomian agorithm :

oo () = 9.2)
pres @) =2 [ ([ K0 dsinz 0 ®)

2.2. The Variational iteration method
Let’s Consider the nonlinear differential equation

Lu+ Nu = g(z)
where L and N are linear and nonlinear operators respectively, and ¢ is a given
continuous function.
We can construct a correction functional according to the variational iteration method

in the form .

Upt1 = Up + //\(s) (Luy, (s) + N, (s) — g (s)) ds

a

where A is a general Lagrange multiplier, which can be identified optimally via the
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variational theory, u,, is the nth approximate solution and w,, is a restricted variation,
which means 6u,, = 0.

It is clear that the main steps of the He’s variational iteration method [9 — 12] is to
determine the Lagrange multiplier A (s) .

2.2.1 Study of the convergence of the algorithm ADM and VIM

Convergence of the algorithm ADM

Theorem 1. The following linear second Volterra integrodifferential equation

do (z) @ |
(p) : dx"”@+A/fﬁ%ﬂ¢@ﬁA>ﬂ
=p

¢ (a)

has a unique solution under the following hypotheses :
e =[a,T],a<t<z<T
e g€ C(Q)
o K (x,t) € C(02?%).

Proof. We have g € C (Q) and K (z,t) € C (Q?), then Im > 0 and M > 0 such as
Vo € Q,|g(z)] <mandV (z,t) € O |K (z,t)] < M,

hence

[0 (2)| = lg (x)] <m 2

( AMe |x—a>
ol <A [ ([ enawar)d| < .

( XMam_a>4
el = [ ([ Koo 0a) i< -

( AMe |x—a|)2n

rwn<x>:x\/z ([ xCoeia)i < T(M >
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therefore :

> e @l <me 3 T (

so the series

\x—a\)
=m—1+ch (\/W|:p—a|>

(5 @)

converges absolutely therefore it is convergent. Suppose that the problem (p) admits
two different solutions v and ¢. For each of the solutions v and ¢, we have the following

algorithms :
(o (x) =g ()
(x) = / / (z,t) o (1) dt | dz
= )\/ / (z,t) 1 (t)dt ) dz
:)\/ </ K (z,t) on— 1()dt>dz;n21
and
[ uo () =g ()
(x) = / / (z,t) up () dt | dz
= )\/ / (z,t)uy (t)dt ) dz
:)\/< Kztunl()dt>dz;n21
\
Let us consider the difference w () = ¢ (z ). Let’s apply the Adomian algorithm
to w, we get :
(wo () =0
wl(x):/\/ /K(zt)(goo(t)—uo())dt dz=0
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We get then Vo € 2, w (z) = 0, from where V € €2, ¢(x) = u (x) which contradicts our
supposition, therefore V € Q, p(z) = u (x) consequently the solution of the problem
(p1) is unique. W

Theorem 2. The following nonlinear Volterra second kind integrodifferential equation

dp (z) —|—/\/Ka:t t)ydt; N> 0andp > 2
(p2) : dx
p(a) =

has a unique solution under the following hypotheses :

e O=[a0,T],a<t<zx<T <400

g C(Q)

o K (z,t) € C'(Q?%)
neNVte 03 >0/a<t<e<Tand|A, (1)< (%)"

Proof. We have ¢ € C(Q) and K (z,t) € C(Q?), then Im > 0, M > 0,
VnGNVtGQEI€>O/a< <£<Tsuchast€Q|g()|§m,

Y (2,8) € Q2 |K (,1)] < M, |A, ( g(% 1

hence.

Then we have :

cwr-awir [ ([ Ko 0a)a

and then the following Adomian agorithm :

Yo (x)

Oni1 (T / (/th )dt)dz;nZO

(6)
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Hence :

ol =2| [ ([ i av@ar)a < 2=
el A‘/x (/:K(‘”’t)f‘l (t)dt) ds| < (=) ($—2a>2

< AM (E>”_1 (x—a)

\ ison(w)\ ZA’/: (/:K(:c,t)Anl (t)dt) dz

and therefore :

Z::; [on ()] < m+ )\M(:E_—QQ)Q Z:: (%)”_1 —m+ AM%
T

because

Nl o

thus the series

(@)

converges absolutely and thus is convergent.

