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Abstract

In this paper, we show the existence of a weak solution to the Maxwell-Stokes type
equation by the penalty method introduced by Temam. Our approximate equation
is nonlinear and contains so called p-curl system. Furthermore, we obtain the
continuous dependence of the weak solution on the data.
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1. INTRODUCTION

In this paper, we show the existence of a weak solution to the Maxwell-Stokes type
equation by the penalty method introduced by Temam [9] (cf. Dautray and Lions [6,
vol. 7] or Girault and Raviart [7]).

More precisely, we consider the following Stokes problem in a bounded,
Lipschitz-continuous domain Ω ⊂ Rd with boundary Γ.

−∆u+∇π = f in Ω,

divu = 0 in Ω,

u = 0 on Γ.

(1.1)

The penalty method replaces the Stokes problem (1.1) by{
−∆uε − 1

ε
∇divuε = f in Ω,

uε = 0 on Γ,
(1.2)

where ε is a positive parameter that will tend to zero. The pressure π is approximated by
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πε = −1
ε
divuε, and uε approximates u. Since the problem (1.2) is the Dirichlet

problem for the elliptic equation, the problem (1.2) has a unique solution uε. Temam
established the convergence of (uε, πε) to (u, π), and more precisely, proved the
following theorem.

Theorem 1.1 (Temam). Let Ω be a bounded, Lipschitz-continuous domain in Rd, and
f ∈H−1(Ω). Then, as ε→ 0, we have

uε → u inH1
0(Ω) and πε → π in L2(Ω),

where (u, π) is the solution of the homogeneous Stokes problem (1.1).

Amrouche and Girault [1] extended this convergence toWm,p(Ω).

In the present paper, we shall show that the penalty method can be applicable to the
Maxwell-Stokes problem in the case d = 3. In order to do so, we replace −∆u in the
first equatin of (1.1) with a nonlinear term as in the following system.

curl [St(x, |curlu|2)curlu] +∇π = f in Ω,

divu = 0 in Ω,

u = 0 on Γ,

(1.3)

where the function S(x, t) is a Carathéodory function in Ω × [0,∞) satisfying some
structure conditions. The first equation of (1.3) contains so called p-curl system

curl [|curlu|p−2curlu] +∇π = f

in a special case. The equation (1.3) is nonlinear, and when p > 2, it is degenerate and
when 1 < p < 2, it is singular. In a special case of S(x, t) and p = 2, (1.3) reduces
to the equation (1.1), so our result extends Theorem 1.1. Our approximate system is as
follows.{

curl [St(x, |curluε|2)curluε]− 1
ε
∇[St(x, (divuε)

2)divuε] = f in Ω,

uε = 0 on Γ.
(1.4)

Since this equation is nonlinear, it is necessary to investigate this problem from a
different point of view. Then we show that

uε → u inW 1,p
0 (Ω) and πε := −1

ε
St(x, (divuε)

2)divuε → π in Lp(Ω),

where (u, π) is a weak solution of (1.3).

The paper is organized as follows. In section 2, we give some preliminaries and the main
theorem that states the existence of the weak solution to the problem (1.3). Section
3 is devoted the proof of the main theorem. In section 4, we show the continuous
dependence of the solution on the data.
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2. PRELIMINARIES AND THE MAIN THEOREM

This section consists of two subsections. In subsection 2.1, we give some preliminaries
that are necessary later. In subsection 2.2, we give the notion of a weak solution for the
Maxwell-Stokes problem and state the main theorem.

2.1 Preliminaries

Let Ω be a bounded domain in R3 with a Lipshitz-continuous boundary Γ, 1 < p <∞
and let p′ be the conjugate exponent i.e., (1/p)+(1/p′) = 1. From now on we use Lp(Ω)

andW 1,p
0 (Ω) for the standardLp and Sobolev spaces of functions. For any Banach space

B, we denote B × B × B by boldface character B. Hereafter, we use this character to
denote vector and vector-valued functions, and we denote the standard Euclidean inner
product of vectors a and b in R3 by a · b.

We assume that a Carathéodory function S(x, t) in Ω × [0,∞) satisfies the following
structure conditions. For a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C0([0,∞)), and there
exist 1 < p <∞ and positive constants 0 < λ ≤ Λ <∞ such that for a.e. x ∈ Ω,

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1a)

λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0. (2.1c)

We note that from (2.1a), we have

2

p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0. (2.2)

Example 2.1. If S(x, t) = ν(x)tp/2, where ν is a measurable function in Ω and satisfies
0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. in Ω for some constants ν∗ and ν∗, then it follows
from elementary calculations that (2.1a)-(2.1c) hold. .

