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Abstract

In this paper, we show the existence of a weak solution to the Maxwell-Stokes type
equation by the penalty method introduced by Temam. Our approximate equation
is nonlinear and contains so called p-curl system. Furthermore, we obtain the
continuous dependence of the weak solution on the data.
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1. INTRODUCTION

In this paper, we show the existence of a weak solution to the Maxwell-Stokes type
equation by the penalty method introduced by Temam [9] (cf. Dautray and Lions [6,
vol. 7] or Girault and Raviart [7]).
More precisely, we consider the following Stokes problem in a bounded,
Lipschitz-continuous domain 2 C R? with boundary T".
—Au+Vr=f in{),
divu =0 in Q, (1.1)
u=0 on[.
The penalty method replaces the Stokes problem (1.1) by
—Au, — %Vdiv u.=f inQ, (1.2)
u. =0 onl’,

where € is a positive parameter that will tend to zero. The pressure 7 is approximated by
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T, = —%div u., and w. approximates u. Since the problem (1.2) is the Dirichlet
problem for the elliptic equation, the problem (1.2) has a unique solution u.. Temam
established the convergence of (u.,7.) to (u,7), and more precisely, proved the
following theorem.

Theorem 1.1 (Temam). Let ) be a bounded, Lipschitz-continuous domain in R, and
f € H(Q). Then, as ¢ — 0, we have

w, — win Hy(Q) and 7. — 7 in L*(9),

where (u, ) is the solution of the homogeneous Stokes problem (1.1).

Amrouche and Girault [1] extended this convergence to W™ ().

In the present paper, we shall show that the penalty method can be applicable to the
Maxwell-Stokes problem in the case d = 3. In order to do so, we replace —Aw in the
first equatin of (1.1) with a nonlinear term as in the following system.

curl [Sy(z, [curlul?)curlu] + Vr = f  inQ,
dive =0 in Q, (1.3)
u=20 onl,

where the function S(z,t) is a Carathéodory function in © x [0, c0) satisfying some
structure conditions. The first equation of (1.3) contains so called p-curl system

curl [|cur1u|p_2curl ul+Vr=f

in a special case. The equation (1.3) is nonlinear, and when p > 2, it is degenerate and
when 1 < p < 2, it is singular. In a special case of S(z,t¢) and p = 2, (1.3) reduces
to the equation (1.1), so our result extends Theorem 1.1. Our approximate system is as

follows.
curl [Sy(x, [curl ue[?)curl u.] — 1V[S(z, (divu.)?)divu] = £ inQ, (1.4)
u. =0 onl. '

Since this equation is nonlinear, it is necessary to investigate this problem from a
different point of view. Then we show that

1
u. — win WP(Q) and 7. := —gSt(CC, (div u.)?)divu. — min LP(Q),

where (u, 7) is a weak solution of (1.3).

The paper is organized as follows. In section 2, we give some preliminaries and the main
theorem that states the existence of the weak solution to the problem (1.3). Section
3 is devoted the proof of the main theorem. In section 4, we show the continuous
dependence of the solution on the data.



Existence of a weak solution to the Maxwell-Stokes type equation... 233

2. PRELIMINARIES AND THE MAIN THEOREM

This section consists of two subsections. In subsection 2.1, we give some preliminaries
that are necessary later. In subsection 2.2, we give the notion of a weak solution for the
Maxwell-Stokes problem and state the main theorem.

2.1 Preliminaries

Let 2 be a bounded domain in R? with a Lipshitz-continuous boundary I', 1 < p < oo
and let p’ be the conjugate exponenti.e., (1/p)+(1/p’) = 1. From now on we use LP(2)
and VVO1 P(Q2) for the standard L? and Sobolev spaces of functions. For any Banach space
B, we denote B x B x B by boldface character B. Hereafter, we use this character to
denote vector and vector-valued functions, and we denote the standard Euclidean inner
product of vectors a and b in R® by a - b.

