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1. INTRODUCTION

In this paper, we are interested in the following
dφ (x)

dx
= f(x) + λ

∫ x

a

K(x, t)φp (t) dt ; p ∈ N∗

φ(a) = β

second species Volterra integrodifferential equation. In a first step, we study the
convergence and uniqueness of the Adomian algorithm under certain conditions, in a
second step, we make some numerical applications and finally we compare the solutions
obtained with these two methods.
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2. RECALL THE ADOMIAN DECOMPOSITIONAL METHOD (ADM) AND
VARIATIONAL ITERATIVE METHOD (VIM)

2.1. The Adomian Decompositional Method
Let’s consider the functional equation :

Fφ (t) = f (t) (1)

where F is a nonlinear operator of a Hilbert space H in H , comprising a linear term
L−R , R is the linear remainder and a nonlinear term N , φ(t) is the unknown function
and f(t) a given function in H .

By posing

F = L−R−N (2)

hence

Lφ (t) = f (t) +Rφ (t) +Nφ (t) (3)

then applying L−1 to (3), we obtain :

φ (t) = θ + L−1f (t) + L−1Rφ (t) + L−1Nφ (t) . (4)

The Adomian method consists in looking for the solution of equation (1) in the form of
a series :

φ (t) =
∑+∞

n=0
φn (t)

and then decompose the nonlinear Nφ(t) term into a series :

Nφ (t) =
∑+∞

n=0
An (t)

Where  A0 (t) = N (φ0 (t))

An (t) =
1

n!

dn

dλn

[
N
(∑+∞

i=0
λiφi (t)

)]
λ=0

;n ≥ 0

The terms An(t) are Adomian [1− 8] polynomials that depend exclusively on :
φ0(t),φ1(t), ..., φn(t).
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2.1.1 Convergence study of the Adomian method

Consider the following integrodifferential problem :

(P ) :


dφ (x)

dx
= f (x) + λ

∫ x

a

K (x, t)φp (t) dt;λ > 0

φ (a) = β

let us determine the canonical form of Adomian :

φ (x) = β +

∫ x

a

f (z) dz︸ ︷︷ ︸
g(x)

+ λ

∫ x

a

(∫ z

a

K (z, t)φp (t) dt

)
dz

let us determine the canonical form of Adomian :

φ (x) = g (x) + λ

∫ x

a

(∫ z

a

K (z, t)φp (t) dt

)
dz

If p = 1,then we have :

φ (x) = g (x) + λ

∫ x

a

(∫ z

a

K (z, t)φ (t) dt

)
dz

we get the Adomian agorithm : φ0 (x) = g (x)

φn+1 (x) = λ

∫ x

a

(∫ z

a

K (z, t)φn (t) dt

)
dz;n ≥ 0

(5)

2.2. The Variational iteration method
Let’s Consider the nonlinear differential equation

Lu+Nu = g (x)

where L and N are linear and nonlinear operators respectively, and g is a given
continuous function.

We can construct a correction functional according to the variational iteration method
in the form

un+1 = un +

x∫
a

λ(s) (Lun (s) +Nũn(s)− g (s)) ds

where λ is a general Lagrange multiplier, which can be identified optimally via the
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variational theory, un is the nth approximate solution and ũn is a restricted variation,
which means δũn = 0.

It is clear that the main steps of the He’s variational iteration method [9− 12] is to
determine the Lagrange multiplier λ (s) .

2.2.1 Study of the convergence of the algorithm ADM and VIM

Convergence of the algorithm ADM

Theorem 1. The following linear second Volterra integrodifferential equation

(p1) :


dφ (x)

dx
= f (x) + λ

∫ x

a

K (x, t)φ (t) dt;λ > 0

φ (a) = β

has a unique solution under the following hypotheses :

• Ω = [a, T ] , a ≤ t ≤ x ≤ T

• g ∈ C (Ω)

• K (x, t) ∈ C (Ω2) .

Proof. We have g ∈ C (Ω) and K (x, t) ∈ C (Ω2), then ∃m > 0 and M > 0 such as
∀x ∈ Ω, |g(x)| ≤ m and ∀ (x, t) ∈ Ω2, |K (x, t)| ≤ M,

hence

|φ0 (x)| = |g (x)| ≤ m

|φ1 (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a
K (z, t)φ0 (t) dt

)
dz

∣∣∣∣ ≤
(√

λMε

T
|x− a|

)2

2

|φ2 (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a
K (z, t)φ1 (t) dt

)
dz

∣∣∣∣ ≤
(√

λMε

T
|x− a|

)4

4!