We give a monotonicity lemma.

Lemma 2.2. (i) There exists a constant c1 > 0 such that for all t, s ∈ R,

(St(x, t
2)t − St(x, s

2)s)(t − s) ≥

{
c1|t− s|p if p > 2,

c1(|t|+ |s|)p−2|t− s|2 if 1 < p ≤ 2.
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(ii) There exists a constant c2 > 0 such that for all a, b ∈ R3,

(St(x, |a|2)a− St(x, |b|2)b) · (a− b)

≥

{
c2|a− b|p if p > 2,

c2(|a|+ |b|)p−2|a− b|2 if 1 < p ≤ 2.

Proof. We prove (i). If we put I(x, t) = (St(x, t
2)t − St(x, s2)s)(t − s), then we can

write

I(x, t) =

∫ 1

0

d

dθ

[
St(x, (θt+ (1− θ)s)2)(θt+ (1− θ)s)

]
dθ(t− s)

=

∫ 1

0

{
St(x, (θt+ (1− θ)s)2)

+2Stt(x, (θt+ (1− θ)s)2)(θt+ (1− θ)s)2
}
dθ(t− s)2.

From (2.1b), we have

I(x, t) ≥ λ

∫ 1

0

|θt+ (1− θ)s|p−2dθ|t− s|2. (2.3)

When 1 < p ≤ 2, it is trivial that

I(x, t) ≥ λ(|t|+ |s|)p−2|t− s|2.

We consider the case p > 2. If |t| ≥ |t− s|, then

|θt+ (1− θ)s| = |t+ (1− θ)(s− t)| ≥ |t| − (1− θ)|s− t| ≥ θ|t− s|.

Thus it follows from (2.3) that

I(x, t) ≥ λ

∫ 1

0

θp−2dθ|t− s|p =
λ

p− 1
|t− s|p.

If |t| < |t− s|, we write∫ 1

0

|θt+ (1− θ)s|p−2dθ =

∫ 1

0

(|θt+ (1− θ)s|2)p/2

|θt+ (1− θ)s|2
dθ.

Since

|θt+ (1− θ)s|2 = |t+ (1− θ)(s− t)|2

≤ (|t|+ (1− θ)|s− t|)2

≤ (|s− t|+ (1− θ)|s− t|)2

= (2− θ)2|s− t|2

≤ 4|s− t|2
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for 0 ≤ θ ≤ 1, using the Jensen inequality (cf. Jost [8, p. 122]), we have

I(x, t) ≥ λ

4

∫ 1

0

(|t+ (1− θ)(s− t)|2)p/2dθ

≥ λ

4

(∫ 1

0

(t+ (1− θ)(s− t))2

)p/2
≥ λ

4

1

3p/2
(t2 + s2 + ts)p/2

≥ λ

4

1

3p/2
1

4p/2
|t− s|p.

For the proof of (ii), see Aramaki [5, Lemma 3.6].

Lemma 2.3. There exists a constants C1 > 0 depending only on Λ and p such that for
any a, b ∈ R3,

|St(x, s, |a|2)a− St(x, s, |b|2)b|

≤

{
C1|a− b|p−1 if 1 < p < 2,

C1(|a|+ |b|)p−2|a− b| if p ≥ 2.

For the proof, see Aramaki [3].

2.2 The main theorem

We consider the following Maxwell-Stokes system.
curl [St(x, |curlu|2)curlu] +∇π = f in Ω,

divu = 0 in Ω,

u = 0 on Γ.

(2.4)

Definition 2.4. Let f ∈ W−1,p′(Ω) that is the dual space of W 1,p
0 (Ω). We say

(u, π) ∈ W 1,p
0 (Ω) × Lp

′
(Ω)/R is a weak solution of (2.4), if u is divergence free

and (u, π) satisfies∫
Ω

St(x, |curlu|2)curlu · curlvdx−
∫

Ω

πdiv vdx = 〈f ,v〉 (2.5)

for all v ∈ W 1,p
0 (Ω), where 〈f ,v〉 denotes the duality between f ∈ W−1,p′(Ω) and

v ∈W 1,p
0 (Ω).

