

Singularities of Algebraic Curve $f(y) = \lambda f(x)$ and Invariants Associated with Each Singular Point Over Finite Field

Haleemah Ghazwani

Department of Mathematics, Science College, Jazan university, Saudi Arabia.

Abstract

Let $K = F_q$ be a finite field of order q , (q is a power of a prime p), and \mathcal{K} be an algebraically closed field extension of K . Let $f(t)$ be a monic polynomial of degree n in $\mathcal{K}[t]$. In this paper, we give an algorithm to identify the singularities of the projective curve of the affine curve $H_\lambda; f(y) - \lambda f(x) = 0$ for which $\lambda \neq 0$ in K . The curve H_λ is a general form of the Holm Curve was introduced by ALEANDAR HOLM [6]. As result, we determine types and multiplicities of the singular points, and calculate Milnor number associated with each singularity.

Keywords: Algebraic Curve, Singular Points, Finite Field.

INTRODUCTION

Consider the Holm Curve

$$by(y^2 - 1) = ax(x^2 - 1)$$

was introduced by ALEXANDER HOLM [6], where $a, b \in K$, $ab \neq 0, a \neq \pm b$. If we put $\lambda = \frac{a}{b}$, the Holm's curve becomes

$$y(y^2 - 1) = \lambda x(x^2 - 1)$$

$$y^3 - y = \lambda(x^3 - x)$$

where $\lambda \neq 0, \pm 1$. Suppose $f(t) = t^3 - t$, then we can write Holm's Curve as follow;

$$f(y) - \lambda f(x) = 0 \text{ of degree 3.}$$

Let \mathcal{K} be an algebraically closed field. Our goal to study the singularities of the curve $H_\lambda: f(y) - \lambda f(x) = 0$ for $\lambda \in \mathcal{K}^*$, and other topics related to for $f(t) \in \mathcal{K}[t]$, a monic polynomail of degree $n \geq 2$. The projective plane model for H_λ is given by

$$\mathcal{H}_\lambda: z^n \left[f\left(\frac{y}{z}\right) - \lambda f\left(\frac{x}{z}\right) \right] \in \mathcal{K}[x, y, z]$$

then $F(x, y, z) = z^n \left[f\left(\frac{y}{z}\right) - \lambda f\left(\frac{x}{z}\right) \right]$ is a homogeneous polynomial of degree n . The singularities of both projective curve \mathcal{H}_λ and affine curve H_λ are given respectively as follow:

$$\mathcal{H}_\lambda = \{(x; y; z) \in \mathcal{K}^3 : F(x, y, z) = 0\}$$

$$H_\lambda = \{(x; y; 1) \in \mathcal{K}^3 : F(x, y, 1) = 0\}$$

1 SINGULAR POINTS

Theorem 1.1 *Let H_λ be the projective plane model of the affine curve H_λ . Then, H_λ has no singularity at infinity.*

Proof. Let $f(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$ of degree $n \geq 2$ where $a_{n-1}, a_{n-2}, \dots, a_1, a_0 \in \mathcal{K}$, and let $\lambda \in \mathcal{K}^*$. The curve \mathcal{H}_λ is defined by the equation

$$F(x, y, z) = z^n f\left(\frac{y}{z}\right) - \lambda z^n f\left(\frac{x}{z}\right) = 0$$

The partial derivatives F_x , F_y , F_z are given by

$$F_x = -\lambda z^{n-1} f'\left(\frac{x}{z}\right)$$

$$F_y = z^{n-1} f'\left(\frac{y}{z}\right)$$

$$F_z = nz^{n-1} \left[f\left(\frac{y}{z}\right) - \lambda f\left(\frac{x}{z}\right) \right] + z^n \left[-\frac{y}{z^2} f'\left(\frac{y}{z}\right) + \lambda \frac{x}{z^2} f'\left(\frac{x}{z}\right) \right]$$