...

|φn (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a
K (z, t)φn−1 (t) dt

)
dz

∣∣∣∣ ≤
(√

λMε

T
|x− a|

)2n

(2n)!
;n ≥ 1
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therefore :

∑+∞

n=0
|φn (x)| ≤ m+

∑+∞

n=1

(√
λMε

T
|x− a|

)2n

(2n)!
= m−1+ ch

(√
λmM |x− a|

)
so the series (∑+∞

n=0
φn (x)

)
converges absolutely therefore it is convergent. Suppose that the problem (p) admits
two different solutions u and φ. For each of the solutions u and φ, we have the following
algorithms :



φ0 (x) = g (x)

φ1 (x) = λ

∫ x

a

(∫ z

a

K (z, t)φ0 (t) dt

)
dz

φ2 (x) = λ

∫ x

a

(∫ z

a

K (z, t)φ1 (t) dt

)
dz

...

φn (x) = λ

∫ x

a

(∫ z

a

K (z, t)φn−1 (t) dt

)
dz;n ≥ 1

and 

u0 (x) = g (x)

u1 (x) = λ

∫ x

a

(∫ z

a

K (z, t)u0 (t) dt

)
dz

u2 (x) = λ

∫ x

a

(∫ z

a

K (z, t)u1 (t) dt

)
dz

...

un (x) = λ

∫ x

a

(∫ z

a

K (z, t)un−1 (t) dt

)
dz;n ≥ 1

Let us consider the difference w (x) = φ (x)−u (x). Let’s apply the Adomian algorithm
to w, we get :



w0 (x) = 0

w1 (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φ0 (t)− u0 (t)) dt

)
dz = 0

w2 (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φ1 (t)− u1 (t)) dt

)
dz = 0

...

wn (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φn−1 (t)− un−1 (t)) dt

)
dz = 0 ;n ≥ 1
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We get then ∀x ∈ Ω, w (x) = 0, from where ∀ ∈ Ω, φ(x) = u (x) which contradicts our
supposition, therefore ∀ ∈ Ω, φ(x) = u (x) consequently the solution of the problem
(p1) is unique. ■

Theorem 2. The following nonlinear Volterra second kind integrodifferential equation

(p2) :


dφ (x)

dx
= f (x) + λ

∫ x

a

K (x, t)φp (t) dt;λ > 0 and p ≥ 2

φ (a) = β

has a unique solution under the following hypotheses :

• Ω = [a, T ] , a ≤ t ≤ x ≤ T < +∞

• g ∈ C (Ω)

• K (x, t) ∈ C (Ω2)

•∀n ∈ N,∀t ∈ Ω,∃ε > 0⧸a ≤ t ≤ ε < T and |An (t)| ≤
( ε

T

)n
.

Proof. We have g ∈ C (Ω) and K (x, t) ∈ C (Ω2), then ∃m > 0 , M > 0,
∀n ∈ N, ∀t ∈ Ω, ∃ε > 0⧸a ≤ t ≤ ε < T such as ∀x ∈ Ω, |g(x)| ≤ m,

∀ (x, t) ∈ Ω2, |K (x, t)| ≤ M, |An (t)| ≤
( ε

T

)n
.

hence.

Then we have :

φ (x) = g (x) + λ

∫ x

a

(∫ z

a

K (z, t)φp (t) dt

)
dz

and then the following Adomian agorithm :

 φ0 (x) = g (x)

φn+1 (x) = λ

∫ x

a

(∫ z

a

K (x, t)An (t) dt

)
dz;n ≥ 0

(6)
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Hence :

|φ0 (x)| = |g (x)| ≤ m

|φ1 (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a

K (x, t)A0 (t) dt

)
dz

∣∣∣∣ ≤ λM (x− a)2

2

|φ2 (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a

K (x, t)A1 (t) dt

)
dz

∣∣∣∣ ≤ λM
( ε

T

) (x− a)2

2
.
.
.

|φn (x)| = λ

∣∣∣∣∫ x

a

(∫ z

a

K (x, t)An−1 (t) dt

)
dz

∣∣∣∣ ≤ λM
( ε

T

)n−1 (x− a)2

2
;n ≥ 1

and therefore :

∑+∞

n=0
|φn (x)| ≤ m+ λM

(x− a)2

2

∑+∞

n=1

( ε

T

)n−1

= m+ λM
(x− a)2

2
(
1− ε

T

)
because

0 ≤ ε

T
< 1

thus the series

(∑+∞

n=0
φn (x)

)
converges absolutely and thus is convergent.

Suppose that the problem (p) admits two different solutions u and φ. For each of the
solutions u and φ, we have the following algorithms :



φ0 (x) = g (x)

φ1 (x) = λ

∫ x

a

(∫ z

a

K (z, t)φ0 (t) dt

)
dz

φ2 (x) = λ

∫ x

a

(∫ z

a

K (z, t)φ1 (t) dt

)
dz

...