Suppose that the problem (p) admits two different solutions w and . For each of the
solutions u and ¢, we have the following algorithms :

(

polr)=g(x)
o1 () = )\/ / K (z,t) @0 (t)dt | dz

@2(@:A/z /:K(z,t)gol(t)dt i

\ ;.O'n(x) zk/z </:K(2,t)gpn1(t)dt> dzin > 1
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and

K (z,t)uy (t)dt ) dz

x:/ / (z,t) up () dt | dz

/ </ Zt“nl()dt>dz;n21

Let us consider the difference w () = ¢ (z)—u (x). Let’s apply the Adomian algorithm
to w, we get :

(wo () =0
w1 (x):)\/ / K (2,t) (o (t) —uo (t))dt | dz=0
wg(x):/\/ /Kzt)(gpl()—ul())dt dz=0
(@) :)\/I (/ZK(z,t) (Gnr (£) — s (t))dt> dz=0:n>1
We get then Vo € Q, w (z) = 0, from where V € Q, p(x) = u (x) which contradicts our

supposition, therefore V € Q, p(x) = u (x) consequently the solution of the problem
(p1) is unique W

2.2.2 Convergence of the algoritm VIM

Consider the following integrodifferential problem :

oy | EE 1@ [ Koo @

¢(a)=p
‘We construct a correction functional

ot (@) = u o)+ [

T

0A(><¢n( /Kst dt)d

where is a restricted variation, which means d¢,, = 0.
After identifying the multiplier, we have

Oni1 () = @ (T) — /: (gpn( / K (s,t)p dt) ds (1)
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If p = 1,then we have :

o @) =n (@)= [ (=102 [ Ksnpoa)as

we get the VIM agorithm :

o(1) =
{ ZnJrl(-T)SOn(l’)/Z (90;1(5)_f(s)_A/ZK(SJ)gO(t)dt) ds (8)

2.2.3 Study of the convergence of the algorithm

Theorem 3. if f € C ([0,T]) and K € C(Q) with Q = [0,T] x [0,T] , the sequence
(n (x)) converges to the solution ¢ () of the problem

o
p(0) =2

Proof. By subtracting ¢ (x) from both sides of (8), the equation can be rewritten as :

onir (1) — p(a) = ¢n<x>—w<x>—/:( YRR ) .
= (@)= (@) Iso’ (5) = (5) = £ () + &' (5) —
)\/ZK( t) (¢n ) dt — /K t) dtds

because ¢’ (s) — f(s) — )\/ K (s,t)p (t)dt = 0.
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by posing E,, () = ¢, (v) — ¢ (7), we have

Ben0) = [ (A [ K00 = o) ar) s
[ ([ R w0 )

We have K (z,t) € C' (1), then IM > Osuchas V (x,t) € Q, |K (z,t)] < M. So

AM‘/Z(/ZEn(t)des

)\M/ (/ B, (t)|dt> ds
0 0
We have successively

B ()| < )\M/ (/ B (¢ |dt>ds
< )\M/ (HEO (t)||oo/sdt> ds

_ )\M/ (1B (Ol 5) ds = AM || By (£)]].. -2

then

IA

| Ensa (z)]

IA

Bl < R IE O [ ([ 5dr) ds = 0o 1B 0], g

0 0

Bl < 00 18 Ol [ ([ Jirtae) s = a0 15 (0] g

0 0

[Eu (@) < M) By ()] g™

it exist K such as || E (t)||, < K. So

B (0] < K QM) ™

The sequence (K (AM)" ——z? ) converges uniformly to 0 and thus it follows that

1
(2n)!

|E, ()] — 0, which means (¢, (x)) converges to ¢ (z) B
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Theorem 4. if f € C ([0,T]) and K € C (Q) woth Q = [0,T] x [0,T] , the sequence
(i (7)) converges to the solution ¢ (x) of the problem

(54210 s
p(0) =5

By subtracting ¢ (=) from both sides of (7), the equation can be rewritten as
ent1(z) =@ (@) = ¢n(@)—p(2) —/: (% (s) = f(s)— A/ZK(SJ)SOP(t)dt) ds
R SOEICEY RCACEFICENOR®
—)\/SK (5,8) (P (1) — o () dt
.\ / K (s.1) >
— (@) 90(93)—/ 2 (5)) ds
/ ( / K (s,1) (1)) dt
—)\/ K (s,t)p >

= — ¢ (@) = (¢n (2) = (¢n (0) = ¢(0)))
_/ ( )\/Kst
—)\/Kst oP (t) — ())dt)ds

_ /( /Kst o (¢ ())dt)d

cause ¢’ ( / K (s,t) =0.