Using the explicit expression for $f(t)$ we find

$$F_x = -\lambda [nx^{n-1} + (n-1)a_{n-1}zx^{n-2} + \dots + 2a_2z^{n-2}x + a_1z^{n-1}]$$

$$F_y = ny^{n-1} + (n-1)a_{n-1}zy^{n-1} + \dots + 2a_2z^{n-2}y + a_1z^{n-1}$$

$$F_z = a_{n-1}y^{n-1} + 2a_{n-2}zy^{n-2} + \dots + (n-1)z^{n-2}y + na_0z^{n-1}$$

$$\lambda [a_{n-1}x^{n-1} + 2a_{n-2}zx^{n-2} + \dots + (n-1)z^{n-2}x + na_0z^{n-1}]$$

to find the singularities of the curve \mathcal{H}_λ we solve the system

$$F = F_x = F_y = F_z = 0$$

to study the singularity at infinity, we put $z = 0$ and the system becomes

$$x = y = z = 0$$

but the point $(0; 0; 0)$ does not exist in the projective plane \mathbb{P}^2 hence, \mathcal{H}_λ has no singularity at infinity. Next, for $\lambda \in \mathcal{K}^*$ we study affine singularity for the curve \mathcal{H}_λ . For this purpose, we let $z = 1$ and consider the curve H_λ using the polynomial

$$F(x, y, 1) = f(y) - \lambda f(x)$$

as an abuse of notation, we write

$$F(x, y) = f(y) - \lambda f(x)$$

the singular points on H_λ are obtained by solving the system

$$\begin{aligned} f'(x) &= 0 \\ f'(y) &= 0 \\ f(y) - \lambda f(x) &= 0 \end{aligned}$$

Let S_λ be the set of singular points on the affine curve H_λ . Since there is no singularity at infinity, S_λ is the set of singular points on \mathcal{H}_λ . Let R denote the set of roots of $f(t)$ and R' that of $f'(t)$. Let

$$T = (R \cap R') \times (R \cap R')$$

and let

$$T_\lambda = \left\{ (\alpha, \beta) \in (R' - R) \times (R' - R) : \frac{f(\beta)}{f(\alpha)} = \lambda \right\}$$

Then we have the following theorem;

Theorem 1.2 For every $\lambda \in \mathcal{K}^*$, $S_\lambda = T_\lambda \cup T$

Proof. Let $\lambda \in \mathcal{K}^*$ and let $(\alpha, \beta) \in T$ then

$$\begin{aligned} f'(\alpha) &= 0 \\ f'(\beta) &= 0 \\ f(\beta) - \lambda f(\alpha) &= 0 \end{aligned}$$

therefore $(\alpha, \beta) \in S_\lambda$ hence $T \subset S_\lambda$. Let $(\alpha, \beta) \in T_\lambda$ then

$$\begin{aligned} f'(\alpha) &= 0 \\ f'(\beta) &= 0 \\ f(\alpha) &\neq 0 \\ f(\beta) &\neq 0 \end{aligned}$$

$$f(\beta) = \lambda f(\alpha)$$

therefore $(\alpha, \beta) \in S_\lambda$ hence $T_\lambda \subset S_\lambda$. Conversely, suppose $(\alpha, \beta) \in S_\lambda$ then

$$f'(\alpha) = 0$$

$$f'(\beta) = 0$$

$$f(\beta) = \lambda f(\alpha)$$

If $f(\alpha) = f(\beta) = 0$, then $(\alpha, \beta) \in T$ and if $f(\alpha) \neq 0$ and $f(\beta) \neq 0$ then, $(\alpha, \beta) \in T_\lambda$. Hence $S_\lambda \subset T_\lambda \cup T$. Explicitly, Theorem 1.2. says that if α, β are common roots of $f(t)$ and $f'(t)$ then (α, β) and (β, α) are singular points on H_λ for any $\lambda \in \mathcal{K}^*$. Moreover, if α, β are roots of $f'(t)$ but not roots of $f(t)$ then (α, β) is a singular point on H_λ for $\lambda = \frac{f(\beta)}{f(\alpha)}$. Every singular point on H_λ is obtained in this fashion.