φn (x) = λ

∫ x

a

(∫ z

a

K (z, t)φn−1 (t) dt

)
dz;n ≥ 1
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and 

u0 (x) = g (x)

u1 (x) = λ

∫ x

a

(∫ z

a

K (z, t)u0 (t) dt

)
dz

u2 (x) = λ

∫ x

a

(∫ z

a

K (z, t)u1 (t) dt

)
dz

...

un (x) = λ

∫ x

a

(∫ z

a

K (z, t)un−1 (t) dt

)
dz;n ≥ 1

Let us consider the difference w (x) = φ (x)−u (x). Let’s apply the Adomian algorithm
to w, we get :



w0 (x) = 0

w1 (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φ0 (t)− u0 (t)) dt

)
dz = 0

w2 (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φ1 (t)− u1 (t)) dt

)
dz = 0

...

wn (x) = λ

∫ x

a

(∫ z

a

K (z, t) (φn−1 (t)− un−1 (t)) dt

)
dz = 0 ;n ≥ 1

We get then ∀x ∈ Ω, w (x) = 0, from where ∀ ∈ Ω, φ(x) = u (x) which contradicts our
supposition, therefore ∀ ∈ Ω, φ(x) = u (x) consequently the solution of the problem
(p1) is unique ■

2.2.2 Convergence of the algoritm VIM

Consider the following integrodifferential problem :

(P ) :


dφ (x)

dx
= f (x) + λ

∫ x

a

K (x, t)φp (t) dt;λ > 0

φ (a) = β

We construct a correction functional

φn+1 (x) = φn (x) +

∫ x

0

λ (s)

(
φ′
n (s)− f (s)− λ

∫ s

0

K (s, t)φp (t) dt

)
ds

where is a restricted variation, which means δφ̃n = 0.
After identifying the multiplier, we have

φn+1 (x) = φn (x)−
∫ x

0

(
φ′
n (s)− f (s)− λ

∫ s

0

K (s, t)φp (t) dt

)
ds (7)
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If p = 1,then we have :

φn+1 (x) = φn (x)−
∫ x

0

(
φ′
n (s)− f (s)− λ

∫ s

0

K (s, t)φ (t) dt

)
ds

we get the VIM agorithm :

 φ0 (x) =

φn+1 (x) = φn (x)−
∫ x

0

(
φ′
n (s)− f (s)− λ

∫ s

0

K (s, t)φ (t) dt

)
ds

(8)

2.2.3 Study of the convergence of the algorithm

Theorem 3. if f ∈ C ([0, T ]) and K ∈ C (Ω) with Ω = [0, T ] × [0, T ] , the sequence
(φn (x)) converges to the solution φ (x) of the problem

dφ (x)

dx
= f (x) + λ

∫ x

0

K (x, t)φ (t) dt

φ(0) = β

Proof. By subtracting φ (x) from both sides of (8), the equation can be rewritten as :

φn+1 (x)− φ (x) = φn (x)− φ (x)−
∫ x

0

(
φ′
n (s)− f (s)− λ

∫ s

0
K (s, t)φ (t) dt

)
ds

= φn (x)− φ (x)−
∫ x

0
φ′
n (s)− φ′ (s)− f (s) + φ′ (s)−

λ

∫ s

0
K (s, t) (φn (t)− φ (t)) dt− λ

∫ s

0
K (s, t)φ (t) dtds

= φn (x)− φ (x)−
∫ x

0
(φ′

n (s)− φ′ (s)) ds−
∫ x

0
φ′ (s)− f (s) dt−

λ

∫ s

0
K (s, t) (φn (t)− φ (t))− λ

∫ s

0
K (s, t)φ (t) dtds

= φn (x)− φ (x)− (φn (x)− φ (x)− (φn (0)− φ (0)))

−
∫ x

0
φ′ (s)− f (s)−

λ

∫ s

0
K (s, t)φ (t) dt− λ

∫ s

0
K (s, t) (φn (t)− φ (t)) dtds

= −
∫ x

0

(
−λ

∫ s

0
K (s, t) (φn (t)− φ (t)) dt

)
ds

because φ′ (s)− f (s)− λ

∫ s

0

K (s, t)φ (t) dt = 0.
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by posing En (x) = φn (x)− φ (x), we have