By posing E,, () = ¢ ¢ (x), we have

/(/Kst )= (O)at) ds

Bl = A|[ ([ Kenwo - wa)
| [ ([ o= aya) as

then

IA
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¢ being continuous on [0, 77, then ¢ is bounded and ¢* is too for any 2 < k < p. There
is therefore Q, such us |¢* (z)| < Qy forall z € [0, T7.

The same, it exists M}, such us }gpfl (a:)} < Mj forall z € [0, 7.
We have
L) =" (1) = (en®)—e®) (T O+ @)+ +on ()" (1) + " (1)
= en (1) =P (O] = len (1) — ¢ ()] x
[ETH (@) + P2 () e (B) 4+ n () P72 () + P (D))
< en @ =@ x (b O]+ 2@ e @]+ +
|on (8) "2 ()] + "1 (1)])

Let Q = max (87" (t) ! (¢)) then

1<k<p

b (1) — & (1)] < pQ [ (1) — @ (t)]

We have K (z,t) € C(Q), then IM > 0 such as V (z,t) € Q,|K (z,t)] < M.

therefore
B ()] = A'/:(/ZK(s,t)En(t)dt>ds

)\MpQ‘/: (/ZEn(t)dt> ds
)\MpQ/: </0\En (t)\dt) ds

Let A = AMpQ, we have successively

A/ </ By (¢ |dt> 3<A/ <HE0 / )ds

= A/ | Eo (t ds_AEO()OO22

IN

IN

|En ()]

IN

x S 1
B2 ()] < (411 Bo (1) / ([ ) as = AP 18 @)l o

0

B (@l < @ 1B 0l [ ([ 5yt ) ds = (47 150 (0] o

B (@) < (A)" 1B ()l 757"
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It exists K such us ||Ey (¢)]|,, < K. So

B, (2)] < K (A)" (2;)!

1
(2n)!

|y, (z)| — 0, which means (¢, (x)) converges to ¢ () Bl

The sequence (K (A)" xQ”) converges uniformly to O and thus it follows that

3. APPLICATIONS
3.0.1 Applications 1: algorithm ADM modified

Exemple 1 Let’s consider the following integrodifferential equation :

dy (x) 1 ) 1 / e
— T _ T T _ 1 - z—t3tdt
(h): 4 @ ¢ Tl g e )

p(0) =1
we obtain the canonical Adomian form associated to the above problem (A1) :

1 7 10 1 [*([*
—(0)— —e3 4 Zet — — 4 = oY (t)dt ) d
p(2) = (0) = gge™ + e 9+3/0(/Oe @’ (1) )Z

1, 1, 1 1 ["( [ ., ,
e T et g =3 (1) dt ) d
p(x)=ce 15° +6€ 9+3/0(/06 @ (t) )z

By using the modified Adomian algorithm :

or else :

( T

po(z) =e
p1(z) = —5e 4+ ge” —  +

@2(m):% / ' / Zez—tAl (t)dt ) dz

0 0

@3@):% / ’ / et Ay (1) dt ) de

0

W =
—
N
—
D
N
|
D
o
—
~
N——
jol
~
N——
QL
N

Oni1(x) = %/0 (/0 e tA, (1) dt) dz;n>1
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Let’s calculate the Adomian polynomials Ag(z),A; (z),As(z),As(x),... and
solutions : o (2), 1 (2), 2 (2), 03 (2) ..

po(z) = e = Ay (z) =} ()

pr(x) = 0= A (z) = 3p1 () 9 () = 0

pa(w) = 0= Ay () = 303 () @2 (z) + 30 () ¢} (z) = 0

p3(x) = 0= Az (2) = 3¢5 (x) @3 () + 60 () 1 (x) 2 (2) + ¢} (2) = 0
| ;);n<$> =0=>A,(zr)=0,n>1

The exact solution of the problem (A, ) is therefore :

T

o (z) =0 (z) + 1 () +p2(x) + ... = €.