Theorem 1.3 *Let D be the discriminant of $f(t)$*

1. *If $D = 0$, then for every $\lambda \in K^*$, H_λ is a singular curve*
2. *If $D \neq 0$ and $\lambda \notin \left\{ \frac{f(\beta)}{f(\alpha)} : \alpha, \beta \in R' \right\}$ then H_λ is a non-singular curve*

Proof.

1. If $D = 0$ then $T \neq \emptyset$. Let $\alpha, \beta \in T$ ($\alpha = \beta$ is allowed), then for any $\lambda \in \mathcal{K}^*$

$$f'(\alpha) = 0$$

$$f'(\beta) = 0$$

$$f(\beta) = \lambda f(\alpha) = 0$$

hence $(\alpha, \beta) \in S_\lambda$ and H_λ is a singular curve.

2. If $D \neq 0$ then $T = \emptyset$. Suppose $\lambda \notin \left\{ \frac{f(\beta)}{f(\alpha)} : \alpha, \beta \in R' \right\}$. If (α, β) were a singular point on H_λ then $\alpha, \beta \in R'$ and $\frac{f(\beta)}{f(\alpha)} = \lambda$ which is a contradiction, hence H_λ is non-singular.

Example 1 *Let $f(t) = t^3 + at + b$, where $a, b \in \mathcal{K}^*$, an algebraically closed field and let $\lambda \in \mathcal{K}^*$. Consider the projective curve*

$$\mathcal{H}_\lambda: y^3 + ayz^2 + bz^3 = \lambda(x^3 + axz^2 + bz^3)$$

Let $F = y^3 + ayz^2 + bz^3 - \lambda(x^3 + axz^2 + bz^3)$, then the curve \mathcal{H}_λ is defined in \mathbb{P}^2 , by

$$F(x, y, z) = 0$$

by Theorem 1.1 \mathcal{H}_λ has no singularity at infinity. let H_λ be the affine curve whose projective plane is \mathcal{H}_λ . The singularities will be on the curve H_λ .

$$f'(t) = 3t^2 + a$$

the set R' of roots of $f'(t)$ is

$$R' = \left\{ \pm \sqrt{\frac{-a}{3}} \right\}$$

Let

$$D = -4a^3 - 27b^2$$

be the discriminant of $f(t)$.

1.

Case 1 $D = 0$:

$$f\left(\sqrt{\frac{-a}{3}}\right) = \left(\sqrt{\frac{-a}{3}}\right)^3 + a\sqrt{\frac{-a}{3}} + b = b - \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}} = b - \frac{2\sqrt{3}}{9}\left(\frac{27}{4}b^2\right)^{1/2} = 0$$

$$\begin{aligned} f\left(-\sqrt{\frac{-a}{3}}\right) &= \left(-\sqrt{\frac{-a}{3}}\right)^3 + a\left(-\sqrt{\frac{-a}{3}}\right) + b = b + \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}} \\ &= b + \frac{2\sqrt{3}}{9}\left(\frac{27}{4}b^2\right)^{1/2} = 2b \neq 0 \end{aligned}$$

Therefore,

$$R' \cap R = \left\{ \sqrt{\frac{-a}{3}} \right\}$$

$$T = \left\{ \left(\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right) \right\}$$

Next,

$$T_\lambda = \emptyset, \text{ if } \lambda \neq 1$$

$$T_1 = \left\{ \left(-\sqrt{\frac{-a}{3}}, -\sqrt{\frac{-a}{3}} \right) \right\}$$

we conclude, in this case that

$$S_\lambda = \left\{ \left(\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right) \right\}, \quad \text{if } \lambda \neq 1$$

$$S_1 = \left\{ \left(\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right), \left(-\sqrt{\frac{-a}{3}}, -\sqrt{\frac{-a}{3}} \right) \right\}$$