We are in a position to state the main theorem.
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Theorem 2.5. Let Ω ⊂ R3 be a bounded, Lipcshitz-continuous domain in R3,
and assume that a Carathéodory function S(x, t) satisfies the structure conditions
(2.1a)-(2.1c). Then for any f ∈ W−1,p′(Ω), the Maxwell-Stokes system (2.4) has a
unique weak solution (u, π) ∈W 1,p

0 (Ω)×Lp′(Ω)/R, and there exists a constant C > 0

depending only on p, λ,Λ and Ω such that

‖u‖p
W 1,p

0 (Ω)
+ ‖π‖p

′

Lp′ (Ω)/R ≤ C‖f‖p
′

W−1,p′ (Ω)
. (2.6)

3. PROOF OF THEOREM 2.5

In this section, we prove Theorem 2.5 by the penalty method. In order to do so, let
0 < ε ≤ 1. We consider the following system, and give the notion of its weak solution.{

curl [St(x, |curlu|2)curlu]− 1
ε
∇[St(x, (divu)2)divu] = f in Ω,

u = 0 on Γ.
(3.1)

Definition 3.1. We say that uε ∈W 1,p
0 (Ω) is a weak solution of (3.1), if uε satisfies∫

Ω

{
St(x, |curluε|2)curluε · curlv +

1

ε
St(x, (divuε)

2)(divuε)(div v)
}
dx

= 〈f ,v〉 for all v ∈W 1,p
0 (Ω). (3.2)

For any fixed 0 < ε ≤ 1, define a functional

Eε[v] =
1

2

∫
Ω

{
S(x, |curlv|2) +

1

ε
S(x, (div v)2)

}
dx− 〈f ,v〉.

We consider the following minimization problem: to find uε ∈W 1,p
0 (Ω) such that

Eε[uε] = α := inf
v∈W 1,p

0 (Ω)
Eε[v]. (3.3)

We call such a uε a minimizer of α. Then we have the following proposition.

Proposition 3.2. Let 0 < ε ≤ 1 and f ∈ W−1,p′(Ω). Then the minimization problem
(3.3) has a minimizer uε ∈W 1,p

0 (Ω).

Proof. According to Amrouche and Seloula [2], we first note that there exists a constant
C > 0 depending only on p and Ω such that

‖∇v‖Lp(Ω) ≤ C(‖curlv‖Lp(Ω) + ‖div v‖Lp(Ω))
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for all v ∈ W 1,p
0 (Ω), and from the Poincaré inequality, there exists a constant c > 0

depending only on p and Ω such that

‖v‖Lp(Ω) ≤ c‖∇v‖Lp(Ω) for all v ∈W 1,p
0 (Ω).

Thus there exists a constant C2 > 0 depending only on p and Ω such that

‖v‖p
W 1,p

0 (Ω)
≤ C2(‖curlv‖pLp(Ω) + ‖div v‖pLp(Ω)). (3.4)

Since 0 < ε ≤ 1, using (2.2), the Hölder inequality and the Young inequality, for any
δ > 0 there exists a constant C(δ) > 0 such that

Eε[v] ≥ 1

2

∫
Ω

{
S(x, |curlv|2) + S(x, (div v)2)

}
dx− 〈f ,v〉

≥ λ

p

∫
Ω

(|curlv|p + |div v|p)dx− ‖f‖W−1,p′ (Ω)‖v‖W 1,p
0 (Ω)

≥ λ

pC2

‖v‖p
W 1,p

0 (Ω)
− C(δ)‖f‖p

′

W−1,p′ (Ω)
− δ‖v‖p

W 1,p
0 (Ω)

.

If we choose δ > 0 so that δ = λ/2pC2, then we have

Eε[v] ≥ λ

2pC2

‖v‖p
W 1,p

0 (Ω)
− C(λ/2pC2)‖f‖p

′

W−1,p′ (Ω)
> −∞. (3.5)

Let {vj} ⊂W 1,p
0 (Ω) be a minimizing sequence of α, i.e.,

Eε[vj] = α + o(1) as j →∞.

From (3.5), {vj} is bounded in W 1,p
0 (Ω). Since W 1,p

0 (Ω) is a reflexive Banach space,
passing to a subsequence, we may assume that

vj → uε weakly inW 1,p
0 (Ω) as j →∞.

