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Abstract 

Let 𝐾 = 𝐹𝑞 be a finite field of order 𝑞, (𝑞 is a power of a prime 𝑝), and 𝒦 be 

an algebraically closed field extension of 𝑘. Let 𝑓(𝑡) be a monic polynomial of 

degree 𝑛 in 𝒦[𝑡].  In this paper, we give an algorithm to identify the 

singularities of the projective curve of the affine curve 𝐻𝜆; 𝑓(𝑦) − 𝜆𝑓(𝑥) = 0 for 

which 𝜆 ≠ 0 in 𝐾. The curve 𝐻𝜆 is a general form of the Holm Curve was 

introduced by ALEANDAR HOLM [6]. As result, we determine types and 

multiplicities of the singular points, and calculate Milnor number associated 

with each singularity.  

Keywords: Algebraic Curve, Singular Points, Finite Field.   

 

INTRODUCTION  

Consider the Holm Curve  

𝑏𝑦(𝑦2 − 1) = 𝑎𝑥(𝑥2 − 1) 

was introduced by ALEXANDER HOLM [6], where 𝑎, 𝑏 ∈ 𝐾, 𝑎𝑏 ≠ 0, 𝑎 ≠ ±𝑏. If we 

put 𝜆 =
𝑎

𝑏
, the Holm’s curve becomes 

𝑦(𝑦2 − 1) = 𝜆𝑥(𝑥2 − 1) 

𝑦3 − 𝑦 = 𝜆(𝑥3 − 𝑥) 

where 𝜆 ≠ 0, ±1. Suppose 𝑓(𝑡) = 𝑡3 − 𝑡, then we can write Holm’s Curve as follow; 

 𝑓(𝑦) − 𝜆𝑓(𝑥) = 0  of degree3. 
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Let 𝒦 be an algebraically closed field. Our goal to study the singularities of the curve 

𝐻𝜆: 𝑓(𝑦) − 𝜆𝑓(𝑥) = 0  for 𝜆 ∈ 𝒦∗ , and other topics related to for 𝑓(𝑡) ∈ 𝒦[𝑡] , a 

monic polynomail of degree 𝑛 ≥ 2.The projective plane model for 𝐻𝜆 is given by 

ℋ𝜆: 𝑧𝑛 [𝑓 (
𝑦

𝑧
) − 𝜆𝑓 (

𝑥

𝑧
)] ∈ 𝒦[𝑥, 𝑦, 𝑧] 

then 𝐹(𝑥, 𝑦, 𝑧) = 𝑧𝑛 [𝑓 (
𝑦

𝑧
) − 𝜆𝑓 (

𝑥

𝑧
)] is a homogeneous polynomial of degree 𝑛.The 

sengularities of both projective curve ℋ𝜆 and affine curve 𝐻𝜆 are given respectively 

as follow: 

ℋ𝜆 = {(𝑥; 𝑦; 𝑧) ∈ 𝒦3: 𝐹(𝑥, 𝑦, 𝑧) = 0} 

𝐻𝜆 = {(𝑥; 𝑦; 1) ∈ 𝒦3: 𝐹(𝑥, 𝑦, 1) = 0} 

 

1  SINGULAR POINTS 

Theorem 1.1 Let 𝐻𝜆 be the projective plane model of the affine curve 𝐻𝜆. Then, 𝐻𝜆 
has no singularity at infinity.  

Proof. Let 𝑓(𝑡) = 𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1+. . . +𝑎1𝑡 + 𝑎0  of degree 𝑛 ≥ 2  where 

𝑎𝑛−1, 𝑎𝑛−2, . . . , 𝑎1, 𝑎0 ∈ 𝒦, and let 𝜆 ∈ 𝒦∗. The curve ℋ𝜆 is defined by the equation  

 𝐹(𝑥, 𝑦, 𝑧) = 𝑧𝑛𝑓 (
𝑦

𝑧
) − 𝜆𝑧𝑛𝑓 (

𝑥

𝑧
) = 0 

The partial derivatives 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 are given by 

 𝐹𝑥 = −𝜆𝑧𝑛−1𝑓′ (
𝑥

𝑧
) 

 𝐹𝑦 = 𝑧𝑛−1𝑓′ (
𝑦

𝑧
) 

 𝐹𝑧 = 𝑛𝑧𝑛−1 [𝑓 (
𝑦

𝑧
) − 𝜆𝑓 (

𝑥

𝑧
)] + 𝑧𝑛 [−

𝑦

𝑧2 𝑓′ (
𝑦

𝑧
) + 𝜆

𝑥

𝑧2 𝑓′ (
𝑥

𝑧
)] 

Using the explicit expression for 𝑓(𝑡) we find 

 𝐹𝑥 = −𝜆[𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑧𝑥𝑛−2+. . . +2𝑎2𝑧𝑛−2𝑥 + 𝑎1𝑧𝑛−1] 