Case 2 $D \neq 0$, with $ab \neq 0$, In this case

$$T = \emptyset$$

Let

$$\lambda_1 = \frac{b - \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}}}{b + \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}}} = \frac{f\left(\sqrt{\frac{-a}{3}}\right)}{f\left(-\sqrt{\frac{-a}{3}}\right)} \neq 0$$

$$\lambda_2 = \frac{b + \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}}}{b - \frac{2}{9}\sqrt{3}(-a)^{\frac{3}{2}}} = \frac{f\left(-\sqrt{\frac{-a}{3}}\right)}{f\left(\sqrt{\frac{-a}{3}}\right)} = \frac{1}{\lambda_1} \neq 0$$

since $ab \neq 0, \lambda_1 \neq \lambda_2$ Then, we can conclude that

$$S_{\lambda_1} = T_{\lambda_1} = \left\{ \left(-\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right) \right\}$$

$$S_{\lambda_2} = T_{\lambda_2} = \left\{ \left(\sqrt{\frac{-a}{3}}, -\sqrt{\frac{-a}{3}} \right) \right\}$$

$$S_\lambda = \emptyset \text{ if } \lambda \neq \lambda_1, \lambda_2$$

Case 3 $D \neq 0, a = 0$

$$f(t) = t^3 + b, \quad b \neq 0$$

$$f'(t) = 0$$

$$R' = \{0\}$$

In this case

$$T = \emptyset$$

$$S_1 = T_1 = \{(0,0)\}$$

$$S_\lambda = \emptyset, \quad \text{if } \lambda \neq 1$$

Case 4 $D \neq 0, b = 0$

$$f(t) = t^3 + at, a \neq 0$$

$$f'(t) = 3t^2 + a$$

$$R = \{0, \pm\sqrt{-a}\}$$

$$R' = \left\{ \pm \sqrt{\frac{-a}{3}} \right\}$$

in this case

$$T = \emptyset$$

$$S_1 = T_1 = \left\{ \left(\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right), \left(-\sqrt{\frac{-a}{3}}, -\sqrt{\frac{-a}{3}} \right) \right\}$$

$$S_{-1} = T_{-1} = \left\{ \left(\sqrt{\frac{-a}{3}}, -\sqrt{\frac{-a}{3}} \right), \left(-\sqrt{\frac{-a}{3}}, \sqrt{\frac{-a}{3}} \right) \right\}$$

$$S_\lambda = \emptyset, \text{ if } \lambda \neq \pm 1$$

2 TYPES OF SINGULARITIES

The singular points that are under study are all affine points on H_λ . Let the equation of the curve be given by

$$F(x, y) = f(y) - \lambda f(x) = 0$$

Proposition 2.1 *Let (α, β) be a singular point on the curve H_λ , then*

1. *If $F_{xx}(\alpha) \cdot F_{yy}(\beta) \neq 0$. then the singular point (α, β) is a node.*
2. *If one of $F_{xx}(\alpha), F_{yy}(\beta)$ is zero. then (α, β) is a cusp.*
3. *If both $F_{xx}(\alpha), F_{yy}(\beta)$ are zero, then (α, β) is a triple point.*

Proof. Assume (α, β) is a singular point on the curve

$$F(\alpha, \beta) = F_x(\alpha, \beta) = F_y(\alpha, \beta) = 0$$

Explicitly, in terms of $f(t)$

$$f'(\alpha) = 0$$

$$f'(\beta) = 0$$

$$f(\beta) - \lambda f(\alpha) = 0$$

Because the mixed derivatives are all zeros, the Taylor expansion of $F(x, y)$ at (α, β) is given by

$$F(x, y) = \frac{1}{2!}(-\lambda F_{xx}(\alpha)(x - \alpha)^2 + F_{yy}(\beta)(y - \beta)^2) + \frac{1}{3!}(-\lambda F_{xxx}(\alpha)(x - \alpha)^3 + F_{yyy}(\beta)(y - \beta)^3) + \dots$$

we move the singular point (α, β) to the origin using the following substitutions

$$x = \alpha + X \quad y = \beta + Y$$

F will be replaced by G such that $G(X, Y) = F(\alpha + X, \beta + Y)$, then the Taylor series for G is

$$G(X, Y) = \frac{1}{2!}(-\lambda F_{xx}(\alpha)X^2 + F_{yy}(\beta)Y^2) + \frac{1}{3!}(-\lambda F_{xxx}(\alpha)X^3 + F_{yyy}(\beta)Y^3) + \dots$$