According to Aramaki [4], we have∫
Ω

S(x, |curluε|2)dx = lim inf
j→∞

∫
Ω

S(x, |curlvj|2)dx,∫
Ω

S(x, (divuε)
2)dx = lim inf

j→∞

∫
Ω

S(x, (div vj)
2)dx

and clearly 〈f ,vj〉 → 〈f ,uε〉 as j →∞. Therefore, we have

Eε[uε] ≤ lim inf
j→∞

Eε[vj] = α.

So uε is a minimizer of α.
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For any v ∈ W 1,p
0 (Ω) and t ∈ R, we have Eε[uε] ≤ Eε[uε + tv]. Thus, the

Euler-Lagrange equation implies

d

dt
Eε[uε + tv]

∣∣∣∣
t=0

=

∫
Ω

{
St(x, |curluε|2)curluε · curlv

+
1

ε
St(x, (divuε)

2)(divuε)(div v)
}
dx− 〈f ,v〉 = 0.

Thus we obtain the following proposition.

Proposition 3.3. The minimizer uε in Proposition 3.2 is a unique weak solution of (3.1)
in the sense of Definition 3.3.

Proof. It suffices to prove the uniqueness. Letu1
ε,u

2
ε ∈W

1,p
0 (Ω) be two weak solutions

of (3.1). Taking v = u1
ε − u2

ε as a test function of (3.2), we have∫
Ω

{(
St(x, |curlu1

ε|2)curlu1
ε − St(x, |curlu2

ε)|2)curlu2
ε)
)
· curl (u1

ε − u2
ε)

+
1

ε

(
St(x, (divu1

ε)
2)divu1

ε − St(x, (divu2
ε))divu2

ε

)
div (u1

ε − u2
ε)
}
dx = 0.

It follows from Lemma 2.2 that∫
Ω

(|curl (u1
ε − u2

ε)|p +
1

ε
|div (u1

ε − u2
ε)|pdx ≤ 0 if p ≥ 2,

and∫
Ω

{
(|curlu1

ε|+ |curlu2
ε|)p−2|curl (u1

ε − u2
ε)|2

+
1

ε
(|divu1

ε|+ |divu2
ε|)p−2|div (u1

ε − u2
ε)|2
}
dx ≤ 0 if 1 < p < 2,

Therefore, we have

curl (u1
ε − u2

ε) = 0 and div (u1
ε − u2

ε) = 0 in Ω.

By (3.4), we have u1
ε = u2

ε.

Remark 3.4. From this proposition, we can see that the minimizer of the minimization
problem (3.3) is also unique.

Proof of Theorem 2.5
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Let uε ∈W 1,p
0 (Ω) be a unique minimizer of (3.3). Then uε is a weak solution of (3.1).

If we take v = uε as a test function of (3.2), then∫
Ω

{(
St(x, |curluε|2)|curluε|2 +

1

ε
St(x, (divuε)

2)(divuε)
2
}
dx

= 〈f ,uε〉. (3.6)

Since 1
ε
≥ 1, we have

λ

∫
Ω

(|curluε|p + |divuε|p)dx ≤ ‖f‖W−1,p′ (Ω)‖uε‖W 1,p
0 (Ω)

≤ C(δ)‖f‖p
′

W−1,p′ (Ω)
+ δ‖uε‖pW 1,p

0 (Ω)

for any δ > 0. If we choose δ > 0 so that δ < λ/2C2, it follows from (3.4) that there
exists a constant C > 0 depending only on p, λ and Ω such that

‖uε‖pW 1,p
0 (Ω)

≤ C‖f‖p
′

W−1,p′ (Ω)
. (3.7)

Moreover, from (3.7) and (3.6), we have

λ

∫
Ω

|divuε|pdx ≤
∫

Ω

St(x, (divuε)
2)(divuε)

2dx

≤ ε‖f‖W−1,p′ (Ω)‖uε‖W 1,p
0 (Ω)

≤ C1/pε‖f‖p
′

W−1,p′ (Ω)
. (3.8)

Hence, we have divuε → 0 strongly in Lp(Ω) as ε→ 0. On the other hand, from (3.7),
there exists a subsequence {uεj} of {uε} such that uεj → u weakly in W 1,p

0 (Ω). This
implies divu = 0 in Ω. From (3.7), we have

‖u‖p
W 1,p

0 (Ω)
≤ lim inf

εj→0
‖uεj‖

p

W 1,p
0 (Ω)

≤ C‖f‖p
′

W−1,p′ (Ω)
. (3.9)

If we define πε = −1
ε
St(x, (divuε)

2)divuε, then it follows from (3.8) and (2.1a) that

‖πε‖p
′

Lp′ (Ω)
≤ 1

ε
Λ

∫
Ω

|divuε|pdx ≤
ΛC1/p

λ
‖f‖p

′

W−1,p′ (Ω)
.

