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1. INTRODUCTION

Although the problem of resistance to moving of a ship’s hull has always been of
interest to sailors, it is still difficult to solve in a general context. Indeed, it is currently
impossible to calculate this resistance in the case of any hull advancing in a formed sea
[1].

However, considering that the ship is moving in a water at rest, we can simplify the
problem by adopting the Froude hypothesis, which consists in saying that the resistance
to the progress is the sum of three particular components :

- wave resistance due to the energy required to maintain the wave train accompanying
the ship;

- viscous resistance due to friction;

- aerodynamic resistance which, practically, can be neglected (2 to 3% of the total
resistance). However, it is very important to predict the amplitudes of waves.
Nowadays, it is known that for the two-dimensional problem, the wave resistance is
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described by the formula :

R =
1

4
ρgA2[1−

2kh

sinh(2kh)
]

where is ρ = water density ,g = gravitational acceleration, h= depth, k= wave number
( 2π
λ

), A = amplitude of waves [2].

In order to predict this wave resistance, we have empirical laws deduced from the
total resistance obtained in model-scale test basins or from numerical models based on
linearized or non-linearized theories. In the numerical context, some authors [3], [4],[5]
have developed analytical methods of computations to solve Wave-Like equations,
notably the decompositional methods of Adomian (ADM) and Sumudu. In order to
verify the effectiveness of the analytical methods in comparison with those used by
the previous authors, the present work uses the Laplace-Adomian method and the SBA
method to solve analytically some Wave-Like equations of type:

∂2u(X, t)

∂t2
=

n∑
i,j=1

F1ij(X, t, u)
∂k+mF2ij(uxi

,uxj
)

∂xki ∂x
m
i

+
n∑
i=1

G1i(X, t, u)
∂pG2i(uxi

,uxj
)

∂xp
+

H(X, t, u) + S(X, t)

u(X, 0) = a1(x)

∂u(X,0)
∂t

= a2(x)

(1)

where 

X = (x1, x2, · · · , xn)
F1ijX, F2ij non linear functions as X, t, u
G1i, G2i non linear functions as xi, xj
H, S non linear functions
k,m, p ∈ N

(2)

2. DESCRIBING OF BOTH METHOD

2.1. The Laplace transform [6]

Let’s note the Laplace transform by

L(u(x, t)) =
∫∞
0

u(x, t)e−stdt (3)
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From (3 ), we get:
L(∂u(x, t)

∂t
) = sL (u(x, t)) − u(x, 0)

L(∂
2u(x, t)

∂t2
) = s2L (u(x, t)) − su(x, 0) −

∂u(x, 0)

∂t

(4)

2.2. Laplace-Adomian Decomposition method (LADM) [7] , [8]
Suppose that we need to solve the following equation:

utt(x, t) = αu(x, t) + βN(u(x, t)) (5)

The initial conditions are :

u(x, 0) = f(x); ut(x, 0) = g(x) (6)

in a Banach space E, where F : E → E is a linear or a nonlinear operator, h ∈ E and u

is the unknown function.

Let’s suppose that operator F can be decomposed under the following form:

F = L− R−N (7)

where L − R is linear, N nonlinear. Let’s suppose that L is invertible to the sense of
Adomian with L−1 as inverse.

We get:
L [utt(x, t)] = αL [u(x, t)] + βL [N(u(x, t))] (8)

Equation (8) is given by:

s2L (u(x, t)) − su(x, 0) − ut(x, 0) = αL [u(x, t)] + βL [N(u(x, t))] (9)

⇐⇒ (
s2 − α

)
L (u(x, t)) = su(x, 0) + ut(x, 0) + βL [N(u(x, t))] (10)

From (10), we get :

L (u(x, t)) =
s

s2 − α
u(x, 0) +

1

s2 − α
ut(x, 0) +

β

s2 − α
L [N(u(x, t))] (11)

⇐⇒
u(x, t) = L−1

(
s

s2 − α
u(x, 0)

)
+L−1

(
1

s2 − α
ut(x, 0)

)
+L−1

(
β

s2 − α
L [N(u(x, t))]

)
(12)
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We look for the solution of (5 ) in the following series expansion form

u(x, t) =

+∞∑
n=0

un(x, t) (13)

and we consider

Nu(x, t) =

+∞∑
n=0

An (14)

where An are the Adomian polynomials of u0, u1, · · · , un and it can be calculated by
formula given below :

An =
1

n!

