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Abstract

In this paper, we establish a new type of minimax problem using the results given
by [1].
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1. INTRODUCTION

Questions concerning the minimax problems have been studied extensively in the
literature. These questions are important because the minimax theorem offers a wide
array of applications. Minimax theorems of real-valued functions have been discussed
since the 1960s; see [7], [3], [8], [9], [13], [1] and references therein.

In recent years, based on the development of game theory, optimization theory, and
economics, a great deal of research has been devoted to the study of the minimax
theorem [17],[24], [26].
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A lot of research has been devoted to the study of the existence of a fixed points of
single-valued and multivalued mappings in ordered Banach spaces [2],[19], and in
complete locally convex spaces [11], [12]. In this paper, we establish some fixed point
theorems of multivalued mappings a complete ordered locally convex spaces under
weaker assumptions.
It is well known that partial order plays an important role in optimization theory. The
optimization problems in the previous references are studied in the partial order induced
by a closed cone such as the subsets of space are compact convex or closed convex. But
in some situations, the subsets of space are order convex.
The object of this paper is to present a new versions of the Minimax Problem.

2. NOTATIONS AND PRELIMINARIES

Let E be a real vector space. A cone K in E is a subset of E with K + K ⊂ K,

αK ⊂ K for all α ≥ 0, and K ∩ (−K) = {0} . As usual E will be ordered by the
(partial) order relation

x ≤ y ⇔ y − x ∈ K

and the cone K will be denoted by E+. E is said to be an ordered topological vector
space, if E is an ordered vector space equipped with a linear topology for which the
positive cone E+ is closed. For two vectors x, y ∈ E the order interval [x, y] is the set
defined by

[x, y] = {z ∈ E : x ≤ z ≤ y}.

Note that if x 
 y then [x, y] = φ.

A cone E+ of an ordered topological vector space E is said to be normal whenever the
topology of E has a base at zero consisting of order convex sets. If the topology of E
is also locally convex, then E is said to be an ordered locally convex space, and in this
case the topology of E has a base at zero consisting of open, circled, convex, and order
convex neighborhoods.
conv(A) denotes the closed convex hull of A.
The following two lemmas will be useful in the proofs of our results.

Lemma 2.1 ([4, Lemma 2.3]). If E is an ordered topological vector space, then E is
Hausdorff and the order intervals of E are closed.

Lemma 2.2 ([4, Lemma 2.22 and Theorem 2.23]). If the cone E+ of an ordered
topological vector space (E, τ) is normal, then the following assertions hold:

1. Every order interval is τ−bounded.
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2. For every two nets (xα) , (yα) ⊂ E, (with the same index set I) satisfy 0 ≤ xα ≤
yα for each α and yα

τ→ 0 imply xα
τ→ 0.

Let E be an ordered locally convex space whose topology is defined by a family P
of continuous semi-norms on E, B is the family of all bounded subsets of E, and Φ

is the space of all functions ϕ : P →R+ with the usual partial ordering ϕ1 ≤ ϕ2 if
ϕ1 (p) ≤ ϕ2 (p) for all p ∈ P . The measure of noncompactness on E is the function
α : B → Φ such that for every B ∈ B, α(B) is the function from P into R+ defined by

α(B) (p) = inf {d > 0 : sup {p (x− y) : x, y ∈ Bi} ≤ d ∀i}

where the infimum is taken on all subsets Bi such that B is finite union of Bi.
Properties of measure of noncompactness in locally convex spaces are presented in
[11, Proposition 1.4].
An operator T : Q ⊂ E → E is called to be countably condensing if T (Q) is bounded
and if for any countably bounded set A of Q with α(A)(p) > 0 we have

α(T (A))(p) < α (A) (p)

Definition 2.3. Let E be a complete ordered locally convex space with a normal cone
E+. An element x ∈ E is said to be a fixed point of a multivalued mapping T : E → 2E

if x ∈ T (x).