Passing to a subsequence, we may assume that πεj → π weakly in Lp′(Ω) and

‖π‖p
′

Lp′ (Ω)
≤ lim inf

εj→0
‖πεj‖

p′

Lp′ (Ω)
≤ ΛC1/p

λ
‖f‖p

′

W−1,p′ (Ω)
. (3.10)

On the other hand, since∫
Ω

|St(x, |curluε|2)curluε|p
′
dx ≤ Λp′

∫
Ω

|curluε|pdx ≤ Λp′C‖f‖p
′

W−1,p(Ω)
,



240 Junichi Aramaki

{St(x, |curluε|2)curluε} is bounded in Lp
′
(Ω). Passing to a subsequence, we may

assume that
St(x, |curluεj |2)curluεj → w weakly in Lp

′
(Ω).

Since ∫
Ω

{
St(x, |curluεj |2curluεj · curlv − πεjdiv v

}
dx = 〈f ,v〉

for all v ∈W 1,p
0 (Ω), letting εj → 0, we have∫

Ω

(w · curlv − πdiv v)dx = 〈f ,v〉 for all v ∈W 1,p
0 (Ω). (3.11)

In particular, since divu = 0 in Ω, we have∫
Ω

w · curludx = 〈f ,u〉. (3.12)

Since divuεj → 0 strongly in Lp(Ω), we have

lim
j→∞

∫
Ω

St(x, |curluεj |2)|curluεj |2dx = lim
j→∞

∫
Ω

πεjdivuεjdx+ 〈f ,uεj〉

= 〈f ,u〉 =

∫
Ω

w · curludx. (3.13)

By the monotonicity (Lemma 2.2), we have∫
Ω

St(x, |curluεj |2)curluεj · curl (uεj − v)dx

−
∫

Ω

St(x, |curlv|2)curlv · curl (uεj − v)dx ≥ 0.

Letting j →∞, we have∫
Ω

(w − St(x, |curlv|2)curlv) · curl (u− v)dx ≥ 0 for all v ∈W 1,p
0 (Ω).

For any φ ∈W 1,p
0 (Ω), put v = u− αφ (α > 0). Then we have∫

Ω

(w − St(x, |curlu− αcurlφ|2)(curlu− αcurlφ) · αcurlφdx ≥ 0.

If we divide this inequality by α, and then let α→ 0, we have∫
Ω

(w − St(x, |curlu|2)curlu) · curlφdx ≥ 0

for all φ ∈W 1,p
0 (Ω). This implies∫

Ω

(w − St(x, |curlu|2)curlu) · curlφdx = 0
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for all φ ∈W 1,p
0 (Ω). Thus we have∫

Ω

(
St(x, |curlu|2)curlu · curlv − πdiv v)

)
dx = 〈f ,v〉 for all v ∈W 1,p

0 (Ω).

Therefore, (u, π) ∈W 1,p
0 (Ω)× Lp(Ω) is a weak solution of (3.1).

Next we show the uniqueness of solution. Let (u1, π1), (u2, π2) ∈W 1,p
0 (Ω)×Lp′(Ω)/R

be two weak solutions of (3.1). If we take v = u1 − u2 as a test function of (3.2), then
we have∫

Ω

St(x, |curlui|2)curlui · curl (u1 − u2)dx = 〈f ,u1 − u2〉 for i = 1, 2

because of divui = 0 in Ω. Thus we have∫
Ω

(
St(x, |curlu1|2)curlu1 − St(x, |curlu2|2)curlu2

)
· curl (u1 − u2)dx = 0

By the strict monotonicity (Lemma 2.2), we have curl (u1 − u2) = 0 and div (u1 −
u2) = 0 in Ω. By (3.4), we have u1 = u2. From this, we have ∇(π1 − π2) = 0 in the
distribution sense, so π1 − π2 is a constant, i.e., π1 = π2 in Lp′(Ω)/R.