[
dn

dpn
N(

∞∑
i=0

λiui

]
λ=0

, n = 0, 1, 2, 3, · · · (15)

Using eq (13) and eq (14) in eq (12), gives :
+∞∑
n=0

un(x, t) = L−1
(

s
s2−α

u(x, 0)
)
+ L−1

(
1

s2−α
ut(x, 0)

)
+

+∞∑
n=0

L−1
(

β
s2−α

L (An(x, t))
) (16)

From (16), we have the following Adomian algorithm: u0(x, t) = L−1
(

s
s2−α

u(x, 0)
)
+ L−1

(
1

s2−α
ut(x, 0)

)
= K(x, t)

un+1(x, t) = L−1

(
β

s2−α
L
(

+∞∑
n=0

An(x, t)

))
, n ≥ 0

(17)

⇔
 u0(x, t) = K(x, t)

un+1(x, t) = L−1

(
β

s2−α
L
(

+∞∑
n=0

An(x, t)

))
, n ≥ 0

(18)

2.3. SBA method [9] , [10] .

Let’s consider the following functional equation

Au = f (19)

Where A : H → H is an operator not necessarily linear and H is a Hilbert space

adequately chosen given the operator A.
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Let:
A = L− R−N (20)

Where L is an invertible operator in the Adomian sense, R the linear remainder and N a
nonlinear operator. Equation (19) therefore becomes:

Lu− Ru−Nu = f ⇔ u = θ+ L−1(f) + L−1(Ru) + L−1(Nu) (21)

Where θ is such that Lθ = 0 . Equation (21) is the Adomian canonical form [1]. Using
the successive approximations [2], we get:

uk = θ+ L−1(f) + L−1(R(uk)) + L−1(N(uk−1)); k ≥ 1 (22)

This yields the following Adomian algorithm :
uk
0 = θ+ L−1(f) + L−1(N(uk−1))

uk
n = L−1(R(uk

n−1)), ∀n ≥ 1

(23)

The Picard principle is then applied to equation (23) let u0 be such that N(u0) = 0, for
k = 1, we get: 

u1
0 = θ+ L−1(f ) + L−1(N(u0))

u1
n = L−1(R(u1

n−1)), ∀n ≥ 1

(24)

If the series
( ∞∑

n=0

u1
n

)
converges, then u1 =

( ∞∑
n≥1

u1
n

)
For k = 2,we get: 

u2
0 = θ+ L−1(f ) + L−1(N(u1))

u2
n = L−1(R(u2

n−1)), n∀ ≥ 1

(25)

If the series
( ∞∑

n=0

u2
n

)
converges, then u2 =

( ∞∑
n≥1

u2
n

)
.

This process is repeated to k.

If the series
( ∞∑

n=0

uk
n

)
converges, then uk =

( ∞∑
n≥1

uk
n

)
.

Therefore, u = lim
k→+∞uk is a solution of the problem.
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3. TEST EXAMPLES

In this section, we present some examples with analytical solution to show the efficiency
of method described in previons section for solving equation (1).

3.1. Example 1
Solve the following probem :

∂2u(x, t)

∂t2
= (u(x, t))2

∂2

∂x2
(
∂u(x, t)

∂x

∂2u(x, t)

∂x2
∂3u(x, t)

∂x3
)+(

∂u(x, t)

∂x

)2
∂2

∂x2

(
∂2u(x, t)

∂x2

)3

− 18u5(x, t) + u(x, t)

u(x, 0) = ex

∂u(x, 0)

∂t
= ex

(26)

Laplace-Adomian decomposition method

Applying Laplace-Adomian to (26 ) gives :

L (u(x, t)) = s
s2−1

u(x, 0) + 1
s2−1

∂u(x, 0)

∂t
+ 1

s2−1
L (N (u(x, t)))+

1
s2−1

L (M(u(x, t))) − 18 1
s2−1

L (K(u(x, t)))

(27)

So that
L (u(x, t)) = s

s2−1
ex + 1

s2−1
ex + 1

s2−1
L (N (u(x, t)))+

1
s2−1

L (M(u(x, t))) − 18 1
s2−1

L (K(u(x, t)))

(28)

Invertible transform gives canonic form :

u(x, t) = L−1
(

s+1
s2−1

)
ex + L−1

(
1

s2−1
L (N (u(x, t)))

)
+

L−1
(

1
s2−1

L (M(u(x, t)))
)
− 18L−1

(
1

s2−1
L (K(u(x, t)))

) (29)

⇔
u(x, t) = et+x + L−1

(
1

s2−1
L (N (u(x, t)))

)
+ L−1

(
1

s2−1
L (M(u(x, t)))