We assume that a Carathéodory function S(x,t) in 2 x [0, 00) satisfies the following
structure conditions. For a.e. x € Q, S(x,t) € C?*((0,00)) N C°([0,00)), and there
exist 1 < p < oo and positive constants 0 < A < A < oo such that for a.e. x € (),

S(z,0) = 0and \t?~2/2 < S, (z,t) < AtP=2 2 for t > 0, (2.1a)
MP=2D/2 <G (2, t) + 2t Sy (x,t) < AtP~D/2 fort > 0, (2.1b)
If1 <p<2 Sy(z,t) <0, andif p > 2, S (z,t) > 0fort > 0. (2.1¢)

We note that from (2.1a), we have

2 2
“MP2 < S(xt) < ZAP2 fort > 0. (2.2)
p p

Example 2.1. If S(x,t) = v(x)t?/?, where v is a measurable function in Q and satisfies
0 < ve <v(z) <v' < ooforae. inS)for some constants v, and v*, then it follows
from elementary calculations that (2.1a)-(2.1c¢) hold. .

We give a monotonicity lemma.

Lemma 2.2. (i) There exists a constant ¢y > 0 such that for all t, s € R,

|t — sP ifp>2,
cr([t] + [s))P72t — s> ifl<p<2

(Si(z, )t — Sy(z,s*)s)(t — s) > {
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(ii) There exists a constant co > 0 such that for all a,b € R,

(Se(x.lal*)a — Si(z, [b")b) - (a — b)

o ) cla—0bp ifp>2,
co(lal + |b))P?|la — b* ifl <p<2.

Proof. We prove (i). If we put I(xz,t) = (Si(z,t*)t — Si(z, s*)s)(t — s), then we can
write

I(z,t) = /0 die [Se(x, (0t + (1 — 0)s)*) (0t + (1 — 6)s)]dO(t — s)

= /1{St(x, (0t + (1 —0)s)?)
O—i—QStt(x, (0t + (1 —0)s)*) (0t + (1 — 0)5)2}(10(15 — 5)%.
From (2.1b), we have
I(x,t) > )\/1 0t + (1 — 0)s[P~2df|t — s|. (2.3)
0
When 1 < p < 2, itis trivial that
I(z,t) > A(Jt] + |s[)P 2]t — s,
We consider the case p > 2. If || > |t — s/, then
0t + (1 —=0)s|=t+(1—=0)(s—1t)| > |t| — (1 —0)|s —t| > 0|t — s].

Thus it follows from (2.3) that

1
A
[(2,1) > /\/ 240t — s = —2 |t — s|P.
0 p—1

If [t| < |t — s|, we write
1 1 — 0\<|2)p/2
OVeP-270 (16t + (1 —8)s|*)
/0|0t+(1 0)s[P~2do /0 i
Since
0t+(1—0)s]* = [t+(1—=0)(s—1)
< (t+@=0)ls—1)
< (ls=tl+ @ —=0)s—t))*
= (2-0)s—tf*
< 4ls —tf?
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for 0 < @ < 1, using the Jensen inequality (cf. Jost [8, p. 122]), we have

i) > 4 / (It + (1 - 0)(s — D2)2d8

> 3(/01<t+<1—e><s—t>>2)p/2

AL, 2 p/2
S Al o1 y »
= Jzapnl ol
For the proof of (i1), see Aramaki [5, Lemma 3.6]. L]

Lemma 2.3. There exists a constants C'y > 0 depending only on A and p such that for
any a,b € R?,

‘St<x7 S, ‘a|2)a - St(xa S, |b|2)b|

< Cila — bfP~? ifl<p<2,
~ | Gillal + [b])"?la—b| ifp > 2.

For the proof, see Aramaki [3].

2.2 The main theorem

We consider the following Maxwell-Stokes system.

curl [Sy(z, [curlul?)curlu] + Vr = £ in
divu = 0 inQ, (2.4)
u=20 onl.

Definition 2.4. Let f € W '7(Q) that is the dual space of W*(Q). We say
(w,m) € WP(Q) x L”(Q)/R is a weak solution of (2.4), if w is divergence free
and (u, ) satisfies

/ Sy(z, |curl w|*)curl w - curl vdx — / wdivodr = (f, v) (2.5)
0

Q

for all v € WP(Q), where (f,v) denotes the duality between f € W% (Q) and
v e WP (Q).