 𝐹𝑦 = 𝑛𝑦𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑧𝑦𝑛−1+. . . +2𝑎2𝑧𝑛−2𝑦 + 𝑎1𝑧𝑛−1 

 𝐹𝑧 = 𝑎𝑛−1𝑦𝑛−1 + 2𝑎𝑛−2𝑧𝑦𝑛−2+. . . . +(𝑛 − 1)𝑧𝑛−2𝑦 + 𝑛𝑎0𝑧𝑛−1 

 𝜆[𝑎𝑛−1𝑥𝑛−1 + 2𝑎𝑛−2𝑧𝑥𝑛−2+. . . . +(𝑛 − 1)𝑧𝑛−2𝑥 + 𝑛𝑎0𝑧𝑛−1] 

to find the singularities of the curve ℋ𝜆 we solve the system 

 𝐹 = 𝐹𝑥 = 𝐹𝑦 = 𝐹𝑧 = 0 
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to study the singularity at infinity, we put 𝑧 = 0 and the system becomes 

 𝑥 = 𝑦 = 𝑧 = 0 

but the point (0; 0; 0) does not exist in the projective plane ℙ2  hence, ℋ𝜆  has no 

singularity at infinity. Next, for 𝜆 ∈ 𝒦∗ we study affine singularity for the curve ℋ𝜆. 

For this purpose, we let 𝑧 = 1 and consider the curve 𝐻𝜆 using the polynomial 

 𝐹(𝑥, 𝑦, 1) = 𝑓(𝑦) − 𝜆𝑓(𝑥) 

as an abuse of notation, we write 

 𝐹(𝑥, 𝑦) = 𝑓(𝑦) − 𝜆𝑓(𝑥) 

the singular points on 𝐻𝜆 are obtained by solving the system 

𝑓′(𝑥) = 0 

𝑓′(𝑦) = 0 

𝑓(𝑦) − 𝜆𝑓(𝑥) = 0 

Let 𝑆𝜆 be the set of singular points on the affine curve 𝐻𝜆. Since there is no singularity 

at infinity, 𝑆𝜆 is the set of singular points on ℋ𝜆.Let 𝑅 denote the set of roots of 𝑓(𝑡) 

and 𝑅′ that of 𝑓′(𝑡). Let  

 𝑇 = (𝑅 ∩ 𝑅′) × (𝑅 ∩ 𝑅′) 

and let  

 𝑇𝜆 = {(𝛼, 𝛽) ∈ (𝑅′ − 𝑅) × (𝑅′ − 𝑅):
𝑓(𝛽)

𝑓(𝛼)
= 𝜆} 

Then we have the following theorem;  

Theorem 1.2 For every 𝜆 ∈ 𝒦∗, 𝑆𝜆 = 𝑇𝜆 ∪ 𝑇  

Proof. Let 𝜆 ∈ 𝒦∗ and let (𝛼, 𝛽) ∈ 𝑇 then  

 𝑓′(𝛼) = 0 

 𝑓′(𝛽) = 0 

 𝑓(𝛽) − 𝜆𝑓(𝛼) = 0 

therefore (𝛼, 𝛽) ∈ 𝑆𝜆 hence 𝑇 ⊂ 𝑆𝜆.Let (𝛼, 𝛽) ∈ 𝑇𝜆 then  

 𝑓′(𝛼) = 0 

 𝑓′(𝛽) = 0 

 𝑓(𝛼) ≠ 0 

 𝑓(𝛽) ≠ 0 
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 𝑓(𝛽) = 𝜆𝑓(𝛼) 

therefore (𝛼, 𝛽) ∈ 𝑆𝜆 hence 𝑇𝜆 ⊂ 𝑆𝜆.Conversely, suppose (𝛼, 𝛽) ∈ 𝑆𝜆 then 

 𝑓′(𝛼) = 0 

 𝑓′(𝛽) = 0 

 𝑓(𝛽) = 𝜆𝑓(𝛼) 

If 𝑓(𝛼) = 𝑓(𝛽) = 0, then (𝛼, 𝛽) ∈ 𝑇 and if 𝑓(𝛼) ≠ 0 and 𝑓(𝛽) ≠ 0 then, (𝛼, 𝛽) ∈

𝑇𝜆. Hence 𝑆𝜆 ⊂ 𝑇𝜆 ∪ 𝑇. Explicitly, Theorem 1.2. says that if 𝛼, 𝛽 are common roots 

of 𝑓(𝑡) and 𝑓′(𝑡) then (𝛼, 𝛽) and (𝛽, 𝛼) are singular points on 𝐻𝜆 for any 𝜆 ∈ 𝒦∗. 