Finally we show the estimate (2.6). Taking v = u as a test function of (2.5), since
divu = 0 in Ω, we have

λ

∫
Ω

|curlu|pdx ≤
∫

Ω

St(x, |curlu|2)|curlu|2dx

= 〈f ,u〉 ≤ ‖f‖W−1,p′ (Ω)‖u‖W 1,p
0 (Ω).

By the same arguments as above, we have

‖u‖p
W 1,p

0 (Ω)
≤ C1‖f‖p

′

W−1,p′ (Ω)
. (3.14)

If cπ = 1
|Ω|

∫
Ω
πdx, we have∫

Ω

(π − cπ)div vdx =

∫
Ω

πdiv vdx for all v ∈W 1,p
0 (Ω)

because of the fact
∫

Ω
div vdx = 0 from the divergence theorem. Therefore we may

assume that π ∈ Lp
′

0 (Ω) = {ϕ ∈ Lp
′
(Ω);

∫
Ω
ϕdx = 0}. For any φ ∈ Lp(Ω),

φ − cφ ∈ Lp0(Ω). According to Amrouche and Girault [1, Corollary 3.1], the
operator div : W 1,p

0 (Ω)/V 1,p → Lp0(Ω) is isomorphism onto, where V 1,p = {v ∈
W 1,p

0 (Ω); div v = 0 in Ω}. Hence there exists [w] ∈ W 1,p
0 (Ω)/V 1,p such that

divw = φ− cφ and

‖[w]‖W 1,p
0 (Ω)/V 1,p ≤ C‖φ− cφ‖Lp(Ω) ≤ C1‖φ‖Lp(Ω).
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We claim that ‖[w]‖W 1,p
0 (Ω) = infv∈V 1,p ‖w + v‖W 1,p

0 (Ω) is achieved. In fact, {vj} ⊂
V 1,p be a minimizing sequence of ‖[w]‖W 1,p

0 (Ω)/V 1,p . Then

‖w + vj‖W 1,p
0 (Ω) = ‖[w]‖W 1,p

0 (Ω)/V 1,p + o(1) as j →∞.

Then {vj} is bounded in W 1,p
0 (Ω). Passing to a subsequence, we may assume that

vj → v0 weakly inW 1,p
0 (Ω), so div v0 = 0 in Ω, i.e,, v0 ∈ V 1,p. Moreover, we have

‖w + v0‖W 1,p
0 (Ω) ≤ lim inf

j→∞
‖w + vj‖W 1,p

0 (Ω) = ‖[w]‖W 1,p
0 (Ω)/V 1,p .

Thus we have div (w+v0) = divw = φ−cφ. Hence we can assume that divw = φ−cφ
and

‖w‖W 1,p
0 (Ω) ≤ C‖φ‖Lp(Ω). (3.15)

Taking v = w as a test function of (2.5), since π ∈ Lp
′

0 (Ω) and satisfies
∫

Ω
πcφdx = 0,

we have ∫
Ω

πφdx =

∫
Ω

St(x, |curlu|2)curlu · curlwdx− 〈f ,w〉.

Therefore, by the Hölder inequality and (3.14), we have∣∣∣∣∫
Ω

πφdx

∣∣∣∣ ≤ Λ

∫
Ω

|curlu|p−1|curlw|dx+ ‖f‖W−1,p′ (Ω)‖w‖W 1,p
0 (Ω)

≤ Λ‖curlu‖p−1
Lp(Ω)‖curlw‖Lp(Ω) + ‖f‖W−1,p′ (Ω)‖w‖W 1,p

0 (Ω)

≤ CΛ(‖u‖p−1

W 1,p
0 (Ω)

+ ‖f‖W−1.p′ (Ω))‖φ‖Lp(Ω)

≤ C‖f‖W−1,p′ (Ω)‖φ‖Lp(Ω).

for all φ ∈ Lp(Ω). Hence we have

‖π‖Lp′ (Ω) ≤ C‖f‖W−1,p′ (Ω). (3.16)

Summing up (3.14) and (3.16), we get the estimate (2.6). This completes the proof of
Theorem 2.5.