We are in a position to state the main theorem.
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Theorem 2.5. Let Q C R? be a bounded, Lipcshitz-continuous domain in R3,
and assume that a Carathéodory function S(x,t) satisfies the structure conditions
(2.12)-(2.1c). Then for any f € W_l’p/(Q), the Maxwell-Stokes system (2.4) has a
unique weak solution (w, ) € W P(Q) x L” (Q) /R, and there exists a constant C > 0
depending only on p, \, \ and ) such that

3. PROOF OF THEOREM 2.5

In this section, we prove Theorem 2.5 by the penalty method. In order to do so, let
0 < e < 1. We consider the following system, and give the notion of its weak solution.

{ curl [Sy(x, |curl uf?)curl u] — V(S (z, (dive)?)divu] = f  inQ, 3.1

u=20 onl'.
Definition 3.1. We say that u. € W(l)’p (Q) is a weak solution of (3.1), if u. satisfies

1
/{St(x, |curl w.|*)curl u, - curlv + gSt(a:, (divw.)?)(div w.)(div v) }dz
Q

= (f,v) forallv € WyP(Q). (3.2)
For any fixed 0 < ¢ < 1, define a functional
1 9 1 . 9
E.[v] = 5 {S(z,|curlv]?) + ES(ac, (divw)?) fdz — (f,v).
Q

We consider the following minimization problem: to find w. € W (Q) such that

E.lu]=a:= inf E.|v]. (3.3)

vEWP(Q)
We call such a u. a minimizer of . Then we have the following proposition.

Proposition 3.2. Let 0 < e < land f € Wﬁl’p/(Q). Then the minimization problem
(3.3) has a minimizer u, € W(l]’p(Q).

Proof. According to Amrouche and Seloula [2], we first note that there exists a constant
C > 0 depending only on p and {2 such that

||V’U||LP(Q) < C(HCUI“I’UHLP(Q) + ||diV'U||Lp(Q))
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forall v € W(l]’p (€2), and from the Poincaré inequality, there exists a constant ¢ > 0
depending only on p and 2 such that

|lv||Lr) < || VV||pr) forall v € WIP(Q)
Thus there exists a constant Cs > 0 depending only on p and 2 such that

[

Wi < Cy(||curl v

by + Idivoll,q). (3.4)

Since 0 < ¢ < 1, using (2.2), the Holder inequality and the Young inequality, for any
d > 0 there exists a constant C'(d) > 0 such that

Efv] > %/Q{S(x,|curlv\2)+S(x,(divv)2)}dx—<f,'u)

A .
> E/Q(\Curlv|p+ |div v|P)dz — ||f|yW_1,p/(Q)HvHWé,p(m

A /
- p _ p . p

If we choose & > 0 so that 0 = \/2pC5, then we have

Eelv] 2 o= lIvllyin ) — C(A/2pC) || FIIE, - e R (3.5)

_20 ()

Let {v;} C W”(Q) be a minimizing sequence of a, i.e.,
E.lv;]=a+o0(1)as j — oo.

From (3.5), {v,} is bounded in W §”(Q). Since W ”(Q) is a reflexive Banach space,
passing to a subsequence, we may assume that

v; — u. weakly in WP(Q) as j — oo.

According to Aramaki [4], we have

/ S(z, |curl u,| )dm—hmmf/S(m, |curlv,|?)dx
Q Q

J]—00

/ S(z, (div u.)?)dz = lim inf/ S(x, (divw;)*)dz
Q Q

J—00

and clearly (f,v;) — (f,u.) as j — oc. Therefore, we have

E.lu.] <liminf £, [v;] = a.

_]*)OO

So u, is a minimizer of a. O
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For any v € W ”(Q) and t € R, we have E.[u.] < E.[u. + tv]. Thus, the
Euler-Lagrange equation implies

d
—FE.[u. + tv]

= /{St(x, |curl u,|?*)curl u, - curlv
dt o

t=0

1
+ =Sy (2, (divu.)?)(div u. ) (div o) }de — (f, v) = 0.
€
Thus we obtain the following proposition.