Moreover, if 𝛼, 𝛽 are roots of 𝑓′(𝑡) but not roots of  𝑓(𝑡) then (𝛼, 𝛽) is a singular 

point on 𝐻𝜆 for 𝜆 =
𝑓(𝛽)

𝑓(𝛼)
. Every singular point on 𝐻𝜆 is obtained in this fashion.  

 

Theorem 1.3 Let 𝐷 be the discriminant of 𝑓(𝑡)  

1.  If 𝐷 = 0, then for every 𝜆 ∈ 𝐾∗, 𝐻𝜆 is a singular curve 

2.  If 𝐷 ≠ 0 and 𝜆 ∉ {
𝑓(𝛽)

𝑓(𝛼)
: 𝛼, 𝛽 ∈ 𝑅′} then 𝐻𝜆 is a non-singular curve  

 

Proof.   

1.  If 𝐷 = 0 then 𝑇 ≠ ⌀. Let 𝛼, 𝛽 ∈ 𝑇 (𝛼 = 𝛽 is allowed), then for any  

         𝜆 ∈ 𝒦∗ 

 𝑓′(𝛼) = 0 

 𝑓′(𝛽) = 0 

 𝑓(𝛽) = 𝜆𝑓(𝛼) = 0 

hence (𝛼, 𝛽) ∈ 𝑆𝜆 and 𝐻𝜆 is a singular curve. 

2.  If 𝐷 ≠ 0 then 𝑇 = ⌀. Suppose 𝜆 ∉ {
𝑓(𝛽)

𝑓(𝛼)
: 𝛼, 𝛽 ∈ 𝑅′}. If (𝛼, 𝛽) were a 

singular point on 𝐻𝜆 then 𝛼, 𝛽 ∈ 𝑅′ and 
𝑓(𝛽)

𝑓(𝛼)
= 𝜆 which is a contradiction, hence 𝐻𝜆 

is non-singular.  

 

Example 1 Let   𝑓(𝑡) = 𝑡3 + 𝑎𝑡 + 𝑏 , where 𝑎, 𝑏 ∈ 𝒦∗, an algebraically closed field 
and let 𝜆 ∈ 𝒦∗.Consider the projective curve 

 ℋ𝜆: 𝑦3 + 𝑎𝑦𝑧2 + 𝑏𝑧3 = 𝜆(𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3) 
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Let 𝐹 = 𝑦3 + 𝑎𝑦𝑧2 + 𝑏𝑧3 − 𝜆(𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3), then the curve ℋ𝜆  is defined in 

ℙ2, by 

 𝐹(𝑥, 𝑦, 𝑧) = 0 

by Theorem 1.1 ℋ𝜆  has no singularity at infinity.let 𝐻𝜆  be the affine curve whose 

projective plane is ℋ𝜆. The singularities will be on the curve 𝐻𝜆. 

 𝑓′(𝑡) = 3𝑡2 + 𝑎 

the set 𝑅′ of roots of 𝑓′(𝑡) is 

 𝑅′ = {±√
−𝑎

3
} 

Let 

 𝐷 = −4𝑎3 − 27𝑏2 

be the discriminant of 𝑓(𝑡).  
 

1.   

Case 1 𝐷 = 0: 

 𝑓 (√
−𝑎

3
) = (√

−𝑎

3
)

3

+ 𝑎√
−𝑎

3
+ 𝑏 = 𝑏 −

2

9
√3(−𝑎)

3

2 = 𝑏 −
2√3

9
(

27

4
𝑏2)

1/2

= 0 

 

𝑓 (−√
−𝑎

3
) =     (−√

−𝑎

3
)

3

+ 𝑎 (−√
−𝑎

3
) + 𝑏 = 𝑏 +

2

9
√3(−𝑎)

3
2  

=       𝑏 +
2√3

9
(

27

4
𝑏2)

1/2

= 2𝑏 ≠ 0 

Therefore, 

 𝑅′ ∩ 𝑅 = {√
−𝑎

3
} 

 

 𝑇 = {(√
−𝑎

3
, √

−𝑎

3
)} 

Next,   

 𝑇𝜆 = ⌀, if𝜆 ≠ 1 

 𝑇1 = {(−√
−𝑎

3
, −√

−𝑎

3
)} 
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we conclude, in this case that 

 𝑆𝜆 = {(√
−𝑎

3
, √

−𝑎

3
)} ,    if𝜆 ≠ 1 

 𝑆1 = {(√
−𝑎

3
, √

−𝑎

3
) , (−√

−𝑎

3
, −√

−𝑎

3
)} 

  

Case 2 𝐷 ≠ 0, with 𝑎𝑏 ≠ 0,In this case 

 𝑇 = ⌀ 

Let  

 𝜆1 =
𝑏−

2

9
√3(−𝑎)

3
2

𝑏+
2

9
√3(−𝑎)

3
2

=
𝑓(√

−𝑎

3
)

