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Abstract

Let K = F, be afinite field of order q, (q is a power of a prime p), and X be
an algebraically closed field extension of k. Let f(t) be a monic polynomial of
degree n in X[t]. In this paper, we give an algorithm to identify the
singularities of the projective curve of the affine curve Hy; f(y) — Af(x) = 0 for
which 42 # 0 in K. The curve H; is a general form of the Holm Curve was
introduced by ALEANDAR HOLM [6]. As result, we determine types and
multiplicities of the singular points, and calculate Milnor number associated

with each singularity.
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INTRODUCTION
Consider the Holm Curve

by(y? —1) = ax(x? — 1)
was introduced by ALEXANDER HOLM [6], where a,b € K, ab # 0,a # +b. Ifwe
put 1 = %, the Holm’s curve becomes

y(y? - 1) = x(x? = 1)

y -y =2 -x)

where A # 0,+1. Suppose f(t) = t3 —t, then we can write Holm’s Curve as follow;

f(y) — Af(x) = 0 of degree3.
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Let K be an algebraically closed field. Our goal to study the singularities of the curve
Hy: f(y) —Af(x) =0 for A € X* , and other topics related to for f(t) € K[t] , a
monic polynomail of degree n > 2.The projective plane model for H; is given by

Hy:z™ [f (g) - Af (g)] € Kl[x,vy,z]

then F(x,y,z) = z" [f (f) —Af (f)] is a homogeneous polynomial of degree n.The

sengularities of both projective curve H, and affine curve H, are given respectively
as follow:

H; ={(x;y;z) € K3:F(x,y,2z) = 0}
Hy ={(x;y;1) € K3 F(x,y,1) = 0}

1 SINGULAR POINTS

Theorem 1.1 Let H, be the projective plane model of the affine curve H;. Then, H,
has no singularity at infinity.

Proof. Let f(t) =t"+ a,_t" '+...+a,;t +a, of degree n>2 where
An_1,0n-2,-..,01,00 € K, and let 1 € K*. The curve H, is defined by the equation

F(x,y,z) =z"f (%) — Az f (32—6) =0

The partial derivatives E,, F,, E, are given by

s
E, = —Az"71f’ (E)

Fy =z f (f)

= () =1y @] 4272 @)z ()]

Using the explicit expression for f(t) we find
E, = —2Anx"1+ (n—1Da,_1zx" 2+...+2a,z" *x + a; 2" 1]
E, =ny™ ' + (n— Day_1zy™" ' +... +2a,2" %y + a; 2" !
E, = a1y 1+ 2a,_,zy" % +....+(n— 1)z" %y + nayz" !
Map_1x" 1+ 2a,_,zx™ 2 +....+(n — 1)z2" %2x + nayz™ 1]

to find the singularities of the curve #; we solve the system

F=F=F=F=0
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to study the singularity at infinity, we put z = 0 and the system becomes
x=y=z=0

but the point (0;0;0) does not exist in the projective plane P? hence, #; has no
singularity at infinity. Next, for 1 € K* we study affine singularity for the curve H;.
For this purpose, we let z = 1 and consider the curve H, using the polynomial

Fl,y,1) = f(y) = 4f (x)
as an abuse of notation, we write
Fx,y) = f(y) = Af (x)
the singular points on H, are obtained by solving the system
fr)=0
ffy)=0
f)=4f(x)=0

Let S, be the set of singular points on the affine curve H,. Since there is no singularity
at infinity, S, is the set of singular points on #j.Let R denote the set of roots of f(t)
and R’ that of f'(t). Let

T=((RNR)X(RNR"

and let

Ty = {(@.8) € (R" = R) X (R’—R):%=l}

Then we have the following theorem;
Theorem 1.2 For every A € X*, S =T, UT
Proof. Let A € K" and let (a,B) € T then
f@)=0
ffB)=0
fB)=Af(a) =0
therefore (a, B) € S; hence T c S;.Let (a,B) € Ty then

fl@)=0
f'B)=0
f(a) #0

fB)#0
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fB) =2f(a)
therefore (a, B) € S, hence T, c S,.Conversely, suppose (a, 8) € S, then
f'@)=0
ffB)=0
fB) =2f(a)

If f(a)=f(B)=0,then (a,B) €T and if f(a) # 0 and f(B) # 0 then, (a,B) €
T;. Hence S; c T; U T. Explicitly, Theorem 1.2. says that if «, § are common roots
of f(t) and f'(t) then (a,B) and (B, a) are singular points on H; forany A € K*.
Moreover, if «, 8 are roots of f'(t) but not roots of f(t) then (a,B) is a singular