Proposition 3.3. The minimizer u. in Proposition 3.2 is a unique weak solution of (3.1)
in the sense of Definition 3.3.

Proof. Tt suffices to prove the uniqueness. Let u!, u? € W 7 (Q) be two weak solutions

2

< as a test function of (3.2), we have

of (3.1). Taking v = u! —u

/Q{ (Si(z, Jeurlwl)curlul — Si(z, [curlw?)*)curl w?)) - curl (wl — u?)
+ %(St(:v, (dival)?)dival — Sy(z, (divu?))diva?)div (u! — u?) }dz = 0.
It follows from Lemma 2.2 that
/Q(|Cur1 (u}l — u?)|P + §|div (ul —u?)|Pdr < 0ifp > 2,
and
/Q{(|cur1u;| + |curl w?|)P~?|curl (u! — u?)|?
+ %(\divuy T Jdiv e div (u! — u2)PYde < 0if 1 < p <2,
Therefore, we have
curl (u! —u?) = 0 and div (u! — u?) = 0in Q.
By (3.4), we have u. = u?. O

Remark 3.4. From this proposition, we can see that the minimizer of the minimization

problem (3.3) is also unique.

Proof of Theorem 2.5
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Let u. € W(l]’p (€2) be a unique minimizer of (3.3). Then w. is a weak solution of (3.1).
If we take v = wu, as a test function of (3.2), then

/{(St(x, |curl w, |*)|curl w.|* + éSt(x, (divw.)?)(divu.)? }de
Q
= <.f: ue)- (3.6)

Since % > 1, we have

)\/(‘Curl w [ + [divu.[)dz < ||f||w—1m/(g)Huenwéﬂp(g)
Q
C<5)Hf“€‘/—1,p’(g) + 5”“8”?4/(1)717((2)

for any 6 > 0. If we choose § > 0 so that § < \/2Cs, it follows from (3.4) that there
exists a constant C' > 0 depending only on p, A and 2 such that

leae 100 < Ol (3.7)

Moreover, from (3.7) and (3.6), we have

)\/|divua|pdx < /St(m,(divua)Q)(divu5)2dx
Q Q

— €||f||W*1,P'(Q) ||u5”W(1)’p(Q)

< Cl/IDé‘Hf”l‘)}V_1 o)

A

(3.8)

Hence, we have div u. — 0 strongly in L?(2) as € — 0. On the other hand, from (3.7),
there exists a subsequence {u,., } of {u.} such that u., — u weakly in W (). This
implies divu = 0 in 2. From (3.7), we have

< hmlnf e, Hp Loy S C'Hf”

(3.9)

T,

wtr' Q)
If we define 7, = —%St(x, (div u.)?)div u., then it follows from (3.8) and (2.1a) that

AC’1

1 )
Il o) < 20 [ Wivucpde < SS21AE, g

Passing to a subsequence, we may assume that 7., — 7 weakly in LP' () and

/ , ACI
p . . P
oy < Hmn{|e [[7, o) < [F s (3.10)

[[7r]]
On the other hand, since

/ S, (z, |curl u.|? )cur1u5|p do < A¥ / |curl u. [Pdz < AY C||f||W Loy
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{Si(x, |curl . [*)curl w.} is bounded in L¥ (). Passing to a subsequence, we may
assume that
Si(, [curl u, *)curl u.; — w weakly in Lp,(Q),

Since
/{St(x, curl u,, [*curl u., - curlv — . divv }da = (f, v)
Q

for all v € W (), letting £; — 0, we have
/Q(w -curlv — wdivw)dr = (f,v) forall v € W P(Q). (3.11)
In particular, since divu = 0 in §2, we have
/Qw~curludx:<f,u>. (3.12)

Since divu.; — 0 strongly in L”((2), we have

jli}rgo i Si(z, [curl ., |*)[curl u., |*dz = jli_>nolo g T, divu, dv + (f, u.,)
=(f,u) = /Qw ~curludz. (3.13)

