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Abstract

Using quasi-subordination, we have defined a A-pseudo Bazilevi¢ functions of
order v + ¢9. Initial Taylor-Maclaurin coefficient bounds and the Fekete-Szego
inequality have been obtained for the newly defined Bazilevi¢ functions of order
v + id. Special cases of our main results are presented in the form of corollaries.
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1. INTRODUCTION

Robertson [1] introduced quasi-subordination unifying the concept of subordination
and majorization. For analytic functions f and ¢ in U, f is quasi-subordinate to g in
U, denoted by f <, g, if there exist a Schwarz function w and an analytic function ¢
satisfying |¢(z)| < 1 and f(2) = ¢(2)g(w(z)) in U. If ¢(z) = 1, quasi-subordination
reduces to subordination. If we let w(z) = z, then quasi-subordination reduces to the
concept of majorization.
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Let H(U) be the class of functions which are analytic in the open unit disk U =
{#z:]z] <1} and let A C H(U) be the class of functions having a Taylor series
expansion of the form

fE) =z2+) a2, (zeU={z: 2| <1}). (1.1)
k=2
For functions f € A given by (1.1) and h € A of the form
h(z)=z+) @2, (1.2)
k=2
the Hadamard product (or convolution) is defined by

R(z) = (fxh)(2) =2+ apdp2", (1.3)
k=2

Using Lowner-Kufarev differential equation, Bazilevi¢ [2] constructed a class B(~, ¢)
of analytic and univalent functions in the unit disc, which is defined by the integral

_1
y+id

72 = { | g7<<>h<<><i“d<} |

where h € ‘P, the class of analytic function with positive real part and g € S*, the
well-known class of starlike univalent function. The numbers v > 0 and ¢ are real
and all powers are chosen so that it remains single-valued. Sheil-Small [3, Theorem 2]
established that f € B(, 0) if and only if

/ y+id
(£ (22Y™]
f(z) z
Throughout this paper, let 1) be an analytic function such that Re [¢)(z)] > 0, (z € U)

and v maps the open unit disc U onto a region starlike with respect to 1 and symmetric
with respect to the real axis. Also, let 1) has a series expansion of the form

Re

Y(z) =14 A2+ Ap2® + A3z +--- (A1 #0; z € D). (1.4)

Motivated by the Janowski class and a class introduced by Noor and Malik [4],
Karthikeyan et.al. [5, Definition 1.1.] defined a class PS%(«,0; b; ¢; h; A, B) of
analytic functions which satisfies the condition

(1+itan®) AR ()]

SR (1—R() +ag™ (B+1)¢(z) — (B 1)
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where -2 <0 <7, A>1,0<a<1,t>0,bcC\{0}.

Motivated by the PS%(a,0; b; ¢; h; A, B) and a recent study by Mundalia and
Sivaprasad Kumar in [6](also see [7]), we now introduce the following the class of
functions.

Definition 1.1. For —5 <0 < 3, A>1,7>0,6 € R b€ C\{0}and R = fxh
defined as in (1.3), let By (b; «, 3,7, 9; 1) be the class of functions defined by

L) (200 0, 8,7,8: ) — 1] =4 () — 1. as)
where
z[azR"(2) + R/ ()]}
(1 —a)R(z) + azR/(2)

M)vm'

z

A 0,570 ) = ( ) (sm+a-p
Remark 1.1. The left hand side of (1.5) was motivated by the so-called \-pseudo
starlike functions introduced and studied by Babalola in [8]. Recently, the so-called
A-pseudo-starlike functions of complex order was extensively studied by Karthikeyan
et. al. in [5].

Remark 1.2. The class B (b; a, 3,7, 0; 1) is very closely related to well-known class
studied by various authors. For example, if we let 0 = 0, A = a = 1, ¢(z) = 1,
P(z) = 2(1—2)"tand h(z) = 2+ Y ", 2", we get the well-known convex function
of complex order introduced and studied by Wiatrowski in [9]. Similarly, if we let
a=0=02=109¢(z)=L¢kz) =z21-z2)"andh(z) =z+ > -, 2", we get the
class of starlike functions of complex order b introduced and studied by Nasr and Aouf
in[10].

2. PRELIMINARIES

In this section, we state the results that would be used to establish our main results
which can be found in the standard text on univalent function theory.

Lemma 2.1. [11, p. 56] If the function f(z) € A given by (1.1) and g(w) given by
g(w) =w + Z bw"® 2.1
k=2

are inverse functions, then for k > 2

kag 1 0 0

2kas (k+1)az 2 s 0

(—1)k+1 3kay (2k + 1)as (k + 2)ag 0
k! . .

by = 22
: : : : (k —2)
(k= Dkay  [k(k—2)+1]ag_1 [k(k—=3)+2]ag_2 -+ (2k—2)az
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Remark 2.1. The elements in the determinant |I';;| in (2.2) are given by
L. [((—d+n+j—1aij2, fit1>]
Y o, ifi+1<j.
Lemma 2.2. [12] If p(z) = 1+ >0 prz" € P, then |py| < 2 forall k > 1, and the
inequality is sharp.