)
−

18L−1
(

1
s2−1

L (K(u(x, t)))
) (30)
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and Laplace-Adomian algorithm

u0(x, t) = et+x

un+1(x, t) = L−1
(

1
s2−1

L (An(x, t))
)
+ L−1

(
1

s2−1
L (Bn(x, t))

)
−

18L−1
(

1
s2−1

L (Cn(x, t))
)
,∀n ≥ 0

(31)

Then 


A0 = (u0(x, t))

2 ∂2

∂x2
(
∂u0(x, t)

∂x

∂2u0(x, t)

∂x2
∂3u0(x, t)

∂x3
)

= (et+x)
2 ∂2

∂x2
(
∂

∂x
(et+x)

∂2

∂x2
(et+x)

∂3

∂x3
(et+x))

= 9e5t+5x
B0 =

(
∂u0(x, t)

∂x

)2
∂2

∂x2

(
∂2u0(x, t)

∂x2

)3

=

(
∂

∂x
(et+x)

)2
∂2

∂x2

(
∂2

∂x2
(et+x)

)3

= 9e5t+5x{
C0 = u5

0(x, t)

= e5t+5x

(32)

Thus, we see that

u0(x, t) = et+x

u1(x, t) = 18e5x
[
L−1

(
1

s2−1
L
(
e5t
))]

− 18e5x
[
L−1

(
1

s2−1
L
(
e5t
))]

= 0

un(x, t) = 0, ∀n ≥ 2

(33)

so
u(x, t) = u0(x, t) = et+x (34)

b) Solving by SBA method
Consider state equation :

∂2u(x, t)

∂t2
= (u(x, t))2

∂2

∂x2
(
∂u(x, t)

∂x

∂2u(x, t)

∂x2
∂3u(x, t)

∂x3
)+(

∂u(x, t)

∂x

)2
∂2

∂x2

(
∂2u(x, t)

∂x2

)3

− 18u5(x, t) + u(x, t)
(35)

Let’s make

L (.) =
∂2(.)

∂t2
⇔ L−1 =

∫ t

0

(∫ s

0

(.)dz

)
ds (36)
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and

N(u(x, t)) = (u(x, t))2
∂2

∂x2
(
∂u(x, t)

∂x

∂2u(x, t)

∂x2
∂3u(x, t)

∂x3
)+(

∂u(x, t)

∂x

)2
∂2

∂x2

(
∂2u(x, t)

∂x2

)3

− 18u5(x, t)
(37)

Equation (35) gives :

∂2u(x, t)

∂t2
= u(x, t) +N(u(x, t)) (38)

Applying L−1 to ( 38 ) gives canonic form following :

u(x, t) = u(x, 0)+
∂u(x, 0)

∂t
t+

∫ t

0

(∫ s

0

(u(x, z))dz

)
ds +

∫ t

0

(∫ s

0

(N(u(x, z)))dz

)
ds

(39)
So

u(x, t) = (1+ t) ex +

∫ t

0

(∫ s

0

(u(x, z))dz

)
ds +

∫ t

0

(∫ s

0

(N(u(x, z)))dz

)
ds (40)

Successive approximation theorem gives :

uk(x, t) = (1+ t) ex +

∫ t

0

(∫ s

0

(uk(x, z))dz

)
ds +

∫ t

0

(∫ s

0

(N(uk−1(x, z)))dz

)
ds

(41)

By replacing uk(x, t) by
+∞∑
n=0

uk
n(x, t) and we let

Ñ(uk−1(x, t)) =

∫ t

0

(∫ s

0

N(u(x, z))dz

)
ds, we have :

+∞∑
n=0

uk
n(x, t) = (1+ t) ex +

+∞∑
n=0

∫ t

0

(∫ s

0

(uk
n(x, z))dz

)
ds + Ñ(uk−1(x, t)) (42)

Then algorithm form is :


uk
0(x, t) = (1+ t) ex + Ñ(uk−1(x, t))

uk
n+1(x, t) =

∫ t

0

(∫ s

0

(uk
n(x, z))dz

)
ds

(43)

Détermine uk(x, t) for k ≥ 0
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For k = 1, we have the following SBA algorithm. If we choice u0 so that


u1
0(x, t) = (1+ t) ex + Ñ(u0(x, t))

u1
n+1(x, t) =

∫ t

0

(∫ s

0

(u1
n(x, z))dz

)
ds ,∀n ≥ 0

(44)

Let’s suppose that one can find u0(x, t) as Ñ(u0(x, t)) = 0, we obtain the following
SBA algorithm: 

u1
0(x, t) = (1+ t) ex

u1
n+1(x, t) =

∫ t

0

(∫ s

0

(u1
n(x, z))dz

)
ds, ∀n ≥ 0

(45)

From (45 ), we get 

u1
0(x, t) = ex + tex

u1
1(x, t) =

1
2
t2ex + 1

3!
t3ex

u1
2(x, t) =

1
4!
t4ex + 1

5!
t5ex

u1
3(x, t) =

1
6!
t6ex + 1

7!
t7ex

...