B

@ . Every singular point on H; is obtained in this fashion.

pointon H; for A =

Theorem 1.3 Let D be the discriminant of f(t)

1. If D =0, then for every A € K*, H; is a singular curve

2. If D#0and A ¢ {f(ﬁ) a,f ER } then Hj is a non-singular curve

Proof.
1. fD=0thenT #e. Let o, €T (a = f is allowed), then for any
LEXK”
fil@)=0
f'B)=0

fB) =Af(a) =0

hence (a,B) € S; and H, is asingular curve.

2. f D#0then T =a. Suppose/le{f(ﬁ) aﬁeR} If (@, ) werea

fl@’
df(ﬁ)

singular pointon H; then «, 8 € R' an o= A which is a contradiction, hence H;

is non-singular.

Example 1 Let f(t) =t3 +at+ b , where a,b € K*, an algebraically closed field
and let A € K*.Consider the projective curve

Hy:y2 +ayz? + bz3 = 2(x3 + axz? + bz?)
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Let F =y3 + ayz® + bz3 — A(x® + axz? + bz3),then the curve H; is defined in
P2, by
F(x,y,z) =0

by Theorem 1.1 H; has no singularity at infinity.let H, be the affine curve whose
projective plane is H;. The singularities will be on the curve H,.

fl(t) =3t +a
the set R" of roots of f'(t) is

Let
D = —4a3 — 27b?
be the discriminant of f(t).

1.
Casel D =0:

f< _?a)=(\/%>3+a\/%+b=b—§x/§(—a)§=b—¥(%7b2)l/2=0
f<— _?a>= <— _?a>3+a<—\/?>+b=b+§\/§(—a)%

1/2

2+/3 /27
— il i) —
= b+ (4 b ) 2b # 0
Therefore,
R'NR :{ ‘—“}
3
-a -a
r={(= )
Next,

Tl :Q,if/’{:pt 1

-(-F-B)
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we conclude, in this case that

Sa= {(\/%\E)} ifA # 1
s-(FRE-F)

Case 2 D # 0, with ab # 0,In this case
T=o
Let
b- -\/_( a)2 f< _Ta>

Al ==
b+2V3(- o) f(— —

b+—\/—( a)2 f<_ _?a> 1

since ab # 0,4, # A, Then, we can conclude that

vl B
O ==

SA = gifd # 11,12

Case3 D#0,a=0
f&)=t3+b, b#0

ff@=0

R' = {0}
In this case

T=o

$5,=T, = {(O,O)}
S)l =g, ifA#1
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Cased D#0, b=0
f)=t3+at, a0

f'(t)=3t>+a
R ={0,+v=d}
R = {J_r %“}

in this case
T=o

s-n-(F B E-P)
o= {(F L)

S, = o,ifl # +1

2 TYPES OF SINGULARITIES

The singular points that are under study are all affine points on H;. Let the equation of
the curve be given by

Flx,y)=f(y)—Af(x) =0
Proposition 2.1 Let (a,B) be a singular point on the curve H,, then
1. If Fx(a).E,,(B) # 0. then the singular point (a, B) is a node.
2. Ifoneof En(a).E,,(B) is zero. then (a, ) is a cusp.

3. Ifboth Ey(a),E,,(B) are zero, then (a,f) is a triple point.

Proof. Assume (a, B) is a singular point on the curve
F(a,B) = F.(a, ) = Fy(a,8) = 0
Explicitly, in terms of f(t)
fil@)=0
ffB)=0
fB)=Af (@) =0
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Because the mixed derivatives are all zeros, the Taylor expansion of F(x,y) at (a, )
IS given by
F,y) = 2 (— 2B (@) (x = @)? + Fyy (B) (¥ = B)?) + 5 (— AP (@) (x —
a)® + Fyy (B)(y — B)3)+....
we move the singular point (a, 8) to the origin using the following substitutions
x=a+X y=p+Y

F will be replaced by G suchthat G(X,Y) = F(a + X, B +Y), then the Taylor series
for G is

1 1
G(X,Y) = T (—AE(@)X? + E,, (B)Y?) + 3 (—AFex (X3 + E, (B)Y3)+.....