En+1 (x) =

∫ x

0

(
λ

∫ s

0

K (s, t) (φn (t)− φ (t)) dt

)
ds

then

|En+1 (x)| = λ

∣∣∣∣∫ x

0

(∫ s

0

K (s, t)En (t) dt

)
ds

∣∣∣∣
We have K (x, t) ∈ C (Ω), then ∃M > 0 such as ∀ (x, t) ∈ Ω, |K (x, t)| ≤ M . So

|En+1 (x)| ≤ λM

∣∣∣∣∫ x

0

(∫ s

0

En (t) dt

)
ds

∣∣∣∣
≤ λM

∫ x

0

(∫ s

0

|En (t)| dt
)
ds

We have successively

|E1 (x)| ≤ λM

∫ x

0

(∫ s

0

|E0 (t)| dt
)
ds

≤ λM

∫ x

0

(
∥E0 (t)∥∞

∫ s

0

dt

)
ds

= λM

∫ x

0

(∥E0 (t)∥∞ s) ds = λM ∥E0 (t)∥∞
1

2
x2

|E2 (x)| ≤ (λM)2 ∥E0 (t)∥∞
∫ x

0

(∫ s

0

1

2
t2dt

)
ds = (λM)2 ∥E0 (t)∥∞

1

4!
x4

|E3 (x)| ≤ (λM)3 ∥E0 (t)∥∞
∫ x

0

(∫ s

0

1

24
t4dt

)
ds = (λM)3 ∥E0 (t)∥∞

1

6!
x6

...

|En (x)| ≤ (λM)n ∥E0 (t)∥∞
1

(2n)!
x2n

it exist K such as ∥E0 (t)∥∞ ≤ K. So

|En (x)| ≤ K (λM)n
1

(2n)!
x2n

The sequence
(
K (λM)n

1

(2n)!
x2n

)
converges uniformly to 0 and thus it follows that

|En (x)| → 0, which means (φn (x)) converges to φ (x) ■
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Theorem 4. if f ∈ C ([0, T ]) and K ∈ C (Ω) woth Ω = [0, T ] × [0, T ] , the sequence
(φn (x)) converges to the solution φ (x) of the problem

dφ (x)

dx
= f (x) + λ

∫ x

0

K (x, t)φp (t) dt

φ(0) = β

By subtracting φ (x) from both sides of (7), the equation can be rewritten as

φn+1 (x)− φ (x) = φn (x)− φ (x)−
∫ x

0

(
φ′
n (s)− f (s)− λ

∫ s

0
K (s, t)φp (t) dt

)
ds

= φn (x)− φ (x)−
∫ x

0

(
φ′
n (s)− φ′ (s)− f (s) + φ′ (s)

−λ

∫ s

0
K (s, t) (φp

n (t)− φp (t)) dt

−λ

∫ s

0
K (s, t)φp (t) dt

)
ds

= φn (x)− φ (x)−
∫ x

0

(
φ′
n (s)− φ′ (s)

)
ds−∫ x

0

(
φ′ (s)− f (s)− λ

∫ s

0
K (s, t) (φp

n (t)− φp (t)) dt

−λ

∫ s

0
K (s, t)φp (t) dt

)
ds

= φn (x)− φ (x)− (φn (x)− φ (x)− (φn (0)− φ (0)))

−
∫ x

0

(
φ′ (s)− f (s)− λ

∫ s

0
K (s, t)φp (t) dt

−λ

∫ s

0
K (s, t) (φp

n (t)− φp (t)) dt

)
ds

= −
∫ x

0

(
−λ

∫ s

0
K (s, t) (φp

n (t)− φp (t)) dt

)
ds

cause φ′ (s)− f (s)− λ

∫ s

0

K (s, t)φp (t) dt = 0 .

By posing En (x) = φn (x)− φ (x), we have

En+1 (x) =

∫ x

0

(
λ

∫ s

0

K (s, t) (φp
n (t)− φp (t)) dt

)
ds

then

|En+1 (x)| = λ

∣∣∣∣∫ x

0

(∫ s

0

K (s, t) (φp
n (t)− φp (t)) dt

)
ds

∣∣∣∣
≤ λM

∣∣∣∣∫ x

0

(∫ s

0

(φp
n (t)− φp (t)) dt

)
ds

∣∣∣∣
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φ being continuous on [0, T ], then φ is bounded and φk is too for any 2 ≤ k ≤ p. There
is therefore Qk such us

∣∣φk (x)
∣∣ ≤ Qk for all x ∈ [0, T ].

The same, it exists Mk such us
∣∣φk

n (x)
∣∣ ≤ Mk for all x ∈ [0, T ].