Definition 2.4. Let E be a complete ordered locally convex space with a normal cone
E+. Let A,B ∈ 2E. Then A ≤ B means a ≤ b for all a ∈ A and b ∈ B.
A map T : E → 2E is said to be isotone nondecreasing if for x, y ∈ E and x ≤ y we
have Tx ≤ Ty.

A map T : E → 2E is said to be isotone nonincreasing if for x, y ∈ E and x ≤ y we
have Tx ≥ Ty.

Definition 2.5. Let E be a complete ordered locally convex space with a normal cone
E+, let Q ⊂ E, an operator T : Q→ 2Q is called to be countably condensing if T (Q)

is bounded and if for any countably bounded set A of Q with α(A)(p) > 0 we have

α(T (A))(p) < α (A) (p)

with T (A) = ∪x∈ATx

Lemma 2.6. Let E be an ordered topological vector space with a normal cone E+.

Then a monotone net (uα) ⊂ E is convergent if and only if it has a weakly convergent
subnet.
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Lemma 2.7. Let E be a complete locally convex space. Let C ⊂ E be a nonempty
closed,bounded and convex subset, and let T : C → 2C be a condensing map, Then
there exists a nonempty compact convex subset K of E such that T (K) ⊂ K.

Theorem 2.8. [18] Let E be a complete locally convex space. Let C ⊂ E be a
nonempty compact convex subset, and let T : C → 2C be a monotone closed such
that T (x) is nonempty closed and convex for every x ∈ C. Then :
T has a fixed point u ∈ C.

The following theorem is the basic theorem of [1].

Theorem 2.9. Let E be a complete ordered locally convex space with a normal cone
E+. Let Ω be an order convex subset of E, and let u0, v0 ∈ Ω, u0 ≤ v0 and let
T : Ω → 2Ω be a monotone closed and isotone nonincreasing mappings such that T 2

fixes the interval [u0, v0]: Suppose that T is condensing and T (x) is nonempty closed
and convex for every x ∈ C.
Then, T has a fixed point in Ω.

See [1] for more details.

3. MAIN RESULTS

The following results generalize the results of [1] in complete ordered locally convex
spaces whith low condtions.

In this section we will give an application of theorem 2.9 to game theory with a new
method and new hypothesis.
A game is a triple (A,B,K), where A,B are nonempty ordred sets ([17, page 326] ),
whose elements are called strategies, and K : A×B → R is the gain function. There
are two players, α and β, and K(x, y) represents the gain of the player α when he
chooses the strategy x ∈ A and the player β chooses the strategy y ∈ B. The quantity
−K(x, y) represents the gain of the player β in the same situation. The target of the
player α is to maximize his gain when the player β chooses a strategy that is the worst
for α, that is, to choose x0 ∈ A such that :

inf
y∈B

K(x0, y) = max
x∈A

inf
y∈B

K(x, y). (3.1)

Similarly, the player β chooses y0 ∈ B such that:

sup
x∈A

K(x, y0) = min
y∈B

sup
x∈A

K(x, y). (3.2)
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It follows

sup
x∈A

inf
y∈B

K(x, y) = inf
y∈B

K(x0, y) ≤ K(x0, y0) ≤ sup
x∈A

K(x, y0) ≤ inf
y∈B

sup
x∈A

K(x, y).

(3.3)
Note that in general

sup
x∈A

inf
y∈B

K(x, y) ≤ inf
y∈B

sup
x∈A

K(x, y). (3.4)

If the equality holds in (4.3), then, by (4.4),

sup
x∈A

inf
y∈B

K(x, y) = K(x0, y0) = inf
y∈B

sup
x∈A

K(x, y). (3.5)

The common value in (4.5) is called the value of the game,
(x0, y0) ∈ A×B a solution of the game and x0 and y0 winning strategies. It follows
that to prove the existence of a solution of a game we have to prove equality (4.4).
For more details on game theory and minimax theorems, we refer to the books of
Aubin, J.P [24] and Carl, S, Heikkilä, S [17].
Let (X,≤X) and (Y,≤Y ) be a complete ordered locally convex spaces, Consider in the
product space (X × Y,�) the following partial orders:
For any A1 ×B1, A2 ×B2 ∈ 2X×Y , we denote :