1. If Fy(@).F,,(B) # 0, then the tangents Y = + /AFF"—"((B“))X are distinct and,
yy
hence, the singular point (0,0) is a node, thus (a, 8) is a node.

2. Ifoneof E.(a),E, (B) iszero. then (0,0) is a cusp and has the tangent
X=0Iif E,(B) =0 ,0orY =0 if E,(a) = 0.thus (a,p) isacusp.

3. Ifboth F(a),F,(B) are zero, then (0,0) is a triple point, thus (a, B) is
a triple point.In terms of the polynomial f(t) itself we have the following:

Corollary 2.1 Let (a,B) be a singular point
1. If f"(a)f"(B) # 0 then (a, B) isanode
2. Ifoneof f"(a), f"(B) is zero, then (a,B) isacusp
3. If f"(a), f"(B) are both zero, then (a, B) is a triple point

3 THE MULTIPLICITIES OF THE SINGULAR POINTS

Let (a0, B) be a singular point. Moving the singularity to the origin and using the
variables x,y, as a change of notation, give

Gx,y)=Fla+x,p+y)=f(B+y)—Af(a+x)
G(0,0) =f(B)—Af(a) =0

Gy = —Af'(a + x)

G(0,0) = f'(a) =0
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Gy = f'(a+y)
Gy(0,0) =f'(B)=0
The Taylor series in terms of the polynomial f(t) is given by
G(x,y) = 5 (=Af"(@)x? + " (B)y?) + 5 (=Af " (@)x* +
F By +. .+ = (=Af M (a)x™ + FM(B)y™)
which we write as
G =iz, G

where G; is the form of degree i

1 . , ,
G =5 (- D(@xi + FOB)Y), i=23,...n
Let

then m, o) is the multiplicity of (0,0) on G = 0.Let m, 3y (F) be the multiplicity of
(a,B) onthe curve F(x,y) = 0, then

Ma,p)(F) = M(o,0)
From Theorem 2.2 we have
S3=THUT
For (a,8) € T we have
fla)=fB)=0
fll@)=f'(B)=0
Let k, and kg be non-negative integers, 0 < kg, kg < n, defined by
% (@) # 0andf P () = 0for0 < j <k, —1
F6)(B) # 0andf P (B) = Oford < j < ks — 1
Then
ky =2
kg =2
For (a, B) € T; we have

f(a) #0
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fB)#0
fB)=Af(a) =0
fllay=f'"(B)=0

Let I, and lg be positive integers, 1 < l,,lz < n defined by
U« (a) # 0andf P (a) = Oforl <j <1, —1
FUB)(B) # 0andf P (B) = Oforl < j < kg — 1
Then,

Iy >1

lp=1

Theorem 3.1 Let (a, B) € S; be a singular point with multiplicity mq g). Assume
char(X) =0 or char(¥) >m

1. If (a,p) €T then, m g (F) = min(ka,kﬁ)

2. If (a,B) €Ty then, m(y p)(F) = min(ly, lp)

Proof. The power series expansion at the origin for G(x,y) is

1
6(0y) =5 (=2f"(@x* + ["(B)y?) + HOT

where HOT stands for "higher order terms". In the case char(X) > mg p), division
by any j < mqp) is defined.

1. Suppose 0 < k, < kg. From the definition of k, we find

Glxy) = % (=2f % (@)xke + f ke (B)yke) + HOT

with f&a)(a) # 0, hence the multiplicity of (0,0) is
Mo,0) = Ka

hencemq ) (F) = kg
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2. The case of kg < k, is handled similarly and we conclude that

Mg p)(F) = min(ka, k/;)

is proved in a similar fashion.

4 MILNOR NUMBER

The critical points of F(x,y) are the points where both F, and F, vanish, hence the
set of critical points is R’ X R’. We note that the set of singular points is

S, =TUT;={(a,) ER' XR":F(a,f) =0} C R xR’

F has an isolated critical pointat (a, ) if (a, ) isisolated point of R’ X R'. We say
also (a, ) is an isolated singularity of F if (a, ) is isolated of point of S;.We fix
(a,B) € S;, a singular point. We assume again that char(X) = 0 or char(¥X) >
mq,p)(F)Moving (a, ) to the origin, as before, we obtain the polynomial

1
G(y) =5 (=2f"(@x* + "(B)y?) + HOT

The following Proposition is clear;
Proposition 4.1 Let M be the maximal ideal in K[[x,y]] then G(x,y) € M?