1. If $F_{xx}(\alpha) \cdot F_{yy}(\beta) \neq 0$, then the tangents $Y = \pm \sqrt{\frac{\lambda F_{xx}(\alpha)}{F_{yy}(\beta)}} X$ are distinct and, hence, the singular point $(0,0)$ is a node, thus (α, β) is a node.
2. If one of $F_{xx}(\alpha), F_{yy}(\beta)$ is zero, then $(0,0)$ is a cusp and has the tangent $X = 0$ if $F_{yy}(\beta) = 0$, or $Y = 0$ if $F_{xx}(\alpha) = 0$. thus (α, β) is a cusp.
3. If both $F_{xx}(\alpha), F_{yy}(\beta)$ are zero, then $(0,0)$ is a triple point, thus (α, β) is a triple point. In terms of the polynomial $f(t)$ itself we have the following:

Corollary 2.1 *Let (α, β) be a singular point*

1. If $f''(\alpha)f''(\beta) \neq 0$ then (α, β) is a node
2. If one of $f''(\alpha), f''(\beta)$ is zero, then (α, β) is a cusp
3. If $f''(\alpha), f''(\beta)$ are both zero, then (α, β) is a triple point

3 THE MULTIPLICITIES OF THE SINGULAR POINTS

Let (α, β) be a singular point. Moving the singularity to the origin and using the variables x, y , as a change of notation, give

$$G(x, y) = F(\alpha + x, \beta + y) = f(\beta + y) - \lambda f(\alpha + x)$$

$$G(0,0) = f(\beta) - \lambda f(\alpha) = 0$$

$$G_x = -\lambda f'(\alpha + x)$$

$$G_x(0,0) = f'(\alpha) = 0$$

$$G_y = f'(\alpha + y)$$

$$G_y(0,0) = f'(\beta) = 0$$

The Taylor series in terms of the polynomial $f(t)$ is given by

$$G(x, y) = \frac{1}{2!}(-\lambda f''(\alpha)x^2 + f''(\beta)y^2) + \frac{1}{3!}(-\lambda f'''(\alpha)x^3 + f'''(\beta)y^3) + \dots + \frac{1}{n!}(-\lambda f^{(n)}(\alpha)x^n + f^{(n)}(\beta)y^n)$$

which we write as

$$G = \sum_{i=2}^n G_i$$

where G_i is the form of degree i

$$G_i = \frac{1}{i!}(-\lambda f^{(i)}(\alpha)xi + f^{(i)}(\beta)y^i), \quad i = 2, 3, \dots, n$$

Let

$$m_{(0,0)} = \inf\{i: G_i \neq 0\}$$

then $m_{(0,0)}$ is the multiplicity of $(0,0)$ on $G = 0$. Let $m_{(\alpha,\beta)}(F)$ be the multiplicity of (α, β) on the curve $F(x, y) = 0$, then

$$m_{(\alpha,\beta)}(F) = m_{(0,0)}$$

From Theorem 2.2 we have

$$S_\lambda = T_\lambda \cup T$$

For $(\alpha, \beta) \in T$ we have

$$f(\alpha) = f(\beta) = 0$$

$$f'(\alpha) = f'(\beta) = 0$$

Let k_α and k_β be non-negative integers, $0 \leq k_\alpha, k_\beta \leq n$, defined by

$$f^{(k_\alpha)}(\alpha) \neq 0 \text{ and } f^{(j)}(\alpha) = 0 \text{ for } 0 \leq j \leq k_\alpha - 1$$

$$f^{(k_\beta)}(\beta) \neq 0 \text{ and } f^{(j)}(\beta) = 0 \text{ for } 0 \leq j \leq k_\beta - 1$$