Lemma 2.3. [13] Let p(z) € P and also let |1 be a complex number, then

p2 — ppi| < 2 max {1, [2u — 1|}, (2.3)
the result is sharp for functions given by
1+ 22 142
p(z) =p2(2) = p(z) =pl2) = —

3. COEFFICIENTS ESTIMATES FOR FUNCTIONS IN
Let g = f~! defined by f~'(f(2)) = 2 = f(f'(2)) be inverse of f and

1
g(w) = fH(w) =w+ Zbkwk (|lw| < ro; 70 > Z_L) (3.1

The class of all functions in B, (b; «, 3, 7y, d; ¢) is not univalent, so the inverse is not
guaranteed. However, there exist an inverse function in some small disk with center at
w = 0 depending on the parameters involved. Let ¢(2) = dy+diz+dy2%+- - - (dy # 0)
and |dy| < 1.

3.1. Estimates Of The Inverse Coefficients

Theorem 3.1. If the function f(z) given by (1.1) and g(w) given by (2.1) are inverse

functions and if f € By(b; o, 3, 7, §; ) with ¥(2) = 1+ Ajz + Ag2? + Azz3 +

, (A1 # 0; z € U), then the estimates of the inverse coefficients of f are
|b]] A4 |

bl S el =D T a) - ( 0+ B [0a] G2
and
| Aq]]0] dy
b5l < T )1 1 28) + GA+ (1 £ 20)] B3] [ +max{l; Wl(i
.3)
with
T2 AT B4 itand) [(2h— D+ a) 1 (v + D)1+ )]
A, bdo(y +i0)(1 4+ B)[(y+id — 1)1+ B8) +22A — 1)(1 + )] + 4A(A = 2)(1 + a)>
2(1 4+ itan®) [(2A — 1)(1 4+ a) + (y + i) (1 + B))? '

3.4)
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Proof. Let f € B)(b; o, 3, v, d; ¥). Then by the definition of quasi-subordination,
there is a function w(z) such that

1+ itand z[azR”(z) —i—RI(Z)])‘ . B R(Z) y+ié -
b [((1 —a)R(z) + azR’(z)) (BR () +1=5) ) 1]

The left hand side of the above expression is given by

1+itanf zlazR"(2) + R'(2)]} / _ iz) e _
b [((1 — a)R(z) + azR’(z)) (BR (z)+1-5) z ) 1]

= w ( (A = 1) (1 +a) + (v +i0)(1 + B)] Paagz
(v +1i0)(1 + )

2

+ {[(7 +16)(1 4+ 28) + BA+ 1)(1 + 2a)] P3a3 + {

[(v4+i0 —1)(1+8)+22A = 1)1+ )] +2A(A = 2)(1 + a)] P3a3} 2° + - -- )
(3.5)

where ®,’s are the corresponding coefficients from the power series expansion of 5,
which may be real or complex. Define the function p by
l+w(z) 14z

:1 2 o —— . .
p(2) =14+ prz+p22” + () T (z € 1) (3.6)

We can note that p(0) = 1 and p € P (see Lemma 2.2). Using (3.6), it is easy to see
that

z)—1 1 2 3
w(Z):p() :E{p12+(PQ—&)ZQ-I—(ps—p1p2+&)23+--l.

p(z)+1 2 4
So we have
1
82 [Bw(z) = 1) = 1+ S Avdopr» (3.7)
1 p? 1 d Arp
+ ldo <§A1 (p2 - 51) +ZA2]9%> + ! 21 1:| 22+"'

By using (3.1) and (3.7), we have

_ bA1dop:
T 20,(1+itan6) [(2A — D)(1 + ) + (v +id)(1 + )]

(3.8)

a2
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az =

Aidob { 1 ( Ao

2(1+itand) [(y +i0)(1 + 28) + (3A+ 1)(1 + 20a)] @3 |2~ 2 1= Ay

1,0+ B) [+ = D1+ 5) + 220 = D(L+a)l + AA - 2)(1 ““)) RED)
2(1 +itan6) [(2A — 1)(1 + @) + (v +i6)(1 + B)]
dip1
w}

From (2.2), we see that b, = —a,. Hence, applying Lemma 2.3 in (3.8), we have (3.2).