𝑓(−√
−𝑎

3
)

≠ 0 

 𝜆2 =
𝑏+

2

9
√3(−𝑎)

3
2

𝑏−
2

9
√3(−𝑎)

3
2

=
𝑓(−√

−𝑎

3
)

𝑓(√
−𝑎

3
)

=
1

𝜆1
≠ 0 

since 𝑎𝑏 ≠ 0, 𝜆1 ≠ 𝜆2Then, we can conclude that 

 𝑆𝜆1
= 𝑇𝜆1

= {(−√
−𝑎

3
, √

−𝑎

3
)} 

 𝑆𝜆2
= 𝑇𝜆2

= {(√
−𝑎

3
, −√

−𝑎

3
)} 

 𝑆𝜆 = ⌀if𝜆 ≠ 𝜆1, 𝜆2 

  

Case 3 𝐷 ≠ 0, 𝑎 = 0 

 𝑓(𝑡) = 𝑡3 + 𝑏, 𝑏 ≠ 0 

 𝑓′(𝑡) = 0 

 𝑅′ = {0} 

In this case  

 𝑇 = ⌀ 

 𝑆1 = 𝑇1 = {(0,0)} 

 𝑆𝜆 = ⌀, if𝜆 ≠ 1 
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Case 4 𝐷 ≠ 0, 𝑏 = 0 

 𝑓(𝑡) = 𝑡3 + 𝑎𝑡, 𝑎 ≠ 0 

 𝑓′(𝑡) = 3𝑡2 + 𝑎 

 𝑅 = {0, ±√−𝑎} 

 𝑅′ = {±√
−𝑎

3
} 

in this case 

 𝑇 = ⌀ 

 𝑆1 = 𝑇1 = {(√
−𝑎

3
, √

−𝑎

3
) , (−√

−𝑎

3
, −√

−𝑎

3
)} 

 𝑆−1 = 𝑇−1 = {(√
−𝑎

3
, −√

−𝑎

3
) , (−√

−𝑎

3
, √

−𝑎

3
)} 

 𝑆𝜆 = ⌀, if𝜆 ≠ ±1 

 

2  TYPES OF SINGULARITIES 

The singular points that are under study are all affine points on 𝐻𝜆. Let the equation of 

the curve be given by 

 𝐹(𝑥, 𝑦) = 𝑓(𝑦) − 𝜆𝑓(𝑥) = 0 

Proposition 2.1  Let   (𝛼, 𝛽) be a singular point on the curve 𝐻𝜆, then  

    1.  If 𝐹𝑥𝑥(𝛼). 𝐹𝑦𝑦(𝛽) ≠ 0. then the singular point (𝛼, 𝛽) is a node. 

    2.  If one of 𝐹𝑥𝑥(𝛼),𝐹𝑦𝑦(𝛽) is zero. then (𝛼, 𝛽) is a cusp. 

    3.   If both 𝐹𝑥𝑥(𝛼), 𝐹𝑦𝑦(𝛽) are zero, then (𝛼, 𝛽) is a triple point.  

 

Proof. Assume (𝛼, 𝛽) is a singular point on the curve 

𝐹(𝛼, 𝛽) = 𝐹𝑥(𝛼, 𝛽) = 𝐹𝑦(𝛼, 𝛽) = 0 

Explicitly, in terms of 𝑓(𝑡)  

 𝑓′(𝛼) = 0 

 𝑓′(𝛽) = 0 

 𝑓(𝛽) − 𝜆𝑓(𝛼) = 0 
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Because the mixed derivatives are all zeros, the Taylor expansion of 𝐹(𝑥, 𝑦) at (𝛼, 𝛽) 

is given by 

 𝐹(𝑥, 𝑦) =
1

2!
(−𝜆𝐹𝑥𝑥(𝛼)(𝑥 − 𝛼)2 + 𝐹𝑦𝑦(𝛽)(𝑦 − 𝛽)2) +

1

3!
(−𝜆𝐹𝑥𝑥𝑥(𝛼)(𝑥 −

𝛼)3 + 𝐹𝑦𝑦𝑦(𝛽)(𝑦 − 𝛽)3)+. . . .. 

we move the singular point (𝛼, 𝛽) to the origin using the following substitutions 

𝑥 = 𝛼 + 𝑋            𝑦 = 𝛽 + 𝑌 

𝐹 will be replaced by 𝐺 such that 𝐺(𝑋, 𝑌) = 𝐹(𝛼 + 𝑋, 𝛽 + 𝑌), then the Taylor series 

for 𝐺 is 

𝐺(𝑋, 𝑌) =
1

2!
(−𝜆𝐹𝑥𝑥(𝛼)𝑋2 + 𝐹𝑦𝑦(𝛽)𝑌2) +

1

3!
(−𝜆𝐹𝑥𝑥𝑥(𝛼)𝑋3 + 𝐹𝑦𝑦𝑦(𝛽)𝑌3)+. . . .. 