By the monotonicity (Lemma 2.2), we have

/QSt(x, curlu,, |*)curl u,, - curl (u., — v)de
- /Q Si(z, |curlv[*)curl v - curl (u., — v)dz > 0.
Letting j — oo, we have
/Q(w — Sy(z, |curlv|?)curlw) - curl (u — v)dz > 0 for all v € W P(Q).
For any ¢ € W”(Q), put v = u — a¢ (a > 0). Then we have
/Q('w — Sy(z, |curl u — acurl g|*)(curl u — acurl @) - acurl pdz > 0.
If we divide this inequality by «, and then let & — 0, we have
/Q(w — Sy(z, |curlw|?)curl w) - curl gpdx > 0
for all ¢ € W (). This implies

/('w — Sy(z, |curl u|*)curl u) - curl pdxr = 0
Q
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for all ¢ € W (). Thus we have
/ (Si(z, [curlu|?)curlw - curlv — wdivw))de = (f,v) forall v € W,P(Q).
Q

Therefore, (u, ) € W P(Q) x LP(€) is a weak solution of (3.1).

Next we show the uniqueness of solution. Let (w1, ), (us, mo) € WP (Q) x L (Q) /R
be two weak solutions of (3.1). If we take v = u; — u5 as a test function of (3.2), then
we have

/ Sy (z, |curl ug|?)curl u; - curl (u; — ug)de = (f,u, — uy) fori = 1,2
Q
because of divu; = 0 in ). Thus we have

/(St(x, |curl w; [*)curl w;, — Sy (z, |curl ug|?)curl ug) ~curl (u; — ug)dx =0
Q

By the strict monotonicity (Lemma 2.2), we have curl (u; — us) = 0 and div (uy —
uz) = 01in €. By (3.4), we have u; = uy. From this, we have V(7m; — m3) = 0 in the
distribution sense, so 7; — 7 is a constant, i.e., 1, = m, in L” (Q)/R.

Finally we show the estimate (2.6). Taking v = w as a test function of (2.5), since
divu = 01in €2, we have

)\/ |Cur1u|pdx§/St(m,|curlu|2)|curlu|2da7
Q Q

=(f,u) < Hf”wfl,p’(g)||u||WévP(Q)'
By the same arguments as above, we have

p
w1 (Q)

If ¢, = ‘51' [, 7dz, we have

/(7‘(‘ — ¢p)divudr = / rdivvdz for all v € W P(Q)
0 0

because of the fact fQ divvdzr = 0 from the divergence theorem. Therefore we may
assume that m1 € L2 (Q) = {p € LY (Q); [ypdx = 0}. For any ¢ € LP(Q),
¢ —cy € Ly(2). According to Amrouche and Girault [1, Corollary 3.1], the
operator div : W{P(Q)/V'? — LF(Q) is isomorphism onto, where V!? = {v €
WP (Q);dive = 0inQ}. Hence there exists [w] € WyP(Q)/V'? such that
divw = ¢ — ¢4 and

lwlllwer e < Cllo = collre) < Cillllr@)-
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We claim that ||['w]||W(1),p(Q) = inf,cyip |Jw + 'v||W(1),p(Q) is achieved. In fact, {v;} C
V17 be a minimizing sequence of ||[w)] w170 v1.- Then

Jw + UjHWé*”(Q) = ||['w”|wévp(ﬂ)/v1,p +o(1) as j — oo.

Then {v;} is bounded in Wé’p (€2). Passing to a subsequence, we may assume that
v; — v, weakly in Wé’p(Q), sodivwy = 01n €, i.e,, vy € VP, Moreover, we have

Jw + UO”Wé’p(Q) < lijrgilolf lw + 'UjHWé”’(Q) = ||[w]”wé’P(Q)/V1,p-

Thus we have div (w+v,) = divw = ¢—c,. Hence we can assume that divw = ¢—c,
and

Hw”wgﬂp(m < CllollLey- (3.15)

Taking v = w as a test function of (2.5), since 7™ € Lg(Q) and satisfies [, mcgdz = 0,
we have