We have

φp
n (t)− φp (t) = (φn (t)− φ (t))

(
φp−1
n (t) + φp−2

n (t)φ (t) + · · ·+ φn (t)φ
p−2 (t) + φp−1 (t)

)
⇒ |φp

n (t)− φp (t)| = |φn (t)− φ (t)| ×∣∣φp−1
n (t) + φp−2

n (t)φ (t) + · · ·+ φn (t)φ
p−2 (t) + φp−1 (t)

∣∣
≤ |φn (t)− φ (t)| ×

(∣∣φp−1
n (t)

∣∣+ ∣∣φp−2
n (t)φ (t)

∣∣ + · · ·+∣∣φn (t)φ
p−2 (t)

∣∣+ ∣∣φp−1 (t)
∣∣)

Let Q = max
1≤k≤p

(
φp−k
n (t)φk−1 (t)

)
then

|φp
n (t)− φp (t)| ≤ pQ |φn (t)− φ (t)|

We have K (x, t) ∈ C (Ω), then ∃M > 0 such as ∀ (x, t) ∈ Ω, |K (x, t)| ≤ M .
therefore

|En+1 (x)| = λ

∣∣∣∣∫ x

0

(∫ s

0
K (s, t)En (t) dt

)
ds

∣∣∣∣
≤ λMpQ

∣∣∣∣∫ x

0

(∫ s

0
En (t) dt

)
ds

∣∣∣∣
≤ λMpQ

∫ x

0

(∫ s

0
|En (t)| dt

)
ds

Let A = λMpQ, we have successively

|E1 (x)| ≤ A

∫ x

0

(∫ s

0
|E0 (t)| dt

)
ds ≤ A

∫ x

0

(
∥E0 (t)∥∞

∫ s

0
dt

)
ds

= A

∫ x

0
(∥E0 (t)∥∞ s) ds = AE0 (t)∞

1

2
x2

|E2 (x)| ≤ (A)2 ∥E0 (t)∥∞
∫ x

0

(∫ s

0

1

2
t2dt

)
ds = (A)2 ∥E0 (t)∥∞

1

4!
x4

|E3 (x)| ≤ (A)3 ∥E0 (t)∥∞
∫ x

0

(∫ s

0

1

24
t4dt

)
ds = (A)3 ∥E0 (t)∥∞

1

6!
x6

...

|En (x)| ≤ (A)n ∥E0 (t)∥∞
1

(2n)!
x2n



Exact Analytical Solution of Some Volterra Second Kind ... 1087

It exists K such us ∥E0 (t)∥∞ ≤ K. So

|En (x)| ≤ K (A)n
1

(2n)!
x2n

The sequence
(
K (A)n

1

(2n)!
x2n

)
converges uniformly to 0 and thus it follows that

|En (x)| → 0, which means (φn (x)) converges to φ (x) ■

3. APPLICATIONS

3.0.1 Applications 1: algorithm ADM modified

Exemple 1 Let’s consider the following integrodifferential equation :

(h1) :


dφ (x)

dx
= ex − 1

6
ex (e2x − 1) +

1

3

∫ x

0

ex−tφ3 (t) dt

φ(0) = 1

we obtain the canonical Adomian form associated to the above problem (h1) :

φ (x) = φ (0)− 1

18
e3x +

7

6
ex − 10

9
+

1

3

∫ x

0

(∫ z

0

ez−tφ3 (t) dt

)
dz

or else :

φ (x) = ex − 1

18
e3x +

1

6
ex − 1

9
+

1

3

∫ x

0

(∫ z

0

ez−tφ3 (t) dt

)
dz

By using the modified Adomian algorithm :

φ0(x) = ex

φ1(x) = − 1
18
e3x + 1

6
ex − 1

9
+

1

3

∫ x

0

(∫ z

0

ez−tA0 (t) dt

)
dz

φ2(x) =
1

3

∫ x

0

(∫ z

0

ez−tA1 (t) dt

)
dz

φ3(x) =
1

3

∫ x

0

(∫ z

0

ez−tA2 (t) dt

)
dz

.

.

.

φn+1(x) =
1

3

∫ x

0

(∫ z

0

ez−tAn (t) dt

)
dz ; n ≥ 1
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Let’s calculate the Adomian polynomials A0 (x) , A1 (x) , A2 (x) , A3 (x) , ... and
solutions : φ0 (x) , φ1 (x) , φ2 (x) , φ3 (x) , ...



φ0(x) = ex ⇒ A0 (x) = φ3
0 (x)

φ1(x) = 0 ⇒ A1 (x) = 3φ1 (x)φ
2
0 (x) = 0

φ2(x) = 0 ⇒ A2 (x) = 3φ2
0 (x)φ2 (x) + 3φ0 (x)φ

2
1 (x) = 0

φ3(x) = 0 ⇒ A3 (x) = 3φ2
0 (x)φ3 (x) + 6φ0 (x)φ1 (x)φ2 (x) + φ3

1 (x) = 0

...

φn(x) = 0 ⇒ An (x) = 0, n ≥ 1

The exact solution of the problem (h1) is therefore :

φ (x) = φ0 (x) + φ1 (x) + φ2 (x) + ... = ex.