(46)

Thus 
u1(x, t) = u1

0(x, t) + u1
1(x, t) + u1

2(x, t) + u1
3(x, t) + · · ·

= ex + tex + 1
2
t2ex + 1

3!
t3ex + 1

4!
t4ex + 1

5!
t5ex + · · ·

=
(
1+ t+ 1

2
t2 + 1

3!
t3 + 1

4!
t4 + 1

5!
t5 + · · ·

)
ex

= etex

(47)

(47 )⇔
u1(x, t) = et+x (48)

For k = 2 , we get following SBA algorithm:


u2
0(x, t) = (1+ t) ex + Ñ(u1(x, t))

u2
n+1(x, t) =

∫ t

0

(∫ s

0

(u2
n(x, z))dz

)
ds,∀n ≥ 0

(49)
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From (49), therefore we get :

N(u1(x, t)) =
(
u1(x, t)

)2 ∂2

∂x2
(
∂u1(x, t)

∂x

∂2u1(x, t)

∂x2
∂3u1(x, t)

∂x3
)+(

∂u1(x, t)

∂x

)2

∂2

∂x2

(
∂2u1(x, t)

∂x2

)3

− 18
(
u1(x, t)

)5
= (et+x)

2 ∂2

∂x2
(
∂ (et+x)

∂x

∂2 (et+x)

∂x2
∂3 (et+x)

∂x3
)

+

(
∂ (et+x)

∂x

)2
∂2

∂x2

(
∂2 (et+x)

∂x2

)3

− 18 (et+x)
5

= 9e3t+3xe2(t+x) + 9e3t+3xe2(t+x) − 18e5(t+x)

= 18e5t+5x − 18e5t+5x

= 0

(50)

=⇒
Ñ(u1(x, t)) =

∫ t

0

(∫ s

0

N(u1(x, z))dz

)
ds = 0 (51)

From ( 49 ) and (50), we obtain

u2
0(x, t) = ex + tex

u2
1(x, t) =

1
2
t2ex + 1

3!
t3ex

u2
2(x, t) =

1
4!
t4ex + 1

5!
t5ex

u2
3(x, t) =

1
6!
t6ex + 1

7!
t7ex

...

(52)

and
u2(x, t) = u2

0(x, t) + u2
1(x, t) + u2

2(x, t) + u2
3(x, t) + · · ·

= ex + tex + 1
2
t2ex + 1

3!
t3ex + 1

4!
t4ex + 1

5!
t5ex + · · ·

=
(
1+ t+ 1

2
t2 + 1

3!
t3 + 1

4!
t4 + 1

5!
t5 + · · ·

)
ex

= etex

= et+x

(53)

Thus,
u2(x, t) = et+x (54)

Using the same procedure for k ≥ 3, we have

u3(x, t) = · · · = uk(x, t) = et+x (55)
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From which, we obtain

u(x, t) = lim
k→+∞uk(x, t) = et+x (56)

This table give comparative solutions for example 1 :

Laplace-Adomian Method u(x, t) = et+x

SBA Method u(x, t) = et+x
(57)

3.1.1 Example 2

Lets us consider the following problem :

∂2u(x, t)

∂t2
= x2

∂

∂x
(
∂u(x, t)

∂x

∂2u(x, t)

∂x2
) − x2

(
∂2u(x, t)

∂x2

)2

− u(x, t)

u(x, 0) = 0

∂u(x, 0)

∂t
= x2

(58)

where u = u(x, t) and 0 ≤ x ≤ 1, t ≥ 0

Détermine solution of problem (58) by LADM and SBA method.

a) Solving by Laplace-Adomian Decomposition method

Applying Laplace transform to (58 ) gives :

L (u(x, t)) = s
s2+1

u(x, 0) + 1
s2+1

∂u(x, 0)

∂t
+ 1

s2+1
L
(
x2

∂

∂x
(N (u(x, t)))

)
−

1
s2+1

L
(
x2M(u(x, t))