Proof. We introduce the Jacobian ideal (]...]
J(G) = (Gy, Gy) = (=Af"(@+ ), f'(B+ ) = {f'(@+x), f'(B+ )

which isthe ideal in K[[x,y]] generated by the partials. F has an isolated critical point
at (a, ). if the Milnor algebra is

Kl y11/1(6) = K[[x, ¥11/{Gy, Gy ) = K[[x, y1I/{f' (@ + 2), ' (B + )
We also introduce the Tjurina ideal
T(G) = (G, Gy, Gy)
which is the ideal in K[[x, y]] generated by G and the partials. We have
J(G) € T(G)
The Tjurina algebra is

K[[x, ¥11/T(6) = K[[x,¥11/(G, Gy, Gy)
=K% yll/{fB+y) —Af (a+x), f'(a+x),f'(B+¥)
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Let
u(6) = dimy (K [[x,¥11/](6))

(6) = dimy (X [[x, ¥]1/T(6))

u(G) is called the Milnor number of F at the singular point (0,0).We define the
Milnor number of (a,B) to be u(G) also. t(G) is the Tjurina number of F at the
singular point (0,0). We define the Tjurina number of (a, 8) to be (G) also. Since

J(G) = T(G)
7(6) < u(G)
we now calculate the Milnor number of (a,8) €S, =T UT;

Theorem 4.1 Let (a,B) € S, be a singular point, assume char(¥) =0 or
char(¥) > mq gy (F)

1. If (a,B) €T, then u(G) = (kg — (kg — 1)

2. If (@,B) €Ty, then u(G) = (I, — D(lp — 1)

Proof.
1. Suppose (a,B) € T then, the Milnor number
,u(G) = dim?((j([[xl y]]/](G)) = dimg((?C[[x, y]]/<er Gy)) = I(Gx; Gy)

where I(Gx, Gy) is the intersection number of G, and G, at (0,0) (see [Fulton]).
With the notation in the proof of Theorem 3.1

Gx,y) = % (—Af ¥ (a)xke + fEa) (B)y*e) + HOT

_ A (kg kg—1 :
Gy = (ka—l)!f ()x + HOTinx

Gy = Gy S 44 (B)y*# ™ + HOTiny

The multiplicity of (0,0) on G, is (k, — 1) and the tangent line there is x = 0 with
multiplicity (k, — 1). The multiplicity of (0,0) on G, is (kg — 1) and the tangent
line there is y = 0 with multiplicity (kﬁ —1).Since G, and G, have no common
tangent at (0,0), it follows that

1(Gy,Gy) = (kg — (kg — 1)
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and therefore the Milnor number at (a, £) isu(G) = (ko — 1) (kg — 1)

2. Suppose (a,B) € T, then a similar argument gives
u(@) = =D -1

The following corollary is immediate

Corollary 4.1
1. 7(G) <

2. G has an isolated singularity at (0,0) hence F has an isolated
singularity at (a, 8) ([Hefez-Rodrigues-Salomao])

Proof’. We have defined the Milnor number of an isolated singularity of F,
now the total Milnor number of F is given as follow

dim?( (S‘C[[x, y]]/](G)) :(a,ﬁ)ER'XR' ‘U(G, (a' ﬁ))

similarly, the total Tjurina number of F:

dimy K [[x, y11/T(G) =@ pes, (G, (@, B))

For (a,B) € R" X R', let h, and hg be positive integers defined by
fO(@) =0, 1<i<hy,—1landf®(a) 0
FOB)=0, 1<i<hg—1andf(")(B)#0

As a consequence of Bezout’s theorem, we have

Theorem 4.2 Assume char(K) > max{hy, hg: (@, B) € R' X R'} then the

aper'xr' (he = D(hg — 1) = (n — 1)?

Proof. For each (a,8) € R’ X R' we obtain, as before, after
moving (a,B) to (0,0)

1((a.),E ) = 1((0,0), 65, Gy)
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Bezout’s theorem applied to G, and G, gives

@persel (@B EFy) = (n— 1)

but

—_* ) ha—1 -
G, = (ha—l)!f (a)x + HOTinx

_ 1
- (hﬁ—l)!

G, F8)(B)y"s~t + HOTiny
Hence, the multiplicity of (0,0) on G, is (h, — 1) and on G, it is (hg —1). The
tangents at (0,0) to the two curves are distinct, hence

1((0,0), Gy, Gy) = (hg — 1)(hg — 1)
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