Exemple 2 Let’s consider the following problem (h2):

(h2) :


dφ(x)

dx
= 1− 2x− 1

90
x4 (2x2 − 6x+ 5) +

2

3

∫ x

0

(x− t)φ2 (t) dt

φ (0) = 0

Let’s determine the canonical form of Adomian, we get :

φ (x) = φ (0)− 1

315
x7 +

1

90
x6 − 1

90
x5 − x2 + x+

2

3

∫ x

0

(∫ z

0

(z − t)φ2 (t) dt

)
dz

or

φ (x) = −x2 + x− 1

315
x7 +

1

90
x6 − 1

90
x5 +

2

3

∫ x

0

(∫ z

0

(z − t)φ2 (t) dt

)
dz.

Using the modified Adomian algoritm, we obtain the following Algorithm :



φ0 (x) = x− x2

φ1 (x) = − 1

315
x7 +

1

90
x6 − 1

90
x5 +

2

3

∫ x

0

(∫ z

0

(z − t)A0 (t) dt

)
dz

φ2 (x) =
2

3

∫ x

0

(∫ z

0

(z − t)A1 (t) dt

)
dz

...

φn+1 (x) =
2

3

∫ x

0

(∫ z

0

(z − t)An (t) dt

)
dz ; n ≥ 1
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we obtain :

φ0 (x) = x− x2 ⇒ A0 (x) = φ2
0 (x) = (x− x2)

2

φ1 (x) = 0 ⇒ A1 (x) = 2φ1 (x)φ0 (x) = 0

φ2 (x) = 0 ⇒ A2 (x) = 2φ0 (x)φ2 (x) + φ2
i (x) = 0

φ3 (x) = 0 ⇒ A3 (x) = 2φ1 (x)φ2 (x) + 2φ0 (x)φ3 (x) = 0

...
φn (x) = 0 ⇒ An (x) = 0;n ≥ 1

The exact solution to the problem (h2) is :

φ (x) =
∑+∞

n=0
φn (x) = φ0 (x) + φ1 (x) + φ2 (x) + ... = φ0 (x) = x− x2.

3.0.2 Exemple 3

Let’s consider the following problem (h3) :

(h3) :


dφ (x)

dx
= − sinx− 1

5
x sinx+

2

5

∫ x

0

sin(x− t)φ(t)dt

φ (0) = 1

Let’s determine the canonical form of Adomian, we get :

φ (x) = 1−
∫ x

0

(
sin z +

1

5
z sin z

)
dz +

2

5

∫ x

0

(∫ z

0

sin(z − t)φ(t)dt

)
dz

or

φ (x) = cos x− 1

5
sinx+

1

5
x cosx+

2

5

∫ x

0

(∫ z

0

sin (z − t)φ (t) dt

)
dz.

Using the modified Adomian algoritm, we obtain the following Algorithm :



φ0 (x) = cos x

φ1 (x) = −1

5
sinx+ 1

5
x cosx+

2

5

∫ x

0

(∫ z

0

sin (z − t)φ0 (t) dt

)
dz = 0

φ2 (x) =
2

5

∫ x

0

(∫ z

0

sin (z − t)φ1 (t) dt

)
dz = 0

...

φn+1 (x) =
2

5

∫ x

0

(∫ z

0

(z − t)φn (t) dt

)
dz = 0 ; n ≥ 1
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The exact solution to the problem (h3) is :

φ (x) =
∑+∞

n=0
φn (x) = φ0 (x) + φ1 (x) + φ2 (x) + ... = φ0 (x) = cos x.

3.0.3 Exemple 4

Let’s consider the following nonlinear problem (h4) :

(h4) :


dφ (x)

dx
= cosx− 1

6
sinx+

1

12
sin 2x+

1

4

∫ x

0

cos(x− t)φ2(t)dt

φ (0) = 0

Let’s determine the canonical form of Adomian, we get :

φ (x) =
1

6
cosx+ sinx− 1

24
cos 2x− 1

8
+

1

4

∫ x

0

(∫ z

0

cos(z − t)φ2(t)dt

)
dz

Using the modified Adomian algoritm, we obtain the following Algorithm :



φ0 (x) = sinx

φ1 (x) =
1

6
cosx− 1

24
cos 2x− 1

8
+

1

4

∫ x

0

(∫ z

0

cos(z − t)A0(t)dt

)
dz

φ2 (x) =
1

4

∫ x

0

(∫ z

0

(z − t)A1 (t) dt

)
dz

...