) (59)

so 
N (u(x, t)) =

∂u(x, t)

∂x

∂2u(x, t)

∂x2

M(u(x, t) =

(
∂2u(x, t)

∂x2

)2

We can rearrange the equation (59) as either

L (u(x, t)) = 1
s2+1

x2 + 1
s2+1

L
(
x2

∂

∂x
(N (u(x, t)))

)
−

1
s2+1

L
(
x2M(u(x, t))

) (60)
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Applying invertible Laplace transform to (60 ), we obtain canonic form following:

u(x, t) = L−1
(

1
s2+1

)
x2 + L−1

(
1

s2+1
L
(
x2

∂

∂x
(N (u(x, t)))

))
−

L−1
(

1
s2+1

L
(
x2M(u(x, t))

)) (61)

⇔
u(x, t) = x2 sin t+ L−1

(
1

s2+1
L
(
x2

∂

∂x
(N (u(x, y, t)))

))
−

L−1
(

1
s2+1

L
(
x2M(u(x, y, t))

)) (62)

Where 
N (u(x, t)) =

+∞∑
n=0

An(x, t)

M(u(x, t) =
+∞∑
n=0

Bn(x, t)

(63)

Using eq (15), we get Adomian’s polynomials as follows



A0(x, t) =
∂u0(x, t)

∂x

∂2u0(x, t)

∂x2

A1(x, t) =
∂u0(x, t)

∂x

∂2u1(x, t)

∂x2
+

∂u1(x, t)

∂x

∂2u0(x, t)

∂x2

A2(x, t) =
∂u0(x, t)

∂x

∂2u2(x, t)

∂x2
+

∂u1(x, t)

∂x

∂2u1(x, t)

∂x2
+

∂u2(x, t)

∂x

∂2u0(x, t)

∂x2...
and

B0(x, t) =

(
∂2u0(x, t)

∂x2

)2

B1(x, t) = 2

(
∂2u0(x, t)

∂x2

)(
∂2u1(x, t)

∂x2

)
B2(x, t) =

(
∂2u1(x, t)

∂x2

)2

+ 2

(
∂2u0(x, t)

∂x2

)(
∂2u2(x, t)

∂x2

)
(64)

That is (62 ), we get Laplace-Adomian algorithm following :
u0(x, t) = x2 sin t

un+1(x, t) = L−1

(
1

s2+1
L
(
x2

∂

∂x
(An(x, t))

))
− L−1

(
1

s2+1
L
(
x2Bn(x, t))

))
(65)
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So 

A0(x, t) =
∂
(
x2 sin t

)
∂x

∂2
(
x2 sin t

)
∂x2

= 4x sin2 t

B0(x, t) =

(
∂2
(
x2 sin t

)
∂x2

)2

= 4 sin2 t

u0(x, t) = x2 sin t

u1(x, t) = 4x2L−1
(

1
s2+1

L
(
sin2 t

))
− 4x2L−1

(
1

s2+1
L
(

sin2 t)
))

= 0

An(x, t) = 0, ∀n ≥ 1

Bn(x, t) = 0, ∀n ≥ 1

un(x, t) = 0, ∀n ≥ 1

(66)

Therefore, solution of problem is :

u(x, t) = u0(x, t) = x2 sin t (67)

b) Solving by SBA method
Let us consider equation

∂2u(x, t)

∂t2
= −u(x, t) + C(u(x, t)) (68)

where

C(u(x, t)) = x2
∂

∂x
(
∂u(x, t)

∂x

∂2u(x, t)

∂x2
) − x2

(
∂2u(x, t)

∂x2

)2

(69)

Equation (68) gives canonic form following :

u(x, t) = u(x, 0) +
∂u(x, 0)

∂t
t−

∫ t

0

(∫ s

0

u(x, z)dz

)
ds+

∫ t

0

(∫ s

0

C(u(x, z))dz

)
ds

(70)
so

u(x, t) = x2t−

∫ t

0

(∫ s

0

u(x, z)dz

)
ds+

∫ t

0

(∫ s

0

C(u(x, z))dz

)
ds (71)
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Successive approximation method leads to for k ≥ 1

uk(x, t) = x2t−

∫ t

0

(∫ s

0

uk(x, z)dz

)
ds+ C̃(uk−1(x, t)) (72)

where

C̃(uk−1(x, t)) =

∫ t

0

(∫ s

0

C(u(x, z))dz

)
ds (73)