4. CONTINUOUS DEPENDENCE OF A WEAK SOLUTION ON THE DATA

In this section, we consult the continuous dependence of a weak solution of (2.4) on the
data. In order to do so, for every n = 0, 1, . . ., let S(n)(x, t) satisfy (2.1a)-(2.1c) with
the same constants λ and Λ, and let fn ∈ W−1,p′(Ω). For n = 0, 1, . . ., assume that
(un, πn) ∈W 1,p

0 (Ω)× Lp′(Ω)/R is weak solution of (2.4), i.e.,
curl [S

(n)
t (x, |curlun|2)curlun] +∇πn = fn in Ω,

divun = 0 in Ω,

un = 0 on Γ.

(4.1)
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More precisely, (un, πn) satisfies∫
Ω

S
(n)
t (x, |curlun|2)curlun · curlvdx−

∫
Ω

πndiv vdx

= 〈fn,v〉 for all v ∈W 1,p
0 (Ω) (n = 0, 1, . . .). (4.2)

Then we have the following theorem on the continuous dependence on the data.

Theorem 4.1. We assume that for every n = 0, 1, . . ., a Carathéodory function
S(n)(x, t) satisfies (2.1a)-(2.1c) with the same constants λ and Λ, and fn ∈W−1,p′(Ω).
Let (un, πn) ∈W 1,p

0 (Ω)×Lp′(Ω)/R be a unique weak solution of (2.4). If S(n)
t (x, t)→

S
(0)
t (x, t) a.e. in Ω× [0,∞) and fn → f 0 in W−1,p′(Ω) as n→∞, then un → u0 in
W 1,p

0 (Ω) and πn → π0 in Lp
′
(Ω)/R as n→∞.

In particular case where S(n)(x, t) = S(0)(x, t) for all n = 1, . . ., there exists a constant
C > 0 depending only on p, λ,Λ,Ω and ‖f 0‖W−1,p′ (Ω) such that

‖un − u0‖p∨p
′

W 1,p
0 (Ω)

+ ‖πn − π0‖p∨p
′

Lp(Ω)/R

≤ C(‖fn − f 0‖
p′

W−1,p′ (Ω)
+ ‖fn − f 0‖

p

W−1,p′ (Ω)
),

where p ∨ p′ = max{p, p′}.

Proof. Taking v = un − u0 as a test function of (4.2), since div (un − u0) = 0 in Ω,
we have∫

Ω

(
S

(n)
t (x, |curlun|2)curlun − S(n)

t (x, |curlu0|2)curlu0

)
· curl (un − u0)dx

= 〈fn − f 0,un − u0〉

−
∫

Ω

(
S

(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0

)
· curl (un − u0)dx.

(4.3)

Hereafter, for the brevity of notations, we put

Fn(k) = ‖fn − f 0‖kW−1,p′ (Ω)

+ ‖S(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0‖kLp′ (Ω)
,

and we denote constants depending only on p, λ,Λ,Ω and the constants in Lemma 2.2,
2.3 by C,C1, C2, . . . which may vary from line to line.

We estimate (4.3).
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When p ≥ 2, it follows from Lemma 2.2 (ii) and the Young inequality that we have

c2

∫
Ω

|curl (un − u0)|pdx

≤ ‖fn − f 0‖W−1,p′ (Ω)‖un − u0‖W 1,p
0 (Ω)

+‖S(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0‖Lp′ (Ω)

×‖curl (un − u0‖Lp(Ω)

≤ C(ε)Fn(p′) + ε‖un − u0‖pW 1,p
0 (Ω)

for any ε > 0. On the other hand, from (3.4),

c2‖un − u0‖pW 1,p
0 (Ω)

≤ c2C2‖curl (un − u0)‖pLp(Ω).

If we choose ε > 0 so that C2ε = c2/2, we have

‖un − u0‖pW 1,p
0 (Ω)

≤ C2Fn(p′). (4.4)

When 1 < p < 2, using Lemma 2.2 (ii) to (4.3), we have∫
Ω

(|curlun|+ |curlu0|)p−2|curl (un − u0)|2dx ≤ CFn(1)‖un − u0‖W 1,p
0 (Ω).

Here if we use the reverse Hölder inequality (cf. Sobolev [10, p. 8]) with 0 < s =

p/2 < 1 and s′ = p/(p− 2), then there exists a constant c > 0 such that∫
Ω

(|curlun|+ |curlu0|)p−2|curl (un − u0)|2dx

≥ c(‖curlun‖pLp(Ω) + ‖curlu0‖pLp(Ω))
(p−2)/2‖curl (un − u0)‖2

Lp(Ω).