φn+1 (x) =
1

4

∫ x

0

(∫ z

0

(z − t)An (t) dt

)
dz ; n ≥ 1

we obtain :



φ0 (x) = sinx ⇒ A0 (x) = φ2
0 (x) = sin2 x

φ1 (x) = 0 ⇒ A1 (x) = 2φ1 (x)φ0 (x) = 0

φ2 (x) = 0 ⇒ A2 (x) = 2φ0 (x)φ2 (x) + φ2
i (x) = 0

φ3 (x) = 0 ⇒ A3 (x) = 2φ1 (x)φ2 (x) + 2φ0 (x)φ3 (x) = 0

...
φn (x) = 0 ⇒ An (x) = 0;n ≥ 1

The exact solution to the problem (h4) is :

φ (x) =
∑+∞

n=0
φn (x) = φ0 (x) + φ1 (x) + φ2 (x) + ... = φ0 (x) = sinx.
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4. APPLICATIONS 2: VIM

Example 1 Let’s consider the following integrodifferential equation :

(h1) :


dφ (x)

dx
= ex − 1

6
ex (e2x − 1) +

1

3

∫ x

0

ex−tφ3 (t) dt

φ(0) = 1

The correction functional is:

φn+1 (x) = φn (x)+

∫ x

0

λ (s)

(
dφn (s)

ds
− es +

1

6
es
(
e2s − 1

)
− 1

3

∫ s

0

es−tφ3
n (t) dt

)
ds

After calculation, we find λ = −1. So we get the following variational iteration

formula: φn+1 (x) = φn (x)−
∫ x

0

(
dφn (s)

ds
− es + 1

6
es (e2s − 1)− 1

3

∫ s

0

es−tφ3
n (t) dt

)
ds

φ0 (x) = φ (0) = 1

And we obtain :



φ0 (x) = 1

φ1 (x) = φ0 (x)−
∫ x

0

(
φ′
0 (s)− es + 1

6e
s
(
e2s − 1

)
− 1

3

∫ s

0
es−tφ3

0 (t) dt

)
ds = ex

φ2 (x) = φ1 (x)−
∫ x

0

(
φ′
0 (s)− es + 1

6e
s
(
e2s − 1

)
− 1

3

∫ s

0
es−tφ3

1 (t) dt

)
ds = ex

. . .

φn (x) = φn−1 (x)−
∫ x

0

(
φ′
n−1 (s)− es + 1

6e
s
(
e2s − 1

)
− 1

3

∫ s

0
es−tφ3

n−1 (t) dt

)
ds = ex

The exact solution of the problem is φ (x) = lim
n→+∞

φn (x) = ex.

Example 2 Let’s consider the following problem (h2):

(h2) :


dφ(x)

dx
= 1− 2x− 1

90
x4 (2x2 − 6x+ 5) +

2

3

∫ x

0

(x− t)φ2 (t) dt

φ (0) = 0

The correction functional is:

φn+1 (x) = φn (x)

+

∫ x

0

λ (s)

(
dφn (s)

ds
− 1 + 2s+

1

90
s4
(
2s2 − 6s+ 5

)
− 2

3

∫ x

0

(s− t)φ2
n (t) dt

)
ds
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After calculation, we find λ = −1 and we have the algorithm: φn+1 = φn −
∫ x

0

(
dφn (s)

ds
− 1 + 2s+ 1

90
s4 (2s2 − 6s+ 5)− 2

3

∫ s

0

(s− t)φ2
n (t) dt

)
ds

φ0 (x) = φ (0) = 0

And we obtain :

φ0 (x) = 0

φ1 (x) = φ0 (x)−
∫ x

0

(
φ′
0 (s)− 1 + 2s+ 1

90s
4
(
2s2 − 6s+ 5

)
− 2

3

∫ s

0

(s− t)φ2
0 (t) dt

)
ds = x− x2

φ2 (x) = φ1 (x)−
∫ x

0

(
φ′
1 (s)− 1 + 2s+ 1

90s
4
(
2s2 − 6s+ 5

)
− 2

3

∫ s

0

(s− t)φ2
1 (t) dt

)
ds = x− x2

. . .

φn (x) = φn−1 (x)−
∫ x

0

(
φ′
n−1 (s)− 1 + 2s+ 1

90s
4
(
2s2 − 6s+ 5

)
− 2

3

∫ s

0

(s− t)φ2
n−1 (t) dt

)
ds = x− x2

The exact solution of the problem is φ (x) = lim
n→+∞

φn (x) = x− x2.

4.0.1 Example 3

Let’s consider the following problem (h3) :

(h3) :


dφ (x)

dx
= − sinx− 1

5
x sinx+

2

5

∫ x

0

sin(x− t)φ(t)dt

φ (0) = 1

The correction functional is:

φn+1 (x) = φn (x)+

∫ x

0

λ (s)

(
dφ(s)

ds
+ sin s+

1

5
s sin s− 2

5

∫ x

0

sin (s− t)φ (t) dt

)
ds

After calculation, we find λ = −1. So we get the following variational iteration
formula: φn+1 (x) = φn (x)−

∫ x

0

(
dφ(s)

ds
+ sin s+ 1

5
s sin s− 2

5

∫ x

0

sin (s− t)φ (t) dt

)
ds

φ0 (x)

The approximate solutions φn (x) are obtained iteratively by substituting φ0 (x) = cos x

which satisfies the initial condition.