Exemple 2 Let’s consider the following problem (h5):

x

d(p(x) 1.4 2 2/ 2
=1—-2z— = 20 — 6 5 — —1 t) dt
(hy) T T — g52t (22 T+ )+3 O(:c ) 0% (t)

¢(0)=0

Let’s determine the canonical form of Adomian, we get :

1 1 1 2 [7 z
o) =0~ gra+ gt~ ot~ ekt [ ([0 a)e

or

1 1 4 1 2 [* ?
go(a:):—x2+x——x7+—x6——x5—|——/ (/ (z—t)c,oQ(t)dt>dz.
357 900 900 " 3),\UJ,

Using the modified Adomian algoritm, we obtain the following Algorithm :
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we obtain :
(o (2) =2 —2%= A (2) = @} (2) = (x — 2?)°
p1(z) =0= Ay (z) =2p (z) po (x) =0
P2 (1) = 0= Ay (x) = 20 (2) 2 (x) + ¢} () =0
w3 (x) = 0= Az (x) = 201 () 2 (z) + 20 (7) @3 () = 0
[ ¢n () =0= A, (2) =0;n > 1

The exact solution to the problem (hy) is :
+oo
p(@)= ¢ulr)=po(x)+ o1 (@) +¢2 (@) +.. = po(x) =2~

3.0.2 Exemple 3

Let’s consider the following problem (hs3) :

d 2 [*
(hy) : flf) = —sinz — tasinz + £ /o sin(z — t)p(t)dt
p(0)=1

Let’s determine the canonical form of Adomian, we get :

o(2) = 1— /0 <Sinz+ %Zsinz) dz+§/: (/:sin(z —t)gp(t)dt) i

or

1 1 2 [ N
<p(a:)—cosx—gsin:v—i-gxcosm—l—g/ (/ sin(z—t)cp(t)dt)dz.

0 0

Using the modified Adomian algoritm, we obtain the following Algorithm :

@o () = cosx

1 2 €T z
cpl(x):—gsinx—i-%xcosx—i-g/ (/ sin(z—t)gog(t)dt)dz:o

0 0

902(13):%/: (/Zsin(z—t)gol(t)dt) dz =0

\ ;nﬂ(x):g/: (/:(Z—t)wn(t)dt)dz:o;nzl




1090 Ouedraogo Seny et al.

The exact solution to the problem (h3) is :

p(z) = Z:: ©On () = o () + 1 (x) + 2 () + ... = g (x) = cosx.

3.0.3 Exemple 4

Let’s consider the following nonlinear problem (hy) :

d 1 1 1 /7
v () =cosx — —sinx + — sin 2x + —/ cos(z — t)*(t)dt

(hy) : dx 6 12 4/
¢ (0)=0
Let’s determine the canonical form of Adomian, we get :
(z) ! + si L os2 1+1/I / (z —t)p*(t)dt ) d
r)=—-cosST +sinx — —cos2c — — + — cos(z — z
4 6 24 s 1),\J, 7

Using the modified Adomian algoritm, we obtain the following Algorithm :

o= [ ([ mmwa)insn

we obtain :

0o (1) =sinz = Ay (z) = 93 (z) = sin’x

p1(7) =0= Ay (z) = 201 () po () =0

P2 (v) = 0= Ay (x) = 20 (2) w2 () + ¢} (v) =0

@3 (z) = 0= A3 (x) = 21 () p2 () + 20 (z) 3 (x) =0
[ on (@) =0= A, (x) =0n>1

The exact solution to the problem (hy) is :

P (2) =3 on(8) = w0 (@) + 1 () + 2 () + . = 0 (2) = sin,

n=0
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4. APPLICATIONS 2: VIM

Example 1 Let’s consider the following integrodifferential equation :

dgo(x) 1 2 1/x _
T _ T T _ 1 - ;Bt3tdt
(h) : il L C )+ [T (t)

p(0) =1
The correction functional is:

b @ =pn ) [ 20 (B e e @) - g [ eatoar) o

0 0

After calculation, we find A = —1. So we get the following variational iteration

formula:

Ony1 (2) = @n () — /: (dSO;—s(S) —e" + et (e* —1) — %/O es7to3 (t) dt) ds
wo(z) = (0)=1

And we obtain :

wo(z) = 1
X 1 S
p1(x) = (@) —/ o (s) — e +ge* (¥ —1) - 3/ e ~lgp () dt ) ds = e”
0 0
X 1 S
p2(x) = ¢1(@) —/ wo (s) — € +ge* (¥ —1) — 3/ e*~lgt () dt ) ds = e”
0 0
X 1 S
o) = @)= [ (da@-erie @ -y [ et war)as—e
0

0

The exact solution of the problem is ¢ (z) = lim ¢, (z) = €”.

