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Abstract

In this paper, the Adomian Decomposition Method (ADM) and Variational
Iteration Method (VIM) are used to solve the nonlinear Volterra-Fredholm integral
equations. We described the methods, used them on one test problem, and
compared the results with their exact solutions in order to demonstrate the validity
and applicability of the methods. Moreover, we studied some new uniqueness and
convergence results of the solutions.
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1. INTRODUCTION

In this paper, we consider the nonlinear Volterra-Fredholm integral equations of the

form:
w(z) = f(x) + (KQu)(x), x € I = [a, ],

*Corresponding Author.
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with
(KQu)(z) =)\ /ff Ki(x,t)g:(t, u(t))dt + )\2/ Ky(x,t)ga(t,u(t))dt, (2)

where a,b,\;, A\ are constant values and A, Ay # 0, also f(z), Ki(z,1),
Ky(x,t),g1(t,u(t)) and go(t,u(t)) are functions that have suitable derivatives on an
interval a < t < x < b, and u(t) is unknown function. If we set g;(¢,u(t)) =
Gi(u(t)), go(t,u(t)) = Go(u(t)), where G; and G5 are known smooth functions
nonlinear in u(¢), and where u(t) is an unknown function. We can rewrite Egs. (1) and
(2) as:

x b
u(z) = f(x) + )\1/ Ki(z,t)Gy(u(t))dt + /\2/ Ky(z,t)Ga(u(t))dt.  (3)

The nonlinear Volterra-Fredholm integral equations (3) arises in a variety of
applications in many fields including continuum mechanics, potential theory,
geophysics, electricity and magnetism, antenna synthesis problem, communicational
theory, mathematical economics, population genetics, radiation, the particle transport
problems of astrophysics and reactor theory, fluid mechanics, nonlinear dynamics
[1,5,13,16,20,21,24]. In recent years, a variety of numerical methods are springing up
based on the model, such as the collocation method with rationalized Haar functions
[18], the homotopy perturbation method [2, 6, 23], direct method using triangular
functions [4], a combined form of the Laplace transform method with the ADM [9, 10],
the HAM [22], the composite collocation method [17], a monotone method [3].

In this paper, our aim is to solve a general form of nonlinear Volterra-Fredholm integral
equations using two approximate methods, namely: ADM and VIM. Moreover, we will
study some new existence, uniqueness and convergence results of the solutions.

2. DESCRIPTION OF THE METHODS

In this section, we will describe some powerful methods have been focusing on the
development of more advanced and efficient methods for solving integral equations
such as the ADM [9,10,12,15,19], VIM [8, 11, 14, 15].

2.1. Adomian Decomposition Method (ADM)
The ADM introduces the following expression:

u(z) = Z un (), 4)

for the solution u(z) of (3), where the components u,, () will be determined recurrently.
The method defines the nonlinear function G (u(t)) and Go(u(t)) by an infinite series
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of polynomials as

Gi(u(t)) =Y Au(t), Galu(t)) = Ba(t) (5)

where A,, and B, are so-called Adomian polynomials that represent the nonlinear term
G1(u(t)) and Go(u(t)) and can be calculated for various classes of nonlinear operators
according to specific algorithms set by [7, 15].

9] z o0 b 9]
D un(x) = fx) + A / Ky(2,1) > Ap(t)dt + Xy / Ky(x,t) > By(t)dt. (6)
n=0 a n=0 a n=0
As a result, the decomposition method introduces the recursive relation:

uop(z) = f(x)
T b
un(x) = )\1/ K1<ﬂ?,t)An1dt+)\2/ KQ(x,t)anldt. (7)

Relation (7) will enable us to determine the components wu,,(z) recurrently for n > 1,
and as a result, the series solution of u(x) is readily obtained. Then, u(z) = > u; as
the approximate solution.

2.2. Variational Iteration Method (VIM)

In this part, the extended the VIM is used to find approximate solutions of nonlinear
Volterra-Fredholm equation (3), let w(z) be a function such that w’(x) = u(x), noting
that u(z) is continuous. Then we have,

T b
w'(z) = f(x) +)\1/ Kl(x,t)Gl(w’(t))dt—l—)\g/ Ky (2, t)Go(w'(t))dt.  (8)
Consider ,
M / Ky, )P (£))dt + Mg / Kol )G (! (£))dt. ©)
as a restricted variation; we have the iteration sequence

W1 = wp+ /: /\[w;(s) -\ /as Ki(s,t)Gy(w'(t))dt

b
e / Ko (s,1)Ga(w' (£))dt — f(s)]ds.