Also from (2.2), we have

(=1)*| 3az 1 2 b* Aldgpi
by = =2a3; — a3 = ; ) 2
3l | 6az  4das 203(1+itan0)2 [(2A — 1) (1 + ) + (v + i6) (1 + B)]
_ Ardob [ 1 (1 _ A
2(1+ itand) [(y +i0) (1 + 28) + (3A+ 1)(1 + 20)] @3 |2~ 2 A

1bdo(’Y +i0)(1+8)[(v+i6—1)1+8)+22A—1)(1 4+ a)] +4N(A —2)(1 + a)) 2, dlpll

JrA . . 2 Y4
2(1 +itan ) [(2A — 1)(1 + a) + (v +46)(1 + B)] do
_ Ardob [ _ 1 <1 _ ﬁ
T oI+ itan) [(y +i0)(1+28) + B + D)(1+2a)] 5 |12 2 A

4 bdo(y 4 30) (1 + B) [(v +i0 — 1)(1 + B) + 22X — 1)(1 + a)] + 4\ (A — 2)(1 + o)
! 2(1 +itan ) [(2X — 1)(1 + @) + (y +i8)(1 + )]
20A1do [(v + i6)(1 + 28) + (3X + 1)(1 + 2a)] @3 ) ) d1p1] .

_|_

D21 +itand) [2A— D1 +a)+ (v +id) 1+ B8)7) " do
Applying Lemma 2.3 to the above expression, we can establish the assertion of the

Theorem 3.1.

Corollary 3.2. If the function f(z) given by (1.1) and g(w) given by (2.1) are inverse
functions and if f € B(~, §), then the estimates of the inverse coefficients of f are

[P —
(1+7)2 402
and
Iby] < max{l; (7+26)(7+26.—21)—2_2(74—2(5—‘#42)_ '}
4+ )%+ 62 (2 + 7 +1i9) (14~ +id)
7

Remark 3.1. The impact of the well-known Janowski function on

1+ 2
1—/z

5 2
k(z) =1+ = <log ) , (z € U) (3.10)

was recently studied by Malik et. al. [14]
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Theorem 3.3. Suppose that f € B)(b; a, 3, v, §; 1) with 1(2) of the form

(A+1Dr(2)+(A-1)

¥(z) = (B+ )k(z) + (B—1)

where —1 < B < A < 1 and k(z) is defined as in(3.10), then

| < 4]b|(A — B)
2= T250c [CA—=1)(1+a)+ (y+i0)(1 + B)] |p2|
and
4(A — B)|b| 1 .
sl < BT T )+ 25) + (3A £ 1) (1 £ 20) 3] Hd_o‘ max il ’”l}}
with

2 3
+bd0('y+i5)(1 +B8)[(y+i6 — 1)1+ B) + 22X — 1)(1 + )] + 4 (X — 2)(1 + a)>
2(1 + i tan ) [(2A — 1)(1 + @) + (v + i0)(1 + B)]° '

o (4(13 +1) 2) . <4(A - B)) 2bdo [(v + i6)(1 + 28) + (3A + 1)(1 + 20)] P3
2 ®2(1 1 itand) [(2A — 1)(1 +a) + (v +id)(1 + B)]2

Proof. Following the steps as in Theorem 1 of [15], we get

M} 22+

T2

w<z>:1+4(A;B>z+8<A‘B> {1—

T 372

3.11)

Now replacing A;, Ay and Az in Theorem 3.1 with the corresponding coefficients of
the series given in (3.11), we have the assertion of the Theorem.

Ifweleth(z) =2+ 1,25 d(z) =L, A=a=1,7v+i0 =0,b=1+0iand =0
in Theorem 3.1, we have

Corollary 3.4. [14, Theorem 4] Suppose that [ € UP[A, B], —1 < B < A < 1, then

2(A - B)

‘bQ, < 2 )

and

4(A - B)

bs| <
1bs] < 672

3.2. Fekete-Szego Problem
The Fekete-Szegd problem which is related to the Bieberbach conjecture represents
various geometric quantities.
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Theorem 3.5. Suppose f(z) = 2z + ax2*> + az2® + - - € By(b; , B, v, 6; ¥) (2 € U).
Then, for any p € C

|Axl[0]
secO |(y 4+ i0)(1 +28) + (3A + 1)(1 4 2a)| | s

‘a3 — Pag‘ <

J (3.12)
H—l‘ + max {1; [2v — 1|}} ,
do
where v is given by
v=23 {1—?—“11 (M1+M2>] (3.13)
with
M — (Y+i0) (L +B)[(y+id = 1)1+ 5) + 222 = 1)(1 + a)] + 4A(A = 2)(1 + o)
! 2(1 +itand) (27 — 1)(1 +a) + (7 + id)(1 + B)]°
and

~ pbAido [(y +i6)(1+28) + (BA 4 1)(1 + 2a)] @3
T (1t itand) (27— )1+ a) + (v + )1+ B

The inequalities are sharp for each p.