SBA associate algorithm is given by :
uk
0(x, t) = x2t+ C̃(uk−1(x, t))

uk
n+1(x, t) = −

∫ t

0

(∫ s

0

uk
n(x, z)dz

)
ds, ∀n ≥ 0

(74)

At stage k = 1 ,we get u0 so that C̃(u0(x, t)) = 0


u1
0(x, t) = x2t+ C̃(u0(x, t))

u1
n+1(x, t) = −

∫ t

0

(∫ s

0

u1
n(x, z)dz

)
ds, ∀n ≥ 0

(75)

Equation (75) would be :

u1
0(x, t) = x2t

u1
1(x, t) = −1

6
t3x2

...
u1
n(x, t) = (−1)n t2n+1

(2n+1)!
x2, ∀n ≥ 0

(76)

u1(x, t) =

(
+∞∑
n=0

(−1)n
t2n+1

(2n+ 1) !

)
x2 = x2 sin t (77)

At stage k = 2 , we get


u2
0(x, t) = x2t+ C̃(u1(x, t))

u2
n+1(x, t) = −

∫ t

0

(∫ s

0

u2
n(x, z)dz

)
ds, ∀n ≥ 0

(78)
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Thus,

C(u1(x, t)) = x2
∂

∂x
(
∂u1(x, t)

∂x

∂2u1(x, t)

∂x2
) − x2

(
∂2u1(x, t)

∂x2

)2

= x2
∂

∂x
(
∂
(
x2 sin t

)
∂x

∂2
(
x2 sin t

)
∂x2

) − x2

(
∂2
(
x2 sin t

)
∂x2

)2

= −2x2 (cos 2t− 1) − 4x2 sin2 t

= 4x2 sin2 t− 4x2 sin2 t

C(u1(x, t)) = 0

(79)

⇒ C̃(u1(x, t)) =

∫ t

0

(∫ s

0

C(u1(x, z))dz

)
ds = 0 (80)

In a recursive way, one deduces

u2
0(x, t) = x2t

u2
1(x, t) = −1

6
t3x2

...
u2
n(x, t) = (−1)n t2n+1

(2n+1)!
x2, ∀n ≥ 0

(81)

Therefore

u2(x, t) =

(
+∞∑
n=0

(−1)n
t2n+1

(2n+ 1) !

)
x2 = x2 sin t (82)

In a recursive way, one deduces for k > 2 approximate solution :

uk(x, t) = x2 sin t (83)

Thus, exact solution of problem (58 ) is

u(x, t) = lim
k→+∞uk(x, t) = x2 sin t (84)

This table compare obtained solutions :

Laplace-Adomian Method u(x, t) = x2 sin t
SBA Method u(x, t) = x2 sin t

(85)

Conclusion

The two solutions were similar.
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3.1.2 Example 3

Let us consider mathematical model following

∂2u(x, y, t)

∂t2
=

∂2

∂x∂y
(
∂2u(x, y, t)

∂x2
∂2u(x, y, t)

∂y2
) − ∂2

∂x∂y(xy
∂u(x, y, t)

∂x

∂u(x, y, t)

∂y
) − u(x, y, t)

u(x, y, 0) = exy

∂u(x, y, 0)

∂t
= exy

(86)
a) Solving by Laplace-Adomian Decomposition method

Consider equation following

∂2u(x, y, t)

∂t2
=

∂2

∂x∂y
(
∂2u(x, y, t)

∂x2
∂2u(x, y, t)

∂y2
)−

∂2

∂x∂y
(xy

∂u(x, y, t)

∂x

∂u(x, y, t)

∂y
)−u(x, y, t)

(87)
Equation (87 ) leads to

∂2u(x, y, t)

∂t2
=

∂2

∂x∂y
(N (u(x, y, t))) −

∂2

∂x∂y
(M (u(x, y, t))) − u(x, y, t) (88)

where 
N (u(x, y, t)) =

∂2u(x, y, t)

∂x2
∂2u(x, y, t)

∂y2

M (u(x, y, t)) = xy
∂u(x, y, t)

∂x

∂u(x, y, t)

∂y

(89)

Applying Laplace transform to (88) gives :

L
(
∂2u(x, y, t)

∂t2

)
= L

(
∂2

∂x∂y
(N (u(x, t)))

)
−L

(
∂2

∂x∂y
(M (u(x, t)))

)
−L (u(x, t)) (90)

Thus

L (u(x, y, t)) = s
s2+1

u(x, y, 0) + 1
s2+1

∂u(x, y, 0)