    1.  If 𝐹𝑥𝑥(𝛼). 𝐹𝑦𝑦(𝛽) ≠ 0, then the tangents 𝑌 = ±√
𝜆𝐹𝑥𝑥(𝛼)

𝐹𝑦𝑦(𝛽)
𝑋 are distinct and,  

        hence, the singular point (0,0) is a node, thus (𝛼, 𝛽) is a node. 

    2.  If one of 𝐹𝑥𝑥(𝛼), 𝐹𝑦𝑦(𝛽) is zero. then (0,0) is a cusp and has the tangent  

        𝑋 = 0 if 𝐹𝑦𝑦(𝛽) = 0 ,or 𝑌 = 0 if 𝐹𝑥𝑥(𝛼) = 0.thus (𝛼, 𝛽) is a cusp. 

    3.  If both 𝐹𝑥𝑥(𝛼), 𝐹𝑦𝑦(𝛽) are zero, then (0,0) is a triple point, thus (𝛼, 𝛽) is  

       a triple point.In terms of the polynomial 𝑓(𝑡) itself we have the following:  

 

Corollary 2.1 Let (𝛼, 𝛽) be a singular point  

1.  If 𝑓"(𝛼)𝑓"(𝛽) ≠ 0 then (𝛼, 𝛽) is a node 

2.  If one of 𝑓"(𝛼), 𝑓"(𝛽) is zero, then (𝛼, 𝛽) is a cusp 

3.  If 𝑓"(𝛼), 𝑓"(𝛽) are both zero, then (𝛼, 𝛽) is a triple point  

 

3  THE MULTIPLICITIES OF THE SINGULAR POINTS 

Let (𝛼, 𝛽) be a singular point. Moving the singularity to the origin and using the 

variables 𝑥, 𝑦, as a change of notation,  give  

 𝐺(𝑥, 𝑦) = 𝐹(𝛼 + 𝑥, 𝛽 + 𝑦) = 𝑓(𝛽 + 𝑦) − 𝜆𝑓(𝛼 + 𝑥) 

 𝐺(0,0) = 𝑓(𝛽) − 𝜆𝑓(𝛼) = 0 

 𝐺𝑥 = −𝜆𝑓′(𝛼 + 𝑥) 

 𝐺𝑥(0,0) = 𝑓′(𝛼) = 0 
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 𝐺𝑦 = 𝑓′(𝛼 + 𝑦) 

 𝐺𝑦(0,0) = 𝑓′(𝛽) = 0 

The Taylor series in terms of the polynomial 𝑓(𝑡) is given by 

 𝐺(𝑥, 𝑦) =
1

2!
(−𝜆𝑓′′(𝛼)𝑥2 + 𝑓′′(𝛽)𝑦2) +

1

3!
(−𝜆𝑓′′′(𝛼)𝑥3 +

𝑓′′′(𝛽)𝑦3)+. . . +
1

𝑛!
(−𝜆𝑓(𝑛)(𝛼)𝑥𝑛 + 𝑓(𝑛)(𝛽)𝑦𝑛) 

which we write as 

𝐺 =𝑖=2
𝑛 𝐺𝑖 

where 𝐺𝑖 is the form of degree 𝑖 

𝐺𝑖 =
1

𝑖!
(−𝜆𝑓(𝑖)(𝛼)𝑥𝑖 + 𝑓(𝑖)(𝛽)𝑦𝑖),      𝑖 = 2,3, . . . , 𝑛 

Let 

𝑚(0,0) = inf{𝑖: 𝐺𝑖 ≠ 0} 

then 𝑚(0,0) is the multiplicity of (0,0) on 𝐺 = 0.Let 𝑚(𝛼,𝛽)(𝐹) be the multiplicity of 

(𝛼, 𝛽) on the curve 𝐹(𝑥, 𝑦) = 0, then 

𝑚(𝛼,𝛽)(𝐹) = 𝑚(0,0) 