A1 ×B1 � A2 ×B2 iff A1 ≤X A2 and B1 ≤Y B2

With
A1 ≤X A2 iff x1 ≤X x2, ∀(x1, x2) ∈ A1 × A2, (1)

It is easy to see that if X+ is a normal cone in X and Y + is a normal cone in Y , then
(X+ × Y +) is also a normal cone of the product ordered topological space X × Y .
In this section, ≤ and < mean the total order relation of R.

φ(x) = min
y∈B

K(x, y) = minK(x×B), x ∈ A

and
ψ(y) = max

x∈A
K(x, y) = maxK(A× y), y ∈ B

We exclude the trivial case, and we will assume that the sets :

{x ∈ A : K(x, y) = ψ(y)} and {y ∈ B : K(x, y) = φ(x)}

are nonempty.
We set that :

Ny = {x ∈ A : K(x, y) = ψ(y)} and Mx = {y ∈ B : K(x, y) = φ(x)}
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In the sequel, we consider the measure of noncompactness α×(p) on a product of
locally convex spaces. See [28].

Theorem 3.1. Let X1, X2, ..., Xn be a complete locally convex spaces. Assume that
α1, α2, ..., αn be the measure of noncompactness in X1, X2, ..., Xn respectively,
Suppose F : ([0,+∞[)n → [0,+∞[ is :

1. Convexe.

2. F (x1, x2, ..., xn) = 0 if and only if xi = 0 for i = 1, 2, ..., n.

then, for each D ∈ B(X1 ×X2 × ...×Xn):

α×(D)(p) = F (α1(D1)(p), α2(D2)(p), ...., αn(Dn)(p)).

defines a measure of noncompactness in X1 ×X2 × ...×Xn where D1, D2, ..., Dn

denote the natural projection of D into Xi for i = 1, ..., n.

Lemma 3.2. [10, Lemma 3.3.] If A,B are compact Hausdorff topological spaces and
K : A×B → R is continuous, then the functions :

φ(x) = min
y∈B

K(x, y) = minK(x×B), x ∈ A

and
ψ(y) = max

x∈A
K(x, y) = maxK(A× y), y ∈ B

are continuous too.

Theorem 3.3. Let (X,≤X) and (Y,≤Y ) be a complete ordered locally convex spaces,
let A ⊂ X and B ⊂ Y nonempty order convex sets.
Let c, c′ ∈ A×B such that c� c′.
Suppose that :

1. The functions K : A×B → R is continuous.

2. ∀x, x′ ∈ A with x ≤X x′ ⇒Mx ≥Y Mx′ , and
∀y, y′ ∈ B with y ≤Y y′ ⇒ Ny ≥X Ny′

3. T : A×B → 2A×B defined as T (x, y) = Ny ×Mx is α×−condensing.

4. T 2 fixes the order interval [c, c′]

5. for every x ∈ A, the function K(x, .) is convex.
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6. for every y ∈ B the function K(., y) is concave.

Then,
min
y∈B

max
x∈A

K(x, y) = max
x∈A

min
y∈B

K(x, y) (3.6)

and the game (A,B,K) has a solution.

Proof. We pose : C = A×B and c = (x, y).

the product set C is ordred convex,(product of two ordred convex).
Since T : C → 2C is α×-condensing, it follows from Lemma 2.7 that there exists a
compact convex subset Q of C such that T (Q) ⊂ Q.
It is easy to see that if Q is ordred convex.
therefore, the following two mapping can be defined by:

T : Q→ 2Q

c 7→ Ny ×Mx

First, we will show that T have the closed graph.
Indeed, Let {(xα, yα)} be a net in Q such that (xα, yα)→ (x, y) ∈ Q, let {(uα, vα)} be
a net such that (uα, vα) ∈ T (xα, yα),
and (uα, vα)→ (u, v), We shall show that (u, v) ∈ T (x, y),
we have :