Exact Analytical Solution of Some Volterra Second Kind ... 1093

Some approximate solutions are listed below,

φ0 (x) = cosx

φ1 (x) = φ0 (x)−
∫ x

0

(
φ′
0 (s) + sin s+ 1

5s sin s−
2

5

∫ x

0

sin (s− t)φ0 (t) dt

)
ds = cosx

φ2 (x) = φ1 (x)−
∫ x

0

(
φ′
1 (s) + sin s+ 1

5s sin s−
2

5

∫ x

0

sin (s− t)φ1 (t) dt

)
ds = cosx

. . .

φn (x) = φn−1 (x)−
∫ x

0

(
φ′
n−1 (s) + sin s+ 1

5s sin s−
2

5

∫ x

0

sin (s− t)φn−1 (t) dt

)
ds = cosx

The exact solution of the problem is φ (x) = lim
n→+∞

φn (x) = cos x.

4.0.2 Example 4

Let’s consider the following nonlinear problem (h4) :

(h4) :


dφ (x)

dx
= cosx− 1

6
sinx+

1

12
sin 2x+

1

4

∫ x

0
cos(x− t)φ2(t)dt

φ (0) = 0

The correction functional is:

φn+1 (x) = φn (x) +

∫ x

0

λ (s)

(
dφ(s)

ds
− cos s+

1

6
sin s− 1

12
sin 2s− 1

4

∫ s

0

cos(x− t)φ2
n(t)dt

)
ds

After calculation, we find λ = −1. So we get the following variational iteration

formula: φn+1 (x) = φn (x)−
∫ x

0

(
dφ(s)

ds
− cos s+

1

6
sin s− 1

12
sin 2s− 1

4

∫ s

0

cos(s− t)φ2
n(t)dt

)
ds

φ0 (x)

The approximate solutions φn (x) are obtained iteratively by substituting φ0 (x) =

sinx which satisfies the initial condition.

Some approximate solutions are listed below,

φ0 (x) = sinx

φ1 (x) = φ0 (x)−
∫ x

0

(
φ′
0 (s)− cos s+

1

6
sin s− 1

12
sin 2s− 1

4

∫ s

0

cos(s− t)φ2
0(t)dt

)
ds = sinx

φ2 (x) = φ1 (x)−
∫ x

0

(
φ′
1 (s)− cos s+

1

6
sin s− 1

12
sin 2s− 1

4

∫ s

0

cos(s− t)φ2
1(t)dt

)
ds = sinx

. . .

φn (x) = φn−1 (x)−
∫ x

0

(
φ′
n−1 (s)− cos s+

1

6
sin s− 1

12
sin 2s− 1

4

∫ s

0

cos(s− t)φ2
n−1(t)dt

)
ds = sinx

The exact solution of the problem is φ (x) = lim
n→+∞

φn (x) = sin x.
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5. SUMMARY SYNTHESIS



Equation


dφ (x)

dx
= f (x) + λ

∫ x

a
K (x, t)φ (t) dt;λ > 0

φ (a) = β

Equation (h3) :


dφ (x)

dx
= − sinx− 1

5x sinx+
2

5

∫ x

0
sin(x− t)φ(t)dt

φ (0) = 1

solution

{
by VIM: φ(x) = cosx

by ADM: φ(x) = cosx



Equation


dφ (x)

dx
= f (x) + λ

∫ x

a
K (x, t)φp (t) dt;λ > 0

φ (a) = β

Equation (h1) :


dφ (x)

dx
= ex − 1

6
ex
(
e2x − 1

)
+

1

3

∫ x

0
ex−tφ3 (t) dt

φ(0) = 1

Solution

{
by VIM: φ(x) = ex

by ADM: φ(x) = ex

Equaion (h2) :


dφ(x)

dx
= 1− 2x− 1

90
x4
(
2x2 − 6x+ 5

)
+

2

3

∫ x

0
(x− t)φ2 (t) dt

φ (0) = 0

Solution

{
by VIM: φ(x) = x− x2

by ADM: φ(x) = x− x2

Equation (h4) :


dφ (x)

dx
= cosx− 1

6
sinx+

1

12
sin 2x+

1

4

∫ x

0
cos(x− t)φ2(t)dt

φ (0) = 0

solution

{
by VIM: φ(x) = sinx

by ADM: φ(x) = sinx

In all these applications, the same solutions are obtained by both the modified ADM
and the VIM method.

5.1. Conclusion
In this paper, we have successfully solved some linear and nonlinear integrodifferential
equations. To do so, we first performed a convergence study of the VIM and ADM
algorithms and then showed the uniqueness of the solution of this type of problem.
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