Hence, it follows from (3.9) that

‖un − u0‖2
W 1,p

0 (Ω)

≤ C(‖fn‖
p′

W−1,p′ (Ω)
+ ‖f 0‖

p′

W−1,p′ (Ω)
)(2−p)/2Fn(1)‖un − u0‖W 1,p

0 (Ω).

Since we may assume that

‖fn‖
p′

W−1,p′ (Ω)
≤ C(‖f 0‖

p′

W−1,p′ (Ω)
+ 1)

under the hypothesis, we can write

‖un − u0‖W 1,p
0 (Ω) ≤ C2Fn(1). (4.5)
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We may assume that πn − π0 ∈ Lp
′

0 (Ω), so for any φ ∈ Lp(Ω),∫
Ω

(πn − π0)(φ− cφ)dx =

∫
Ω

(πn − π0)φdx.

There exists w ∈W 1,p
0 (Ω) such that divw = φ− cφ (cf. [1, Corollary 3.1]), and

‖w‖W 1,p
0 (Ω) ≤ C‖φ‖Lp(Ω). (4.6)

Taking v = w as a test function of (4.2), we have∫
Ω

(
S

(n)
t (x, |curlun|2)curlun − S(0)

t (x, |curlu0|2)curlu0

)
· curlwdx

−
∫

Ω

(πn − π0)φdx = 〈fn − f 0,w〉.

We write this equality in the following form.∫
Ω

(πn − π0)φdx = I1 + I2 − 〈fn − f 0,w〉. (4.7)

where

I1 =

∫
Ω

(
S

(n)
t (x, |curlun|2)curlun − S(n)

t (x, |curlu0|2)curlu0

)
· curlwdx,

I2 =

∫
Ω

(
S

(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0

)
· curlwdx.

From (4.6) and the Hölder inequality, we have

|I2| ≤ C‖S(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0‖Lp′ (Ω)

× ‖w‖W 1,p
0 (Ω).

We now estimate I1. When 1 < p < 2, using Lemma 2.3, (4.5) and (4.6), we have

|I1| ≤ C4

∫
Ω

|curl (un − u0)|p−1|curlw|dx

≤ C4‖un − u0‖p−1

W 1,p
0 (Ω)
‖w‖W 1,p

0 (Ω)

≤ C5Fn(p− 1)‖φ‖Lp(Ω).

When p ≥ 2, using Lemma 2.3, (4.4), (4.6), (2.6) and the Hölder inequality, we have

|I1| ≤ C1

∫
Ω

(|curlun|+ |curlu0)|)p−2|curl (un − u0)||curlw|dx

≤ C2(‖curlun‖Lp(Ω) + ‖curlu0‖Lp(Ω))
p−2

×‖curl (un − u0)‖Lp(Ω)‖curlw‖Lp(Ω)

≤ C3(‖fn‖
p′−1

W−1,p′ (Ω)
+ ‖f 0‖

p′−1

W−1,p′ (Ω)
)p−2Fn(p′ − 1)‖φ‖Lp(Ω).
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Therefore, we have

‖πn − π‖Lp′ (Ω) ≤

{
C1Fn(1) + C2Fn(p− 1) if 1 < p < 2,

C1Fn(1) + C2Fn(p′ − 1) if p ≥ 2.
(4.8)

Hence we have

‖un − u0‖p∨p
′

W 1,p
0 (Ω)

+ ‖πn − π0‖p∨p
′

Lp′ (Ω)
≤ C(Fn(p) + Fn(p′)).

Finally, we claim that Fn(k) → 0 as n → ∞, if fn → f 0 in W−1,p′(Ω) and
S

(n)
t (x, t)→ S

(0)
t (x, t) a.e. (x, t) ∈ Ω× [0,∞).

In fact, from (2.1a), we have

|S(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0|p
′

≤ (2Λ)p
′|curlu0|p ∈ L1(Ω)

and S(n)
t (x, |curlu0|2)curlu0 − S0

t (x, |curlu0|2)curlu0 → 0 a.e. in Ω, so it follows
from the Lebesgue dominated theorem that

‖S(n)
t (x, |curlu0|2)curlu0 − S(0)

t (x, |curlu0|2)curlu0‖Lp′ (Ω) → 0

as n → ∞. In the particular case, since Fn(k) = ‖fn − f 0‖kW−1,p′ (Ω)
, the estimate is

clear.
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