/ Todr = / Sy(z, |curl u|?)curl w - curlwdz — (£, w).
Q Q
Therefore, by the Holder inequality and (3.14), we have

/Q rédr

IN

A/ lcurl w|P~! |curl w|dz + ||f||W71,p/(Q)||w||W(1J,p(Q)
Q

IN

—1
A‘|Cur1u|’}£p(9)||Cur1'w||Lp(Q) + ”f”wflm’(g)||'w||wévp(9)
-1
CA(”qua;(l],p(Q) + HfHW*1<P/(Q))H¢”LP(Q)
C||f||W*LP’(Q)||¢||LP(Q)-

for all ¢ € L?(£2). Hence we have

el vy < CllF -1y (3.16)

IN

IN

Summing up (3.14) and (3.16), we get the estimate (2.6). This completes the proof of
Theorem 2.5.

4. CONTINUOUS DEPENDENCE OF A WEAK SOLUTION ON THE DATA

In this section, we consult the continuous dependence of a weak solution of (2.4) on the
data. In order to do so, for every n = 0,1,..., let S(”)(x, t) satisfy (2.1a)-(2.1c) with
the same constants A and A, and let f, € W‘l’p/(Q). Forn = 0,1,..., assume that
(Un, ™) € WP(Q) x L' (Q) /R is weak solution of (2.4), i.e.,

curl [S™(z, |curl w,|?)curl w,) + Vi, = £, in©,
divu, =0 in €2, “.1)
u, =0 onl
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More precisely, (u,,, 7,) satisfies

/ S" (, [owrluy[*)eurl a,, - curl wda - / mdiv vdz
Q Q

= (f,,v) forallv € W;P(Q) (n=0,1,...). (4.2)

Then we have the following theorem on the continuous dependence on the data.

Theorem 4.1. We assume that for every n = 0,1,..., a Carathéodory function
S (x, ) satisfies (2.1a)-(2.1¢) with the same constants X and A, and f, € W17 (Q).
Let (u,, m,) € WP(Q) x L” (Q) /R be a unique weak solution of (2.4). IS (x,t) —
S(O)(x t) a.e. in Q x [0,00) and f,, — foin W (Q) as n — oo, then u,, — ug in
WP(Q) and 7, — mo in LP (Q) /R as n — oc.

In particular case where S (z,t) = SO (z,t) foralln = 1, . . ., there exists a constant
C > 0 depending only on p, \, A, and || folyy—1. ) such that

loan = w0l + 170 = Toll 5500
<O = Follly gy + 1F0 = Folly i)

where p\V p' = max{p,p'}.

Proof. Taking v = u,, — uy as a test function of (4.2), since div (u,, — ug) = 01in €2,
we have

/ (St(") (z, |curl w,|?)curl u,, — St(n)(x, |curl ug|?)curl ug) - curl (w, — ug)da
Q

= <fn_f0>un_u0>
— / (St(n)(x, |curl ug|?)curl ug — 51 (z, [curl ug|*)curl ug) - curl (w,, — uo)dz.
Q
(4.3)

Hereafter, for the brevity of notations, we put

Fulk) = 1 = Foll'y 1o,

1S (2, [curl wo|?)eurl wg — S (, [curl wo|?)curl uoﬂlzp/(m,

and we denote constants depending only on p, A\, A, 2 and the constants in Lemma 2.2,
23 by C, (4, Oy, ... which may vary from line to line.

We estimate (4.3).
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When p > 2, it follows from Lemma 2.2 (ii) and the Young inequality that we have

02/ |curl (w,, — ug)|Pdx
Q
< H-fn - fouw—l,p’(g)uun - UOHW(I),ZJ(Q)
154" a, eurl wo [*)eurl wo — S (z, |eurl w *)eurl o | v
X ||Cu1"1 (un - UOHLP
< CEFW) + ellun — ol
for any € > 0. On the other hand, from (3.4),

Collun, — Uo”ivé,p < 2Cs|curl (u, — Uo)”iz)(m-

()

If we choose € > 0 so that Cye = ¢5/2, we have

< CyF, (). 4.4)

ot = w0 15 <

When 1 < p < 2, using Lemma 2.2 (ii) to (4.3), we have
/Q(|cur1 w,| + |curl up| )P 2|curl (u,, — ug)|*dz < CF,(1)||w, — ’U:0||Wé*p(g).