Then

$$k_\alpha \geq 2$$

$$k_\beta \geq 2$$

For $(\alpha, \beta) \in T_\lambda$ we have

$$f(\alpha) \neq 0$$

$$\begin{aligned}f(\beta) &\neq 0 \\f(\beta) - \lambda f(\alpha) &= 0 \\f'(\alpha) = f'(\beta) &= 0\end{aligned}$$

Let l_α and l_β be positive integers, $1 \leq l_\alpha, l_\beta \leq n$ defined by

$$\begin{aligned}f^{(l_\alpha)}(\alpha) &\neq 0 \text{ and } f^{(j)}(\alpha) = 0 \text{ for } 1 \leq j \leq l_\alpha - 1 \\f^{(l_\beta)}(\beta) &\neq 0 \text{ and } f^{(j)}(\beta) = 0 \text{ for } 1 \leq j \leq l_\beta - 1\end{aligned}$$

Then,

$$\begin{aligned}l_\alpha &\geq 1 \\l_\beta &\geq 1\end{aligned}$$

Theorem 3.1 Let $(\alpha, \beta) \in S_\lambda$ be a singular point with multiplicity $m_{(\alpha, \beta)}$. Assume $\text{char}(\mathcal{K}) = 0$ or $\text{char}(\mathcal{K}) > m$

1. If $(\alpha, \beta) \in T$ then, $m_{(\alpha, \beta)}(F) = \min(k_\alpha, k_\beta)$
2. If $(\alpha, \beta) \in T_\lambda$ then, $m_{(\alpha, \beta)}(F) = \min(l_\alpha, l_\beta)$

Proof. The power series expansion at the origin for $G(x, y)$ is

$$G(x, y) = \frac{1}{2}(-\lambda f''(\alpha)x^2 + f''(\beta)y^2) + \text{HOT}$$

where *HOT* stands for "higher order terms". In the case $\text{char}(\mathcal{K}) > m_{(\alpha, \beta)}$, division by any $j \leq m_{(\alpha, \beta)}$ is defined.

1. Suppose $0 \leq k_\alpha \leq k_\beta$. From the definition of k_α we find

$$G(x, y) = \frac{1}{k_\alpha!}(-\lambda f^{(k_\alpha)}(\alpha)x^{k_\alpha} + f^{(k_\alpha)}(\beta)y^{k_\alpha}) + \text{HOT}$$

with $f^{(k_\alpha)}(\alpha) \neq 0$, hence the multiplicity of $(0,0)$ is

$$m_{(0,0)} = k_\alpha$$

hence $m_{(\alpha, \beta)}(F) = k_\alpha$

2. The case of $k_\beta \leq k_\alpha$ is handled similarly and we conclude that

$$m_{(\alpha, \beta)}(F) = \min(k_\alpha, k_\beta)$$

is proved in a similar fashion.

4 MILNOR NUMBER

The critical points of $F(x, y)$ are the points where both F_x and F_y vanish, hence the set of critical points is $R' \times R'$. We note that the set of singular points is

$$S_\lambda = T \cup T_\lambda = \{(\alpha, \beta) \in R' \times R' : F(\alpha, \beta) = 0\} \subset R' \times R'$$

F has an isolated critical point at (α, β) if (α, β) is isolated point of $R' \times R'$. We say also (α, β) is an isolated singularity of F if (α, β) is isolated of point of S_λ . We fix $(\alpha, \beta) \in S_\lambda$, a singular point. We assume again that $\text{char}(\mathcal{K}) = 0$ or $\text{char}(\mathcal{K}) > m_{(\alpha, \beta)}(F)$. Moving (α, β) to the origin, as before, we obtain the polynomial

$$G(x, y) = \frac{1}{2}(-\lambda f''(\alpha)x^2 + f''(\beta)y^2) + \text{HOT}$$

The following Proposition is clear;

Proposition 4.1 *Let \mathfrak{M} be the maximal ideal in $\mathcal{K}[[x, y]]$ then $G(x, y) \in \mathfrak{M}^2$*