(uα, vα) ∈ T (xα, yα) ⇔ (uα, vα) ∈ Nyα ×Mxα

⇔ K(uα, yα) = ψ(yα) and K(xα, vα) = φ(xα)

Since K and φ are continuous (See Lemma3.2), for α ∈ I , we will have that :

K(u, y) = ψ(y) and K(x, v) = φ(x)

So, (u, v) ∈ T (x, y), which implies that T has a closed graph.
Using hypothesis (2), it is clear to see that T is nonincreasing and By hypothesis (4),
we have T 2 fixed the interval [c, c′].

Finally, Using hypothesis (5) and (6), it is clear to see that Ny and Mx are convex too,
so, T (c) is nonempty closed and convex for every c ∈ C
Thus, by theorem 2.9,
T has a fixed point c? = (x?, y?).
So, we have c? ∈ Tc? = Ny? ×Mx? .
in other words,

x? ∈ Ny? ⇔ K(x?, y?) = max
x∈A

K(x, y?) ≥ inf
y∈B

max
x∈A

K(x, y)
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y? ∈Mx? ⇔ K(x?, y?) = min
y∈B

K(x?, y) ≤ sup
x∈A

min
y∈B

K(x, y)

Taking into account these last two inequalities and (4.4), we get

K(x?, y?) ≤ sup
y∈B

min
x∈A

K(x, y) ≤ inf
x∈A

max
y∈B

K(x, y) ≤ K(x?, y?)

implying
max
x∈A

min
y∈B

K(x, y) = K(x?, y?) = min
y∈B

max
x∈A

K(x, y)

This completes the proof.

Corollary 3.4. Under the same assumptions of the theorem 3.3 and we now consider
that:
∃(x0, y0), (x1, y1) ∈ X × Y such that (x0, y0)� (x1, y1) and The functions
K : [x0, x1]× [y0, y1]→ R.
Then,

min
y∈[y0,y1]

max
x∈[x0,x1]

K(x, y) = max
x∈[x0,x1]

min
y∈[y0,y1]

K(x, y) (3.7)

and the game (X, Y,K) has a solution.

Proof. Since [x0, x1] and [y0, y1] are two ordred convex sets in X and Y respectively.
therefore, we apply the previous theorem for A = [x0, x1] and B = [y0, y1].

We will give another application of the theorem 2.9 is to result of J.von Neumann [25]
(see also [26]).

Theorem 3.5. Let (X,≤X) and (Y,≤Y ) be a complete ordered locally convex spaces
and A ⊂ X,B ⊂ Y nonempty ordred convex sets.
Let c, c′ ∈ A×B such that c� c′.
For Q,Q′ ⊂ A×B, we pose :

Ny = {x ∈ A : (x, y) ∈ Q} and Mx = {y ∈ B : (x, y) ∈ Q′}

Suppose that :

1. The sets Q,Q′ are closed.

2. ∀x, x′ ∈ A with x ≤X x′ ⇒Mx ≥Y Mx′ , and
∀y, y′ ∈ B with y ≤Y y′ ⇒ Ny ≥X Ny′

3. T : A×B → 2A×B defined as T (x, y) = Ny ×Mx is α×−condensing.

4. T 2 fixes the order interval [c, c′]
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5. for every x ∈ A, the function K(x, .) is convex.