∂t
+ 1

s2+1
L
(

∂2

∂x∂y(N (u(x, y, t)))
)
−

1
s2+1

L
(

∂2

∂x∂y(M (u(x, y, t)))
)

(91)⇔
u(x, y, t) = L−1

(
s

s2+1
u(x, y, 0)

)
+ L−1

(
1

s2+1

∂u(x, y, 0)

∂t

)
+L−1

(
1

s2+1
L
(

∂2

∂x∂y(N (u(x, y, t)))
))

−

L−1
(

1
s2+1

L
(

∂2

∂x∂y(M (u(x, y, t)))
)) (92)
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We obtain canonic form following :

u(x, y, t) = (cos t+ sin t) exy + L−1
(

1
s2+1

L
(

∂2

∂x∂y
(N (u(x, y, t)))

))
−

L−1
(

1
s2+1

L
(

∂2

∂x∂y
(M (u(x, y, t)))

)) (93)

Chosing solution so that

u(x, y, t) =

∞∑
n=0

un(x, y, t) (94)

and non linear terms N (u(x, y, t)) and M (u(x, y, t)) so that
N (u(x, y, t)) =

∞∑
n=0

An(x, y, t)

M(u(x, y, t)) =
∞∑
n=0

Bn(x, y, t)

(95)

By replacing ( 94) and ( 95 ) it (93), we see that :

∞∑
n=0

un(x, y, t) = (cos t+ sin t) exy +
∞∑
n=0

L−1
(

1
s2+1

L
(

∂2

∂x∂y
(An(x, y, t)

))
−

∞∑
n=0

L−1
(

1
s2+1

L
(

∂2

∂x∂y
(Bn(x, y, t)

)) (96)

Therefore (96) gives Laplace-Adomian algorithm following :
u0(x, y, t) = (cos t+ sin t) exy

un+1(x, y, t) = L−1
(

1
s2+1

L
(

∂2

∂x∂y(An(x, y, t))
))

− L−1
(

1
s2+1

L
(

∂2

∂x∂y(Bn(x, y, t))
))

, ∀n ≥ 0

(97)
Then 

u0(x, y, t) = (cos t+ sin t) exy

A0(x, y, t) = x2y2 (cos t+ sin t)2 e2(xy)

B0(x, y, t) = (cos t+ sin t)2 x2y2e2(xy)

u1(x, y, t) = L−1
(

1
s2+1

L
(
(cos t+ sin t)2 ∂2

∂x∂y
(x2y2e2(xy))

))
−

L−1
(

1
s2+1

L
(
(cos t+ sin t)2 ∂2

∂x∂y
(x2y2e2(xy))

))
u1(x, y, t) = 0

An(x, y, t) = 0, ∀n ≥ 1

Bn(x, y, t) = 0, ∀n ≥ 1

un(x, y, t) = 0, ∀n ≥ 2

(98)
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The exact solution of problem is :

u(x, y, t) = u0(x, y, t) = (cos t+ sin t) exy (99)

b) Solving by SBA method

Equation of problem (98) is :

∂2u(x, y, t)

∂t2
= −u(x, y, t) + C(u(x, y, t)) (100)

where

C(u(x, y, t)) =
∂2

∂x∂y
(
∂2u(x, y, t)

∂x2
∂2u(x, y; t)

∂y2
) −

∂2

∂x∂y
(xy

∂u(x, y, t)

∂x

∂u(x, y, t)

∂y
)

(101)
Twice integration of (100) gives Adomian canonic form following :

u(x, y, t) = (1+ t) exy −

∫ t

0

(∫ s

0

u(x, y, z)dz

)
ds+

∫ t

0

(∫ s

0

C(u(x, y, z))dz

)
ds

(102)

Applying successive approximation method, we gives for k ≥ 1 :

uk(x, y, t) = (1+ t) exy −

∫ t

0

(∫ s

0

uk(x, y, z)dz

)
ds+ C̃(uk−1(x, y, z)) (103)

where

C̃(uk−1(x, y, z)) =

∫ t

0

(∫ s

0

C(uk−1(x, y, z))dz

)
ds (104)

According to (103 ), we get Adomian algorithm :


uk
0(x, y, t) = (1+ t) exy + C̃(uk−1(x, y, z))

uk
n+1(x, y, t) = (1+ t) exy −

∫ t

0

(∫ s

0

uk
n(x, y, z)dz

)
ds,∀n ≥ 0

(105)

For k = 1, we get the following SBA algorithm :


u1
0(x, y, t) = (1+ t) exy + C̃(u0(x, y, z))

u1
n+1(x, y, t) = (1+ t) exy −

∫ t

0

(∫ s

0

u1
n(x, y, z)dz

)
ds,∀n ≥ 0

(106)
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Taking u0(x, y, t) = 0, we get :