Proof. We introduce the Jacobian ideal ([...])

$$J(G) = \langle G_x, G_y \rangle = \langle -\lambda f'(\alpha + x), f'(\beta + y) \rangle = \langle f'(\alpha + x), f'(\beta + y) \rangle$$

which is the ideal in $\mathcal{K}[[x, y]]$ generated by the partials. F has an isolated critical point at (α, β) . if the Milnor algebra is

$$\mathcal{K}[[x, y]]/J(G) = \mathcal{K}[[x, y]]/\langle G_x, G_y \rangle = \mathcal{K}[[x, y]]/\langle f'(\alpha + x), f'(\beta + y) \rangle$$

We also introduce the Tjurina ideal

$$T(G) = \langle G, G_x, G_y \rangle$$

which is the ideal in $\mathcal{K}[[x, y]]$ generated by G and the partials. We have

$$J(G) \subset T(G)$$

The Tjurina algebra is

$$\begin{aligned} \mathcal{K}[[x, y]]/T(G) &= \mathcal{K}[[x, y]]/\langle G, G_x, G_y \rangle \\ &= \mathcal{K}[[x, y]]/\langle f(\beta + y) - \lambda f(\alpha + x), f'(\alpha + x), f'(\beta + y) \rangle \end{aligned}$$

Let

$$\mu(G) = \dim_{\mathcal{K}}(\mathcal{K}[[x, y]]/J(G))$$

$$\tau(G) = \dim_{\mathcal{K}}(\mathcal{K}[[x, y]]/T(G))$$

$\mu(G)$ is called the *Milnor number* of F at the singular point $(0,0)$. We define the *Milnor number* of (α, β) to be $\mu(G)$ also. $\tau(G)$ is the *Tjurina number* of F at the singular point $(0,0)$. We define the *Tjurina number* of (α, β) to be $\tau(G)$ also. Since $J(G) \subset T(G)$

$$\tau(G) \leq \mu(G)$$

we now calculate the Milnor number of $(\alpha, \beta) \in S_\lambda = T \cup T_\lambda$

Theorem 4.1 *Let $(\alpha, \beta) \in S_\lambda$ be a singular point, assume $\text{char}(\mathcal{K}) = 0$ or $\text{char}(\mathcal{K}) > m_{(\alpha, \beta)}(F)$*

1. If $(\alpha, \beta) \in T$, then $\mu(G) = (k_\alpha - 1)(k_\beta - 1)$
2. If $(\alpha, \beta) \in T_\lambda$, then $\mu(G) = (l_\alpha - 1)(l_\beta - 1)$

Proof.

1. Suppose $(\alpha, \beta) \in T$ then, the Milnor number

$$\mu(G) = \dim_{\mathcal{K}}(\mathcal{K}[[x, y]]/J(G)) = \dim_{\mathcal{K}}(\mathcal{K}[[x, y]]/\langle G_x, G_y \rangle) = I(G_x, G_y)$$

where $I(G_x, G_y)$ is the *intersection number* of G_x and G_y at $(0,0)$ (see [Fulton]). With the notation in the proof of Theorem 3.1

$$\begin{aligned} G(x, y) &= \frac{1}{k_\alpha!} (-\lambda f^{(k_\alpha)}(\alpha) x^{k_\alpha} + f^{(k_\alpha)}(\beta) y^{k_\alpha}) + \text{HOT} \\ G_x &= \frac{-\lambda}{(k_\alpha-1)!} f^{(k_\alpha)}(\alpha) x^{k_\alpha-1} + \text{HOTinx} \\ G_y &= \frac{1}{(k_\beta-1)!} f^{(k_\beta)}(\beta) y^{k_\beta-1} + \text{HOTiny} \end{aligned}$$