6. for every y ∈ B the function K(., y) is concave.

then, Q ∩Q′ 6= ∅

Proof. We pose : C = A×B and c = (x, y).

the product set C is ordred convex,(product of two ordred convex)
therefore, the following two mapping can be defined by:

T : C → 2C

c 7→ Ny ×Mx

whith c = (x, y) ∈ A×B.
First, we will show that T have the closed graph.
Indeed, Let {(xα, yα)} be a net in C such that (xα, yα)→ (x, y) ∈ C, let {(uα, vα)} be
a net such that (uα, vα) ∈ T (xα, yα),
and (uα, vα)→ (u, v), We shall show that (u, v) ∈ T (x, y),
we have :

(uα, vα) ∈ T (xα, yα) ⇔ (uα, vα) ∈ Nyα ×Mxα

⇔ uα ∈ Nyα and vα ∈Mxα

⇔ (uα, yα) ∈ Q and (xα, vα) ∈ Q′

Since Q,Q′ are closed, for α ∈ I , we will have that :

(u, y) ∈ Q and (x, v) ∈ Q′

So, (u, v) ∈ T (x, y), which implies that T has a closed graph.
We proof the rest by the same method of theorem 3.3.
Thus, by theorm 2.9 T has a fixed point c? = (x?, y?).
So, we have c? ∈ Tc?.
in other words,

(x?, y?) ∈ Ny? ×Mx? ⇔ x? ∈ Ny? and y? ∈Mx?

implying
(x?, y?) ∈ Q ∩Q′.

This completes the proof.

Conflicts of Interest:
Te authors declare that there are no conficts of interest regarding the publication of this
paper.



280 Azennar Radouane, Fouad Ouzine and Driss Mentagui

REFERENCES

[1] Azennar Radouane, Driss Mentagui, A solution for the minimax problem via
fixed point theory in complete ordered locally convex spaces, Communications
in Optimization Theory, Vol. 2020 (2020), Article ID 11, pp. 1-10

[2] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, Boston, 1988.

[3] Ouzine Fouad, Azennar Radouane, Driss Mentagui, Common Coupled Fixed
Point Results For Multivalued Mappings In Ordered Banach Spaces, Dynamic
Systems and Applications 29 (2020) (In Press)

[4] C. D. Aliprantis, R. Tourky, Cones and duality, Graduate Studies in
Mathematics, Volume 84, American Mathematical Society, Providence, RI, USA;
2007:xiv+279.

[5] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag (1984).

[6] C.J.Himmelberg,J.R.Porter and F. S.Van Vleck,Fixed Point Theorems for
Condensing Multifunctions,Proceedings of the American Mathematical Society,
Vol. 23, No. 3 (Dec., 1969), pp. 635-641

[7] K. Fan, Minimax theorems, Proc. Natl. Acad. Sci. USA 39 (1953) 42-47.

[8] K. Fan, A minimax Inequality and Applications, Inequalities, III, Academic Press,
New York, 1972.

[9] C.W. Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980) 73-77.

[10] S.Cobzas, Fixed Point Theorems in Locally Convex Spaces– The Schauder
Mapping Method. Hindawi Publishing Corporation, Fixed Point Theory
and Applications, Volume 2006, Article ID 57950, Pages 1–13, DOI
10.1155/FPTA/2006/57950.

[11] A. Hajji, E. Hanebaly, Commutating mappings and α-compact type fixed point
theorems in locally convex spaces, Int. J. Math. Anal. 1 (2007), 661-680.

[12] Radouane Ziyad Azennar, Common fixed point theorems
for single and multivalued mappings in complete ordered locally convex spaces.
Math-Recherche et Application, Vol.16, (2017-2018), pp. 46-54

[13] Radouane Azennar, Fouad Ouzine, Driss Mentagui, Periodic point and fixed point
results for monotone mappings in complete ordered locally convex spaces with
application to differential equations, Advances in Fixed Point Theory, Vol 9, No 4
(2019), 322-332.

[14] Positive Operators, Charalambos D. Aliprantis and Owen Burkinshaw, Published
by Springer,P.O. Box 17, 3300 AA Dordrecht, The Netherlands.



A New Version of the Minimax Problem 281

[15] J. Yu, Essential equilibria of n-person noncooperative games, J. Math. Econom.
31 (1999), 361–372.

[16] R. Engelking, General Topology, 2nd ed., Sigma Series in PureMathematics, vol.
6, Heldermann, Berlin, 1989.
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