n—-+o0o

Example 2 Let’s consider the following problem (hs):

d(p(x) 1.4 2 2/36 2
) 19— Lot (222 : )@ (t)dt
(hy) : o T — g5xt (2 6:1:+5)+3 O(SL’ ) 2 (t)

©(0)=0
The correction functional is:

Pnt1 (JI) = Pn (JI)

2 do,, 1 9
+/ )\(s)( Spd(s)—1+28+%s4(232—68+5)—§/

0 S

x

) (s —t) 2 (1) dt> ds
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After calculation, we find A\ = —1 and we have the algorithm:

 dp, (s 2
Qpn-l—l:(pn_/ (Z—SU_1+23+%S4(232—68+5)—§/
0

o (r) =@ (0)=0

s

(s —t) Q2 (1) dt) ds

0

And we obtain :

po(z) = 0
T 2 S
o1 (z) = g&o(az)—/ ¢6(s)—1+25+&84(252—65+5)—g/(s—t)go%(t)dt ds = x — z?
0 0
€T 2 S
o (z) = gpl(x)—/ @3(5)—1%—28-}—%34(252—65-}—5)—3/(s—t)go%(t)dt ds =z — a?
0 0
. S ) )
oo@) = (o= [ (-1 et 22— 0s19) =2 [ o () ds—a -
0 0

The exact solution of the problem is ¢ (z) = lirf on () =2 — 2%
n—-+0oo

4.0.1 Example 3

Let’s consider the following problem (hs3) :

d 2 [*
(hy) : Silff) = —sinz — fwsinz + = /0 sin(x — t)p(t)dt

The correction functional is:

oner (2) = o (w)+/x)\(s) (d(p—@)—i-sins%—lssins— E/Isin(s—t)gp(t)dt> ds

0 ds 5 5 0
After calculation, we find A = —1. So we get the following variational iteration
formula:
Oni1 (2) = o (2) _/ ( ©(s) +sins + $ssins — —/ sin (s —t) ¢ (t) dt) ds
o \ ds 5/ 0
o (x)

The approximate solutions ¢,, () are obtained iteratively by substituting ¢ () = cos
which satisfies the initial condition.
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Some approximate solutions are listed below,

wo(x) = cosx
e1(z) = goo(:c)—/ g@{)(s)—&—sins—k%ssins—g/ sin (s —t) ¢q (t) dt | ds = cosx
0 0
T 2 T
w2 () = @1(1)—/ <p’1(s)+sins—|—%ssins—5/ sin (s — t) 1 (t)dt | ds = cosx
0 0
ey . 1. 2 ("
on () = p_1(x)— ©y,_1 (8) +sins + zssins — 7 [ sin (s —t) pn—1(t)dt ) ds =cosz
0 0

The exact solution of the problem is ¢ (z) = lir+n n () = cos .
n—-+0oo

4.0.2 Example 4

Let’s consider the following nonlinear problem (h,) :

d 1 1 1 [*
(h) : Zf) =cosz — ¢ sinx + 12 sin 2z + 1 /0 cos(x — t)p?(t)dt

¢(0)=0

The correction functional is:

S

_ ’ dip(s) 1 1 1 ,
Ont1 () = pp (x)—i—/ )\(s)( s coss—i-ésms Ests 1/ cos(z — t)z (t)dt | ds

0 0

After calculation, we find A = —1. So we get the following variational iteration

formula:

B T (do(s) 1. 1 . 1 [ )
{(pnﬂ(x)—(pn(x)—/ ( T —coss—l—gsms—Ests—Z/Ocos(s—t)cpn(t)dt ds

0
vo ()

The approximate solutions ¢,, () are obtained iteratively by substituting ¢, (z) =
sin x which satisfies the initial condition.

Some approximate solutions are listed below,

wo(z) = sinz
v 11 1 , _
o1(x) = @olz)— ) (s) —coss+ —sins — —sin2s — — [ cos(s —t)p§(t)dt | ds =sinx
o 6 12 i/,
¥ 1 1 1 (°
pa(z) = ¢1(x)— / 0} (s) —coss+ —sins — — sin2s — f/ cos(s — t)p3(t)dt | ds = sinx
o 6 12 1/,
o 11 1 [ , .
on () = @no1(x)— wh_1(s)—coss+ —sins — —sin2s — — | cos(s —t)ps_1(t)dt | ds =sinx
. 6 12 1/,
The exact solution of the problem is ¢ (z) = lim ¢, (z) = sin .