The multiplicity of $(0,0)$ on G_x is $(k_\alpha - 1)$ and the tangent line there is $x = 0$ with multiplicity $(k_\alpha - 1)$. The multiplicity of $(0,0)$ on G_y is $(k_\beta - 1)$ and the tangent line there is $y = 0$ with multiplicity $(k_\beta - 1)$. Since G_x and G_y have no common tangent at $(0,0)$, it follows that

$$I(G_x, G_y) = (k_\alpha - 1)(k_\beta - 1)$$

and therefore the Milnor number at (α, β) is $\mu(G) = (k_\alpha - 1)(k_\beta - 1)$

2. Suppose $(\alpha, \beta) \in T_\lambda$ then a similar argument gives

$$\mu(G) = (l_\alpha - 1)(l_\beta - 1)$$

The following corollary is immediate

Corollary 4.1

1. $\tau(G) < \infty$
2. G has an isolated singularity at $(0,0)$ hence F has an isolated singularity at (α, β) ([Hefez-Rodrigues-Salomao])

Proof. We have defined the Milnor number of an isolated singularity of F , now the total Milnor number of F is given as follow

$$\dim_{\mathcal{K}} (\mathcal{K}[[x, y]]/J(G)) =_{(\alpha, \beta) \in R' \times R'} \mu(G, (\alpha, \beta))$$

similarly, the total *Tjurina number of* F :

$$\dim_{\mathcal{K}} \mathcal{K}[[x, y]]/T(G) =_{(\alpha, \beta) \in S_\lambda} \tau(G, (\alpha, \beta))$$

For $(\alpha, \beta) \in R' \times R'$, let h_α and h_β be positive integers defined by

$$f^{(i)}(\alpha) = 0, \quad 1 \leq i \leq h_\alpha - 1 \text{ and } f^{(h_\alpha)}(\alpha) \neq 0$$

$$f^{(i)}(\beta) = 0, \quad 1 \leq i \leq h_\beta - 1 \text{ and } f^{(h_\beta)}(\beta) \neq 0$$

As a consequence of Bezout's theorem, we have

Theorem 4.2 Assume $\text{char}(\mathcal{K}) > \max\{h_\alpha, h_\beta : (\alpha, \beta) \in R' \times R'\}$ then the

$$_{(\alpha, \beta) \in R' \times R'} (h_\alpha - 1)(h_\beta - 1) = (n - 1)^2$$

Proof. For each $(\alpha, \beta) \in R' \times R'$ we obtain, as before, after moving (α, β) to $(0,0)$

$$I((\alpha, \beta), F_x, F_y) = I((0,0), G_x, G_y)$$

Bezout's theorem applied to G_x and G_y gives

$$_{(\alpha,\beta)\in R'\times R'} I\left((\alpha, \beta), F_x, F_y\right) = (n-1)^2$$

but

$$G_x = \frac{-\lambda}{(h_\alpha-1)!} f^{(h_\alpha)}(\alpha) x^{h_\alpha-1} + \text{HOTinx}$$

$$G_y = \frac{1}{(h_\beta-1)!} f^{(h_\beta)}(\beta) y^{h_\beta-1} + \text{HOTiny}$$

Hence, the multiplicity of $(0,0)$ on G_x is $(h_\alpha - 1)$ and on G_y it is $(h_\beta - 1)$. The tangents at $(0,0)$ to the two curves are distinct, hence

$$I\left((0,0), G_x, G_y\right) = (h_\alpha - 1)(h_\beta - 1)$$

REFERENCES

- [1] W. Fulton, *Algebraic Curves: An introduction to Algebraic Geometry*, January, 2008
- [2] G-M. Greuel, G. Pfister, *A singular introduction to commutative algebra*, Springer, 2002
- [3] A. Hefez, J.H. Rodrigues, R. Salomao, *The Milnor number of a hypersurface singularity in arbitrary characteristic*, arXiv:1507.03179v1 [math.AG] 12 Jul 2015
- [4] R. Lidl, H. Niederreiter, *Finite Fields*, Encyclopedia of Mathematics and its Applications, Vol. 20, 1997
- [5] J. Walker, *Codes and Curves*, American Mathematical Society, 2002
- [6] F. Ramaroson, A. Rajan, Ratios of congruent numbers, *Acta Arithmetica*, 128.2, 2007