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Abstract

In this paper, we describe the update of weight in the backpropagation algorithm,
which is currently too difficult to understand, in detail, and easy to understand.
This study was conducted for people who are interested in this field but who are

outsiders.
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1. INTRODUCTION

The difference between artificial intelligence (Al) and computers is that Al can learn.
Learning of Al is done by updating weights. For that reason, updating weights is known
as a significant topic in Al research.

Since the descriptions of the update of weight in the backpropagation algorithm are
difficult to understand, this study intends to provide a description that is easy to
understand for the reader. The backpropagation algorithm means backward propagation
of errors, which means updating weights using the method of gradient descent. When a
person receives a stimulus, the degree of each stimulus is different, and the intensity of
the stimulus can be interpreted as a weight in the neural network. In a word, the weight



802 Hj. Kim, K. Nonlaopon, and Jh. Rho

plays a role corresponding to the axon of the neuron of the brain cell[1-2]. In order to
obtain the desired output from the neural network, we need to update the weights. The
method of gradient descent is given by
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where « is the learning rate and L is the loss. Loss can be taken as the concept of
error. Typically, artificial neural networks are trained through an optimization process
that requires a loss function to calculate the error. In short, the optimization problem
can be interpreted as minimizing this loss function.

On one hand, the activation function means a function that calculates an input signal
with a pre-given weight, and determines whether the total will cause activation. It is
the same principle that the sense responds when a stimulus above the threshold is given
to the neuron. Commonly used activation functions are sigmoid, hyperbolic tangent,
ReLu, leaky ReLu, Maxout, ELU, and Softmax. A good activation function should
be non-saturated, zero-centered, and easy to compute. It is known that sigmoid and
hyperbolic tangent are not practically efficient. For that reason, in practice, ReLu is
used the most. The reason is that it is simple and easy to use.

The main purpose of this study is to provide an easy understanding and access to update
of weights.

2. EASY ACCESS TO THE UPDATE OF WEIGHT IN BACKPROPAGATION
ALGORITHM

In neural networks, the update of weights is computed as (1), where the point is

Lemma 2.1. (The rate of change for the weight of the squared error[4]) Let y; be
the actual output from the j-th node of the output layer, t; be the desired output value,
and e; = t; — y; be the error from the j-th node of the output layer. Then the rate of
change for the weight of the squared error Ew;; is can be expressed by
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where x; is the input from the i-th node of the hidden layer and w;; means the weight
connected from the i-th node of the hidden layer to the j-th node of the output layer[4].

Proof. The proof can be found in [4].
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In the above equation, the error can be simply interpreted as the loss function. Think of
this in convolutional neural networks(CNN). CNN can be found in [3]. The following
theorem is an upgraded version of the above lemma.

Theorem 2.2. (The rate of change of loss function with respect to weight in CNN)
Let x be the input vector of dimension h x v, w' be the weight at layer |, and L be the
loss function. Then the update of loss in backpropagation is obtained as follows.
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where Oﬁ’j = f(a:ij) is the output vector at layer 1, § is a gradient, and f is the

activation function.

Proof. For simplicity, assume that stride is given as 1. Note that the input of the [-th
channel is expressed as
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where b is a bias. We calculate the rate of change of the input with respect to weight as
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On the one hand, the loss function in deep neural network can be represented by
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This expression is related to the gradient descent algorithm, and is an algorithm that
minimizes the loss for a certain model. Usually, it is used to find the optimal solution of

weights. When E is an error, 0L /0w! , , is a generalized concept of OE /0w! , ,. Now,
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let us put OL/9x! ; = o,

INE
of simple layers, the error is updated as (1). In the case of the [-th channel of the multi

where ¢ is the delta matrix. In a neural network composed

convolution layer, it can be updated as
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where L is the loss function. Therefore, 0L/ 8w£n,7n, can be expressed as
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where Oﬁjj = f (xij) Consequently, we can see that the weights and deltas are

updated in the backpropagation algorithm, and artificial intelligence proceeds learning
by updating these deltas and weights.

3. CONCLUSION

In this paper, we considered an easy approach to updating weights. In a future study,
with this idea, we would like to present a logic that integrates convolution and pulling
in CNN.
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