From Theorem 2.2 we have 

𝑆𝜆 = 𝑇𝜆 ∪ 𝑇 

For (𝛼, 𝛽) ∈ 𝑇 we have  

 𝑓(𝛼) = 𝑓(𝛽) = 0 

 𝑓′(𝛼) = 𝑓′(𝛽) = 0 

Let 𝑘𝛼 and 𝑘𝛽 be non-negative integers, 0 ≤ 𝑘𝛼, 𝑘𝛽 ≤ 𝑛,  defined by 

 𝑓(𝑘𝛼)(𝛼) ≠ 0and𝑓(𝑗)(𝛼) = 0for0 ≤ 𝑗 ≤ 𝑘𝛼 − 1 

 𝑓(𝑘𝛽)(𝛽) ≠ 0and𝑓(𝑗)(𝛽) = 0for0 ≤ 𝑗 ≤ 𝑘𝛽 − 1 

Then 

 𝑘𝛼 ≥ 2 

 𝑘𝛽 ≥ 2 

For (𝛼, 𝛽) ∈ 𝑇𝜆 we have  

 𝑓(𝛼) ≠ 0 
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 𝑓(𝛽) ≠ 0 

 𝑓(𝛽) − 𝜆𝑓(𝛼) = 0 

 𝑓′(𝛼) = 𝑓′(𝛽) = 0 

Let 𝑙𝛼 and 𝑙𝛽 be positive integers, 1 ≤ 𝑙𝛼, 𝑙𝛽 ≤ 𝑛 defined by 

 𝑓(𝑙𝛼)(𝛼) ≠ 0and𝑓(𝑗)(𝛼) = 0for1 ≤ 𝑗 ≤ 𝑙𝛼 − 1 

 𝑓(𝑙𝛽)(𝛽) ≠ 0and𝑓(𝑗)(𝛽) = 0for1 ≤ 𝑗 ≤ 𝑘𝛽 − 1 

Then, 

 𝑙𝛼 ≥ 1 

 𝑙𝛽 ≥ 1 

 

Theorem 3.1 Let (𝛼, 𝛽) ∈ 𝑆𝜆 be a singular point with multiplicity 𝑚(𝛼,𝛽). Assume 
𝑐ℎ𝑎𝑟(𝒦) = 0 or 𝑐ℎ𝑎𝑟(𝒦) > 𝑚 

1.  If (𝛼, 𝛽) ∈ 𝑇 then, 𝑚(𝛼,𝛽)(𝐹) = min(𝑘𝛼 , 𝑘𝛽) 

2.  If (𝛼, 𝛽) ∈ 𝑇𝜆 then, 𝑚(𝛼,𝛽)(𝐹) = min(𝑙𝛼, 𝑙𝛽)  

 

Proof. The power series expansion at the origin for 𝐺(𝑥, 𝑦) is 

𝐺(𝑥, 𝑦) =
1

2
(−𝜆𝑓"(𝛼)𝑥2 + 𝑓"(𝛽)𝑦2) + 𝐻𝑂𝑇 

where 𝐻𝑂𝑇 stands for "higher order terms". In the case 𝑐ℎ𝑎𝑟(𝒦) > 𝑚(𝛼,𝛽), division 

by any 𝑗 ≤ 𝑚(𝛼,𝛽) is defined. 

  

1.  Suppose 0 ≤ 𝑘𝛼 ≤ 𝑘𝛽 . From the definition of 𝑘𝛼 we find 

𝐺(𝑥, 𝑦) =
1

𝑘𝛼!
(−𝜆𝑓(𝑘𝛼)(𝛼)𝑥𝑘𝛼 + 𝑓(𝑘𝛼)(𝛽)𝑦𝑘𝛼) + 𝐻𝑂𝑇 

with 𝑓(𝑘𝛼)(𝛼) ≠ 0,  hence the multiplicity of (0,0) is  

𝑚(0,0) = 𝑘𝛼 

hence𝑚(𝛼,𝛽)(𝐹) = 𝑘𝛼 
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2.  The case of 𝑘𝛽 ≤ 𝑘𝛼 is handled similarly and we conclude that 

𝑚(𝛼,𝛽)(𝐹) = min(𝑘𝛼, 𝑘𝛽) 

is proved in a similar fashion.  

 

4  MILNOR NUMBER 

The critical points of 𝐹(𝑥, 𝑦) are the points where both 𝐹𝑥 and 𝐹𝑦 vanish, hence the 

set of critical points is 𝑅′ × 𝑅′. We note that the set of singular points is 

𝑆𝜆 = 𝑇 ∪ 𝑇𝜆 = {(𝛼, 𝛽) ∈ 𝑅′ × 𝑅′: 𝐹(𝛼, 𝛽) = 0} ⊂ 𝑅′ × 𝑅′ 

𝐹 has an isolated critical point at (𝛼, 𝛽) if (𝛼, 𝛽) is isolated point of 𝑅′ × 𝑅′. We say 

also (𝛼, 𝛽) is an isolated singularity of 𝐹 if (𝛼, 𝛽) is isolated of point of 𝑆𝜆.We fix 

(𝛼, 𝛽) ∈ 𝑆𝜆 , a singular point. We assume again that 𝑐ℎ𝑎𝑟(𝒦) = 0 or 𝑐ℎ𝑎𝑟(𝒦) >

𝑚(𝛼,𝛽)(𝐹)Moving (𝛼, 𝛽) to the origin, as before, we obtain the polynomial 

𝐺(𝑥, 𝑦) =
1

2
(−𝜆𝑓"(𝛼)𝑥2 + 𝑓"(𝛽)𝑦2) + 𝐻𝑂𝑇 

The following Proposition is clear; 

 

Proposition 4.1 Let 𝔐 be the maximal ideal in 𝒦[[𝑥, 𝑦]] then 𝐺(𝑥, 𝑦) ∈ 𝔐2 

 

Proof. We introduce the Jacobian ideal ([...] 