n—-+o0o
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S. SUMMARY SYNTHESIS

dy () /I
= Al K(z,t)p(t)dt; A >0
Equation { dx f )+ . (@,1) o () dt; A >
p(a)=p
de (z) . L 2 /m )
= —sinz — g3 = — t)(t)dt
Equation | (h3) : { e sinx — zxrsinz + 5 Osm(m Y(t)
p(0)=1
solution by VIM: ¢(x) = cosx
by ADM: ¢(z) = cosx

dy (z) /I
= A K (z,t) P (t)dt; A >0
Equation { dr f () + . (w,1) QP (t) dt; A >
¢ (a)=p
dy () T .5 1 /w y
=" — e (¥ = 1)+ 5 [ " () dt
Equation (hl):{ dz €75 (e )+3 06 ©° (t)
p(0) =1
IM: — et
Solution | 4 Y VIM: (@) =e
by ADM: p(x) = e*
dip(x) L o492 2 /m 2
=1 -2z —o5at (227 =62 +5) + 5 — 1) (t) dt
Equaion (hg):{ dx v gox(x x+)+3 0(37 ) ° (1)
¢(0)=0
VIM: =7 — 72
Solution by pla)=a—= )
de () 1 T T /w ;
=cosz — — sin2z + - _
Equation | (hy) :{ . CoS T 651nx+ 15 Sin x+ 1 0Cos(av t)=(t)dt
©(0)=0
solution by VIM: ¢(z) = S
by ADM (,0(]}) = SsInzxe

In all these applications, the same solutions are obtained by both the modified ADM
and the VIM method.

5.1. Conclusion

In this paper, we have successfully solved some linear and nonlinear integrodifferential
equations. To do so, we first performed a convergence study of the VIM and ADM
algorithms and then showed the uniqueness of the solution of this type of problem.



Exact Analytical Solution of Some Volterra Second Kind ... 1095

REFERENCES

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

K. Abbaoui and Yves Cherruault, "The decomosition method applies to thhe
Cauchhy problem”, Kybernetes 28(1) (1999), 64-74.

Bakari Abbo, N.Ngarasta, B.Mampassi, B.Some and Longhhin Some, ’Anew
approach of the Adomian alggorithm for solving nonlinear ordinary or partial
differential equations”, Far East J. Applll.Math. 23(3 (2006), 299-312.

G.Adomian, ” Nonlinear Stochastic System Theory and Applicationto Physics”,
Kluwers Academic Publishers,1989.

S.Khelifa and Yves Cherruault,”The decomposition method for solving first
partial differential equations”, Kybernetes 31(6) (2002), 844-871.

Yaya Moussa, Youssouf Pare, Pierre Clovis Nikiema and Blaise Some, "New
approach of the Adomian Decomposition Method.”, Inter. J. Num. Methods.Appl.,
16(1)(2017), pp. 1-10.

Youssouf Pare, Francis Bassono and Blaise Some,”A new technique for
numerical resolution of non linear integral equations of Fredholm by SBA
method.”,Far East. J. Appl. Math., 70(1) (2012), pp. 21-33.

Youssouf Pare, Abbo Bakari, Rasmane Yaro and Blaise Some, “Solving
first kind Abel integral equations using the SBA numerical method.”, Nonl.
Anal.Differ. Equ., 1(3)(2013), pp. 115-128.

Ouedraoggo Seny, Nebie Abdoul Wassiha, Youssouf Pare and Blaise
Some, ”A New Adomian Approach to Solving Integral Equations of Fredholm
and Volterra second kind”,Australian Journal of Mathematical Analysis and
Applications (AIMAA), Vol 16,Issue 2, Article 8,pp.1-16,2019.

Ji-Huan He, Xu-Hong Wu , "’ Variational iteration method: New development and
applications”, Computers & Mathematics with Applications, 54 (2007) 881-894.

Ahmet Yildirim, Oleg Gendelman , “Applying He’s Variational Iteration
Method for Solving Differential-Difference Equation”,Mathematical Problems in
Engineering / 2008 /

M. Tatari and M. Dehghan, “He’s variational iteration method for computing a

control parameter in a semi-linear inverse parabolic equation,” Chaos, Solitons &
Fractals, vol. 33, no. 2, pp. 671-677, 2007.



1096 Ouedraogo Seny et al.

[12] M. Dehghan and M. Tatari, “The use of He’s variational iteration method for
solving a Fokker-Planck equation,” Physica Scripta, vol. 74, no. 3, pp. 310-316,
2006.