Taking the variation with respect to the independent variable w, and noticing that
dw,(0) = 0, we get:

YWpy1 = dwy, + A(s)ow,

- — /93 N (s)ow,ds = 0. (10)

Ss=



538 Husam Salih Hadeed , Ahmed Shihab Hamad, Ahmed A. Hamoud

Then we apply the following stationary conditions:

1+ X(s)| =0, N(s)| =0.

S=x S=XT

The general Lagrange multiplier, therefore, can be readily identified:
A=—1,

and, as a result, we obtain the following iteration formula:
wes = = [ [u) =0 [ K 0G @)
b
o / Ko, )Gl (1))d — f(s))ds.

Consequently, the approximate solution is given by

nli_)mOo un () = u(x).

3. UNIQUENESS AND CONVERGENCE RESULTS

In this section, we shall give uniqueness results of Eq. (1) and convergence of the
methods and prove it. Before starting and proving the main results, we introduce the
following hypotheses:

(A1) There exist two constants M7, M, > 0 such that,

|)\1K1(£I§',t)‘ SMl, ‘)\QKQ(x,t)’ SMQ, V aﬁx,tﬁb

(A2) Suppose the nonlinear operators g; (¢, u(t)), g2(¢, u(t)) are satisfied in Lipschitz
conditions with

191(2,u(t)) = g1 (t, v (1))| < Lafu — w7,
192(2, u(t)) = ga(t, w” (1))] < Lofu —u’|.

(A3) Consider f(x) is bounded V z € [a, b].
Theorem 3.1 Assume that (Al), (A2) and (A3) hold and if 0 < o < 1, where
o = (MlLl + MQLQ)(Z? - CL).

Then Eq.(1) has a unique solution.
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Proof. Let v and u* be two different solutions of Eq.(1) then
-] = V@%ﬂhlzG@ﬁm@mwwﬁhMleWMWWU®ﬂt

(@ +x0 [ Kttt @)
Y / ' Kala gttt

= P [ Kttt tpa i [ ot e o)
N\ / Ky (z, ) g1 (8, w(8))dt — s /ab Ko(x,t)ga(t, u™(t))dt

= | [ nmit ot ey~ [ ns o o)
+ / b Ao Koz, 1) ga (t, u(t))dt — / b Ao Ko (@, t)ga(t, w”(t))dt

:\Aﬁmwmmwm@wwwWWMﬁ
[ a0t o) - @]

[ ke st ) = e @

IN

b
+/W&muwmww@wﬂwmwmw
< MLi(b—a)lu—u"|+ MyLa(b—a)|u — u*|
= (M1L1+M2L2)(b—a)|u—u*|

= alu—u*|,

from which we get (1 — a)|u — u*| < 0. Since 0 < « < 1, then |u — u*| = 0 implies
u = u* and this completes the proof.

Theorem 3.2 If the series solution u(x) = > ;> u;(x) obtained by the using ADM is
convergent, then it converges to the exact solution of the Eq.(1) when 0 < o < 1 and

[ua ()] < 0.

Proof. Denote as (Cla, b], ||.||) the Banach space of all continuous functions on [a, b]
with |uy ()| < oo for all x in [a, b].
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Firstly, let s,, and s,,, be arbitrary partial sums with n > m. We are going to prove that
Sn = > i u;(x) is a Cauchy sequence in this Banach space:

|$n — Sm|l = max|s, — sp|
vaeJ
= a3 w) Y w)
=0 1=0
= max| ui(z)|
i=m+1
b
- gla?; / Ky(z,1)A dt+)\2/ Kg(:c,t)Bi(t)dt} ‘
TE
1= m+1

n—

n—1 1
= IVI;%}J()/ >\1K1$tZAz dlf—i—/)\gKgthBZ dt‘

From (5), we have

n—1

ZA = g1(t, $n-1) — 91(t, Sm-1), ZBi = ga(t, $n-1) — g2(t, Sm-1)-
So,
[sn = smll = {}}cfg‘/ MK (2, 1)(91 (8, 5n-1) — g1(L, Sm—1))dt

/ab Ao Ko (x,1)(g2(t, 8,,-1) — g2(2, sm_l))dt‘

IN

max (/ I (2, D)1 (91(, $nr) — g1 (E, )| dE

Veed

[ Dokl Dl 0a,50-2) — slt s ) )
< Mlzlﬂsn,l — Sm_1]|(b—a) + MaLs||$p—1 — Sm-1]|(b — a)
= (Li My + MyLo)(b—a)|[sn-1 — Sm-1]|
= aflsp-1 = sm1ll.
Let n = m + 1, then,
50 = smll < allsm = sm-1ll < @2[lsmo1 = sm—2ll < -+ < @™ |[s1 = soll.