Proof. Let f € B, (b; o, 3,7,0; 1), then in view of the equations (3.8) and (3.9), for
1 € C we have

|a3 - PG%| =

Ardob
2(1 +itan @) [(y +40)(1 4+ 28) + (3 + 1)(1 + 2a)] @5 [pZ )
(y+10) 1+ B)[(y+i0—1)(1+6) +22A — 1)1+ )] +4A(A —2)(1 + o)
2(1+itand) [(2A — (1 +a) + (v +0)(1 + B)]°
pbArdy [(y +i0)(1 4+ 28) + (3X + 1)(1 + 20)] &3 ) N dlpl}

_Al

T @3(1+itand) [(2A — D(1+a) + (y+i0)(1+ B | do
(3.14)
Using Lemma 2.2 in (3.14), we have
|ag — pa3| <
Aq||b di| 1 A
. | As][b] {2+2 a1 < Ap
2secO|(y+i0)(1+28) + BA + 1)(1 + 2a)| |®3] do| 2 A,

(vy+i0) 1+ B8)[(y+i0 —1)(1+ B8) + 22X — 1)(1 + )] + 4AN(A — 2)(1 + )
2(1 +itand) [(2) — (1 +a) + (v +i0)(1 + B)]
_ pbAidy [(v+i0)(1+28) + BA+ 1)1 +2a)] @5 | 1)}
(3.15)

—A

®2(1 +itand) (27 — (1 + @) + (7 +i0)(1 + B)]
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— AiM; — AiM,| < 1in (3.14), then
Ai[b] dy
— pd2| < |4 14+ |=—|]. @3.16
ja — pa3] < secO](y +i0)(1 + 28) + (3A + 1)(1 + 2a)] | 0] { Tlal] o GO
Further, if %_AlMl — A Msy| > 11in (3.14), then

las — pad| < [ A1][b]

5= e 0](7 4 i0) (14 28) + (BX + 1)(1 + 20| | @3] 5.17)

( '——AMl A1M2>.

An examination of the proof shows equality for (3.16) holds if p; = 0, po = 2.

Equivalently, we have p(z) = pa(z) = }fji by Lemma 2.3. Therefore, the extremal

function in B)(b; «, 3, 7, J; 1) is given by

1+itand zlazR"(2) + R'(2)]} / _ R(z) e _
b [((1 —a)R(z) + azR’(z)) (BR () +1=5) z ) 1]

= o(2) [p2(2) — 1]

Similarly, equality for (3.17) holds if p» = 2. Equivalently, we have p(z) = pi(z) =
by Lemma 2.3. Therefore, the extremal function in B, (b; «, 3, 7, 6; 1/}) (z € U)

iven b
given by 1+itanf |:( Z[azR”(z)—i-R’(z)])‘ )
i |\ T- kG + xR ()

Y+
(s 40— ™) 1] = 0() [p(2) ~1].

Ifweld=7y=0=0,P,=1,aa=0,A=1,¢(z) = 1l and b = 1 in Theorem 3.5, we
have the following result.

Corollary 3.6. [16] Let 0 < n < 1 < 6 and let the function [ € A satisfies the

condition
_ 1 — e2mi((1=n)/(0—n))
nilog ( ¢ Z) :
1—2

2f'(2)
f(2)

Then, for a complex number i,

‘&3 —Na2| <9 - T sin <M>

0 —n
max{l;

<Y(z)=1+

—+(1—2u)9

= 1 0— iy
Ti+ (— — (1 —2u) ”i) 2o

T 2 T

b
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Ifwed=7y=0=0,P,=1,a=0,A\=1,¢(2) = 1and b = 1 in Theorem 3.5, we
have

Corollary 3.7. [17, Theorem 3.1] Suppose f(z) € A satisfies the condition

2f'(2)
f(2)

where < denotes the subordination and 1) is defined as in (1.4). Then

< Y(2),

A
Al + 2 —2/.1,141

A
|a3—ua§‘ §71max{1; a,

} , (neQ).
The inequality is sharp for the function given by

zexp [ [W(t) — 1] ¢dt, if |Ai+ ﬁ—f —2uA; >1

f(Z) - z 2 1 . A
zexp [y [Y(t?) — 1] 7dt, if |Ay+ 52 —2pA;| < 1.

3.3. Conclusion

By defining A\-pseudo Bazilevi¢ functions of order v+ ¢9 using quasi-subordination and
Hadamard product, we were able to unify and extend the various classes of analytic
function. New extensions were discussed in detail. Theorem 3.1 and Theorem 3.5 have
many applications, here we pointed out only few.
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