𝐽(𝐺) = ⟨𝐺𝑥 , 𝐺𝑦⟩ = ⟨−𝜆𝑓′(𝛼 + 𝑥), 𝑓′(𝛽 + 𝑦)⟩ = ⟨𝑓′(𝛼 + 𝑥), 𝑓′(𝛽 + 𝑦)⟩ 

which is the ideal in 𝐾[[𝑥, 𝑦]] generated by the partials. 𝐹 has an isolated critical point 

at (𝛼, 𝛽). if the Milnor algebra is 

𝒦[[𝑥, 𝑦]]/𝐽(𝐺) = 𝒦[[𝑥, 𝑦]]/⟨𝐺𝑥, 𝐺𝑦⟩ = 𝒦[[𝑥, 𝑦]]/⟨𝑓′(𝛼 + 𝑥), 𝑓′(𝛽 + 𝑦)⟩ 

We also introduce the Tjurina ideal 

𝑇(𝐺) = ⟨𝐺, 𝐺𝑥, 𝐺𝑦⟩ 

which is the ideal in 𝐾[[𝑥, 𝑦]] generated by 𝐺 and the partials. We have  

𝐽(𝐺) ⊂ 𝑇(𝐺) 

The Tjurina algebra is 

𝒦[[𝑥, 𝑦]]/𝑇(𝐺) = 𝒦[[𝑥, 𝑦]]/⟨𝐺, 𝐺𝑥, 𝐺𝑦⟩

= 𝒦[[𝑥, 𝑦]]/⟨𝑓(𝛽 + 𝑦) − 𝜆𝑓(𝛼 + 𝑥), 𝑓′(𝛼 + 𝑥), 𝑓′(𝛽 + 𝑦)⟩ 
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Let  

 𝜇(𝐺) = dim𝒦(𝒦[[𝑥, 𝑦]]/𝐽(𝐺)) 

 𝜏(𝐺) = dim𝒦(𝒦[[𝑥, 𝑦]]/𝑇(𝐺)) 

𝜇(𝐺) is called the Milnor number of 𝐹  at the singular point (0,0).We define the 

Milnor number of (𝛼, 𝛽) to be 𝜇(𝐺) also. 𝜏(𝐺) is the Tjurina number of 𝐹 at the 

singular point (0,0). We define the Tjurina number of (𝛼, 𝛽) to be 𝜏(𝐺) also. Since 

𝐽(𝐺) ⊂ 𝑇(𝐺) 

𝜏(𝐺) ≤ 𝜇(𝐺) 

we now calculate the Milnor number of (𝛼, 𝛽) ∈ 𝑆𝜆 = 𝑇 ∪ 𝑇𝜆  

 

Theorem 4.1 Let (𝛼, 𝛽) ∈ 𝑆𝜆 be a singular point, assume 𝑐ℎ𝑎𝑟(𝒦) = 0 or 
𝑐ℎ𝑎𝑟(𝒦) > 𝑚(𝛼,𝛽)(𝐹)  

1.  If (𝛼, 𝛽) ∈ 𝑇, then 𝜇(𝐺) = (𝑘𝛼 − 1)(𝑘𝛽 − 1) 

2.  If (𝛼, 𝛽) ∈ 𝑇𝜆, then 𝜇(𝐺) = (𝑙𝛼 − 1)(𝑙𝛽 − 1)  

 

Proof.   

1.  Suppose (𝛼, 𝛽) ∈ 𝑇  then, the Milnor number 

 𝜇(𝐺) = dim𝒦(𝒦[[𝑥, 𝑦]]/𝐽(𝐺)) = dim𝒦(𝒦[[𝑥, 𝑦]]/⟨𝐺𝑥, 𝐺𝑦⟩) = 𝐼(𝐺𝑥, 𝐺𝑦) 

where 𝐼(𝐺𝑥, 𝐺𝑦) is the intersection number of 𝐺𝑥  and 𝐺𝑦  at (0,0)  (see [Fulton]). 