Here if we use the reverse Holder inequality (cf. Sobolev [10, p. 8]) with 0 < s =
p/2 < land s’ = p/(p — 2), then there exists a constant ¢ > 0 such that

/(|cur1 w,| + |curl up| )P 2|curl (u,, — ug)|*dx
Q
> ¢(||curl 'U’TLHZI),P(Q) + [Jcurl U’OH};P(Q )22 curl (u, — uO)HiP(Q)

Hence, it follows from (3.9) that

e — oI5y 1
@

< C(Ifal5,- gy T IFoll?,- Lot )2 P2E (D)l — wollyirg):

Since we may assume that

under the hypothesis, we can write

|, — uOHW(l)’p(Q) < CoF,(1). (4.5)
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We may assume that 7,, — 7y € LSI(Q), so for any ¢ € LP(52),

/ (T — 70) (& — o) = / (0 — 7o) bl

Q Q

There exists w € Wé’p (€2) such that divw = ¢ — ¢, (cf. [1, Corollary 3.1]), and
lwllyy1rq) < Cllollr)- (4.6)

Taking v = w as a test function of (4.2), we have

/ (St(") (z, |curl u,|*)curl u,, — 51 (z, [eurl ug|*)curl ug) - curl wdz
Q

- / (1 — m0) bl = {f,, — £, w).
Q

We write this equality in the following form.

/(7Tn —mo)pdr =11 + Iy — (f,, — fo, w). 4.7)
Q
where
L = /(St(") (z, [curl w, |?)curl w, — 5™ (z, |curl uo|?)curl u) - curl wdz,
Q
I, = / (an) (z, |curl uo|?)curl ug — 50 (2, |curl ug|?*)curl wg) - curl wdz.
Q

From (4.6) and the Holder inequality, we have

|I5] < C’||S£n)(x, |curl wo|?)curl ug — St(o)(:zt, |curl ug|?)curl Uol| v (0
< el

We now estimate /;. When 1 < p < 2, using Lemma 2.3, (4.5) and (4.6), we have

|11

IN

6’4/ |curl (w,, — ug)[P~|curl w|dx

IA

C4Hun u0Hp wir @) HwHWé’p(Q)

< CsFu(p = DI9lle@

When p > 2, using Lemma 2.3, (4.4), (4.6), (2.6) and the Holder inequality, we have

L] < Cl/(!Curlun\+\curluo)\)p2\cur1(un—u0)chrlw|dx
Q

< Cy(|lcurl wy, || Lr(o) + ||curl u0||LP(Q))p_2

X [|eurl (wy, — o) || oo [|curl wl| Lr (o)
Cs([l £l " +Hfo\|f,v_11p PP B = D¢l

IA
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Therefore, we have

CiF, (1) + CyF,(p—1 ifl <p<2,
||Wn__W”Lp,(m_{l() L F(p— 1) p 45

Hence we have

lwn = ol ) + 1mm = Mol ) < C(Fu(p) + Fu(0)).

Finally, we claim that F,(k) — 0 as n — oo, if f, — f, in W1 (Q) and
S (z,t) = S (z,t) ae. (z,t) € Q x [0, 00).

In fact, from (2.1a), we have

1S (@, leurla)eurlag — S (z, Jourlao|2)eurl ao|”

< (20N |curl wol? € LY(Q)

and S\ (z, |curl ug|?)curl ug — S9(x, [curl ug|?)curlug — 0 ae. in €, so it follows
from the Lebesgue dominated theorem that

||St(n) (z, [curl wo|?)curl wg — S\ (, [curl wo|?)curl Wol| L () — 0

as n — oo. In the particular case, since F,, (k) = ||f,, — fo“lévq,p'(m, the estimate is
clear. [
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