So,

IN

Sm+1 — Sm Sm+2 — Sm+1 e Spn — Sn—1
I |+l [+ I
(@ + ™ 4+ a5 = sol|

a"l+a+a®+- 4+ a" " |s1 — s

n—m

Mur()]]-

80 — Smll

IA A

m L —
a™( =

IN
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Since 0 < a < 1, we have (1 —a”™™) < 1, then

m

[ ()]

[sn = smll < 1 — o

But |ui(x)| < oo, so, as m — oo, then ||s, — $,,|| —> 0. We conclude that s,, is a
Cauchy sequence in C'[a, b]. Then the series is convergence and the proof is complete.

Theorem 3.3 If the solution u(x) = lim, o u,(z) obtained by using VIM is
convergent, then it converges to the exact solution of the Eq.(1) with 0 < o < 1.

Proof. The iteration formula as follows:
wra(0) = (o) = [ o) = 76 = M [ K. 0t w0
— g /ab Ky(s,t)g2(t, u,(t))dt]ds, (11)
we can write
ue) = ute) = [ uls) = £ = A1 [ Kot e, ut)a
s /ab Kols, 1)ga(t, u(t))dt]ds. (12)
By subtracting Eq.(11) from Eq.(12),
(o) = ule) = wala) = ) = [ a(s) = u)
A1 [ B Blon(t () = aule )
o [l a0 0) = i o)l

If we set, €,,11(2) = upi1(z) — u(z), and e, (z) = u,(x) — u(x) then

enia(z) = ealz) - / Tea(s) — A / K, 8) g1 (t un(8)) — g (8, ()]t

—)\2/ Ks(s,t)][g2(t, un(t)) — go(t, u(t))|dt]ds + e,(x) — e,(x,0)
< en(z)(1 = (b—a)(MiLy + MsyLs))
= (I -ajen(x),



542 Husam Salih Hadeed , Ahmed Shihab Hamad, Ahmed A. Hamoud

therefore,

lenill = maxien|
1 —
(1 - a) max|e,|

IN

= llenll;

since 0 < v < 1, then ||e,, || — 0. So, the series converges and the proof is complete.

4. NUMERICAL EXAMPLE

In this section, we present the semi-analytical techniques based on ADM and VIM to
solve nonlinear Volterra-Fredholm integral equations.
Example 1. Let us consider the nonlinear Volterra-Fredholm integral equation:

at " u(®))? 02 2
<o H0.0450658 +0.300274x — | = Redt— [ (w+)(L+ [u(t)*)dt = 0. (13)
0.1 0.1

The exact solution is u(z) = xe™*.

Table 1: Numerical Results of the Example 1.
X Exact

ADMn:lQ

VIM,,_g

0.1
0.2
0.3
0.4
0.5

0.11051709
0.24428055
0.40495764
0.59672988
0.82436064

0.10477329
0.23800425
0.39827314
0.58987258
0.81704804

0.10987929
0.24361525
0.40423694
0.59596048
0.82363674

Table 2: Errors Results of the Example 1.

X Errors Errors
(ADM,n=12) (VIM,n=8)
0.1 0.0057438  0.0006378
0.2 0.0062763  0.0006653
0.3  0.0066845 0.0007207
0.4 0.0068573  0.0007694
0.5 0.0073126  0.0007239
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% a) Comparison Between Exact and ADM b) Comparison Between Exact and VIM
—— Exact =B
08t ———-ADM 08t —=—-vIM

0.1 02 032 04 05

Figure 1: Numerical Results of the Example 1.

5. CONCLUSION

In this work, the ADM and VIM are used to solve the nonlinear Volterra-Fredholm
integral equations. We described the methods, used them on one test problem, and
compared the results with their exact solutions in order to demonstrate the validity and
applicability of the methods. Moreover, only a small number of iterations are needed to
obtain a satisfactory result. The given numerical example support this claim. The above
tables show a comparison between the exact solution and the approximated solutions of
the illustrative example, by using ADM and VIM with different iterations and number of
terms. One advantage of VIM is that the initial solution can be freely chosen with some
unknown parameters. An interesting point about this method is that with few number of
iterations, or even in some cases with only one iteration, it can produce a very accurate
approximate solution. The error convergence to zero if the iterations of used terms
increases. For this purpose, we showed that the VIM is more rapid convergence than
ADM.
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