With the notation in the proof of Theorem 3.1 

𝐺(𝑥, 𝑦) =
1

𝑘𝛼!
(−𝜆𝑓(𝑘𝛼)(𝛼)𝑥𝑘𝛼 + 𝑓(𝑘𝛼)(𝛽)𝑦𝑘𝛼) + 𝐻𝑂𝑇 

 𝐺𝑥 =
−𝜆

(𝑘𝛼−1)!
𝑓(𝑘𝛼)(𝛼)𝑥𝑘𝛼−1 + 𝐻𝑂𝑇in𝑥 

 𝐺𝑦 =
1

(𝑘𝛽−1)!
𝑓(𝑘𝛽)(𝛽)𝑦𝑘𝛽−1 + 𝐻𝑂𝑇in𝑦 

The multiplicity of (0,0) on 𝐺𝑥 is (𝑘𝛼 − 1) and the tangent line there is 𝑥 = 0 with 

multiplicity (𝑘𝛼 − 1). The multiplicity of (0,0) on 𝐺𝑦  is (𝑘𝛽 − 1) and the tangent 

line there is 𝑦 = 0 with multiplicity (𝑘𝛽 − 1).Since 𝐺𝑥  and 𝐺𝑦  have no common 

tangent at (0,0), it follows that  

 𝐼(𝐺𝑥, 𝐺𝑦) = (𝑘𝛼 − 1)(𝑘𝛽 − 1) 
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and therefore the Milnor number at (𝛼, 𝛽) is𝜇(𝐺) = (𝑘𝛼 − 1)(𝑘𝛽 − 1) 

 

2.  Suppose (𝛼, 𝛽) ∈ 𝑇𝜆 then a similar argument gives 

𝜇(𝐺) = (𝑙𝛼 − 1)(𝑙𝛽 − 1) 

The following corollary is immediate  

 

Corollary 4.1   

1.  𝜏(𝐺) < ∞ 

2.  𝐺 has an isolated singularity at (0,0) hence 𝐹 has an isolated  

          singularity at (𝛼, 𝛽)    ([Hefez-Rodrigues-Salomao])  

 

Proof . We have defined the Milnor number of an isolated singularity of 𝐹,  

            now the total Milnor number of 𝐹 is given as follow 

dim𝒦(𝒦[[𝑥, 𝑦]]/𝐽(𝐺)) =(𝛼,𝛽)∈𝑅′×𝑅′ 𝜇(𝐺, (𝛼, 𝛽)) 

similarly, the total Tjurina number of   𝐹: 

dim𝒦𝒦[[𝑥, 𝑦]]/𝑇(𝐺) =(𝛼,𝛽)∈𝑆𝜆
𝜏(𝐺, (𝛼, 𝛽)) 

For (𝛼, 𝛽) ∈ 𝑅′ × 𝑅′, let ℎ𝛼 and ℎ𝛽 be positive integers defined by 

 𝑓(𝑖)(𝛼) = 0,      1 ≤ 𝑖 ≤ ℎ𝛼 − 1and𝑓(ℎ𝛼)(𝛼) ≠ 0 

 𝑓(𝑖)(𝛽) = 0,      1 ≤ 𝑖 ≤ ℎ𝛽 − 1and𝑓(ℎ𝛽)(𝛽) ≠ 0 

As a consequence of Bezout’s theorem, we have  

 

Theorem 4.2 Assume 𝑐ℎ𝑎𝑟(𝒦) > 𝑚𝑎𝑥{ℎ𝛼, ℎ𝛽: (𝛼, 𝛽) ∈ 𝑅′ × 𝑅′} then the  

 (𝛼,𝛽)∈𝑅′×𝑅′(ℎ𝛼 − 1)(ℎ𝛽 − 1) = (𝑛 − 1)2 

 

          Proof. For each (𝛼, 𝛽) ∈ 𝑅′ × 𝑅′ we obtain, as before, after  

               moving (𝛼, 𝛽) to (0,0) 

𝐼 ((𝛼, 𝛽), 𝐹𝑥, 𝐹𝑦) = 𝐼 ((0,0), 𝐺𝑥, 𝐺𝑦) 

 



872 Haleemah Ghazwani 

Bezout’s theorem applied to 𝐺𝑥 and 𝐺𝑦 gives 

 (𝛼,𝛽)∈𝑅′×𝑅′𝐼 ((𝛼, 𝛽), 𝐹𝑥 , 𝐹𝑦) = (𝑛 − 1)2 

but 

 𝐺𝑥 =
−𝜆

(ℎ𝛼−1)!
𝑓(ℎ𝛼)(𝛼)𝑥ℎ𝛼−1 + 𝐻𝑂𝑇in𝑥 

 𝐺𝑦 =
1

(ℎ𝛽−1)!
𝑓(ℎ𝛽)(𝛽)𝑦ℎ𝛽−1 + 𝐻𝑂𝑇in𝑦 

Hence, the multiplicity of (0,0) on 𝐺𝑥  is (ℎ𝛼 − 1) and on 𝐺𝑦  it is (ℎ𝛽 − 1). The 

tangents at (0,0) to the two curves are distinct, hence 

 𝐼 ((0,0), 𝐺𝑥 , 𝐺𝑦) = (ℎ𝛼 − 1)(ℎ𝛽 − 1) 
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