C̃(u0(x, y, z)) =

∫t
0

(∫s
0

C(u0(x, y, z))dz

)
ds

=

∫t
0

(∫s
0

(
∂2

∂x∂y
(
∂2u0(x, y, z)

∂x2
∂2u0(x, y; z)

∂y2
) − ∂2

∂x∂y
(xy

∂u0(x, y, z)

∂x

∂u0(x, y, z)

∂y
)

)
dz

)
ds = 0

(107)

From (106 ), we get :
u1
0(x, y, t) = (1+ t) exy

u1
n(x, y, t) =

[
(−1)n t2n

(2n)!
+ (−1)n t2n+1

(2n+1)!

]
exy,∀n ≥ 1

(108)

Let’s put

φ1
n(x, y, t) =

n∑
i=0

u1
i (x, y, t) (109)

We obtain

φ1
n(x, y, t) =

(
n∑
i=0

(−1)i
t2i

(2i) !
+

n∑
i=0

(−1)i
t2i+1

(2i+ 1) !

)
exy (110)

Thus, for k = 1 , we get:

u1(x, y, t) = lim
n→+∞φ1

n(x, y, t) = (cos t+ sin t) exy (111)

Thus

C(u1(x, y, t)) =
∂2

∂x∂y
(
∂2u1(x, y, t)

∂x2
∂2u1(x, y; t)

∂y2
) − ∂2

∂x∂y
(xy

∂u1(x, y, t)

∂x

∂u1(x, y, t)

∂y
)

= (cos t+ sin t)2
[

∂2

∂x∂y
(
∂2 (exy)

∂x2
∂2 ((exy))

∂y2
) − ∂2

∂x∂y
(xy

∂(exy)

∂x

∂u(exy)

∂y
)

]
= 2xye2xy

(
2x2y2 + 5xy+ 2

)
− 2xye2xy

(
2x2y2 + 5xy+ 2

)
= 0⇒ C̃(u1(x, y, z)) = 0

(112)

For k = 2, we get the following SBA algorithm:
u2
0(x, y, t) = (1+ t) exy + C̃(u1(x, y, z)) = (1+ t) exy

u2
n+1(x, y, t) = (1+ t) exy −

∫ t

0

(∫ s

0

u2
n(x, y, z)dz

)
ds,∀n ≥ 0

(113)
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From (113), we have
u2
0(x, y, t) = (1+ t) exy

u2
n(x, y, t) =

[
(−1)n t2n

(2n)!
+ (−1)n t2n+1

(2n+1)!

]
exy,∀n ≥ 1

(114)

Let’s put

φ2
n(x, y, t) =

n∑
i=0

u2
i (x, y, t) (115)

We obtain

φ2
n(x, y, t) =

(
n∑
i=0

(−1)i
t2i

(2i) !
+

n∑
i=0

(−1)i
t2i+1

(2i+ 1) !

)
exy (116)

Thus, for k = 2, we have:

u2(x, y, t) = lim
n→+∞φ2

n(x, y, t) = (cos t+ sin t) exy (117)

So
u2(x, y, t) = (cos t+ sin t) exy (118)

Using the same procedure, for k > 2, we get :

φk
n(x, y, t) =

(
n∑
i=0

(−1)i
t2i

(2i) !
+

n∑
i=0

(−1)i
t2i+1

(2i+ 1) !

)
exy (119)

and
uk(x, y, t) = lim

n→+∞φk
n(x, y, t) = (cos t+ sin t) exy (120)

From which, we obtain:

u(x, y, t) = lim
k→+∞uk(x, y, t) = (cos t+ sin t) exy (121)

This table compare obtained solutions :

Laplace-Adomian method u(x, y, t) = (cos t+ sin t) exy

SBA method u(x, y, t) = (cos t+ sin t) exy
(122)

Conclusion

The two solutions were similar.
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4. CONCLUSION

Solving the same examples of wave-like equations by Laplace-Adomian and SBA
methods, we get the same’ exact solution.

Through these examples, we showed again usefulness and advantage of the SBA
method comparatively with other methods that have been used for solving same Wave
-Like equations. The results of the present study obtained by the SBA method help us to
solve certain Wave-Like equations. However, we intend on the one hand to compare by
simulation numerical results and experimental results, and on the other hand to explore
precisely the boundary conditions (boundary surface and background neighborhood).
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