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Abstract

The present work investigates the thermoelastic behaviour of an elastic
material occupying the half space subjected to shock wave in the context
of the fractional order generalized thermoelasticity associated with two
relaxation times. The Laplace transform together with the Laplace
transform of Caputo fractional integral has been applied to solve the closed
form of the obtained solutions in the Laplace transform domain. The
inversion of the dimensionless physical quantities are obtained numericaly
using a complex inversion formula of Laplace transform based on a Fourier
expansion. The variation of the heat conduction, the distribution of the
stress and the strain with the fractional order parameter, second relaxation
time and time are studied and the results presented graphically. Comparison
between the effects of different parameters has been illustrated graphically.
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NOMENCLATURE
The following notaions will be used through out the present work:
" conductive temperature
in the hyperbolic two-temperature model
P conductive temperature
in the classical two-temperature model
ol principal stress component
in the case of hyperbolic two-temperature model
oP principle stress component
in the Classical two-temperature model
el cubic dilatation in the hyperbolic two-temperature model
er cubic dilatation in the classical two-temperature model
Cg specific heat at constant strain.
Co longitudinal wave speed.
T absolute temperature.
T, reference temperature
t time
u; components of displacement vector
a>0 two-temperature parameter.
ar coefficientpnt of linear thermal expansion
€ dimensionless mechanical coupling constant
A, [ Lame’s constants
p mass density
Tot relaxation time parameter.
15} fractional-order parameter
r gamma function
K thermal conductivity
0 =T —1T, thermodynamic temperature increment

such that /Ty < 1
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1. INTRODUCTION

In Thermoelasticity the heat conduction in deformable bodies arises from the
conductive and thermodynamical temperatures [1], [2]. It is seen that in case of
time dependent situation when there is no supply of heat the two-temperatures are the
same where as in case of time dependent situation the two-temperature are different.
Some more details of such studies can be found in [3],[4]. Youssef has defined
the variance theory and the uniqueness of the initial boundary value problem in the
generalized thermoelasticity with two-temperatures in separate situations [5]-[7]. To
remove the paradox of heat conduction present in the two-temperature thermoelasticity
theory which admit infinite speed of signals, Youssef enhanced the thermoelasticity
theory based on conductive and thermodynamic temperature by assuming a hyperbolic
form of the two-temperature relation [8]. The concept of derivative and integral have
been generalized to a non-integer order and studied by many researchers [9]-[15].
Various physical process and models have been implemented through the application
of fractional-order derivatives. Applications of the fractional-order theory and many
other contributions have been published by many researchers [16]-[22]. The fractional-
order thermoelasticity becomes more realistic when it relies on the fractional-order
operator because the presence of the fractional-order derivatives permits the differential
equations of the system to take into consideration the effects of the intermediate as well
as the previous states to express the present and the next states of the medium. One of
the most famous definitions of fractional-order was introduced by Riemann-Liouville
and given by [14]:

I 0 P — 5 / (=7 P ()], m—l<B<n (D)

:%[F(n—

The second definition was presented by [14]and given by:

chf(t)Z;ﬁ)/(t—T)”_ﬂ_l%g)dT n—1<pB<n Q)

These two definitions are the same if f(0) = 0. For more details about the comparison
between the two definitions of the fractional-order time derivative introduced by
Riemann-Liouville and that of Caputo and various definitions and works of fractional-
order derivatives were reported in [22].

Based on the new theory of the hyperbolic two - temperature generalized
thermoelasticity by Youssef [8] the present work can be considered as a generalization
to the application studied in it and more realistic as the present model contains
fractional-order derivatives in both equations of motion as well as the heat equation.
In the present work we will use the following equation:

LoD f(t) =sPWLf(t),  n—1<B<n, (3)
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as in [21] to investigate the behaviours of a thermoelastic isotropic and homogeneous
half-space subjected to a thermal loading a represented by a heavy side step function at
the end x = 0. In Eq. (3), s is the complex parameter connected to Laplace transform.

2. ONE DIMENSIONAL THERMOELASTIC MODEL

For the present model we presume the following one-dimensional fractional-order
system of equations which is capable to describe the overall behaviour of a semi-infinite
one-dimensional homogeneous isotropic material occupying the half- space x > 0 and
subjected to thermal loading at the end x = 0. The three- dimensional forms of this
system can be found in Youssef [8]. We assume that the material is subjected to thermal
loading and stress-free at the end = = 0. All the field functions are initially set at zero.
We also presume that no body force is applied to the medium. When no inner heat
sources and any charges are present, the generalized thermoelastic one dimensional
system of differential fractional-order equation assumes the following equations:

The conductive heat equation:

Po(x,t), 0 1)

K (=5 =5+ 5 DY (pC O(, 1)) + Ty (L + 7°D))e(x, ) (4)
dO%e(x,t) 5o 0%e(z, 1) 78 511, 0%0(z,t)
o7 (A+2p) (T+7 Dt)W—V(lJFEDt )W (5)

and the stress-strain constitutive equations take the forms:
B
o(x,t) = (1+7°D)) (A + 2u)e(w, t) — (1 + %Df“)f)(m, t) (6)
and Dulz, )
ela,t) = == (7)

Instead of the classical two-temperature relation between the heat conduction ¢ and the
thermodynamical temperature 6 given by:
D
0=¢p—a— 8
voags (8)

we used the following hyperbolic relation as given in[9]:

9’0 9%p oAl

a2 "o %o ©)
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3. DIMENSIONLESS SYSTEM OF EQUATIONS IN LAPLACE DOMAIN

For converting the previous system of Eqgs.(4)-(9) into dimensionless system we used
the set of dimensionless variables as in [8] and dropping the primes for convenience,
we get the following non-dimensional system of equations:

Po(x,t) 0 8

—oa = (g T 3D @ t) + L+ 77 D)e(a, ) (10)

The dimensionless fractional-order differential equation of strain takes the form:

—82(;(;’ b _ (1+ rﬁDf)—GQEE;’ t _ w(l + %foH)_a?eag;, 2 (11)
the constitutive equations take the following forms:
8
o(z,t) = (14 7°DPe(z,t) — w(l + 5-()!17?*1)9(3;,75) (12)
and
e(z,t) = aug;, ) (13)

The hyperbolic two-temperature non-dimensional equation becomes:

¢ 0% [oalt)

- _a=X 14
o~ o Yo’ (9

Applying the Laplace transform defined by:
L{f ()} = / e f(t)dt (15)

0

together with Caputo definition (3) to the system of Egs. (10)-(14) we get the following
none dimensional system of equations in Laplace domain:

*p(x, 5)
W = Lle(az, S) +L2¢9(.§L’,S) (16)
D?*e(x, s) 9%0(x, s)
2 = E16<I, S) + EQW (17)

o(x,s) = (14 s%)e(x,s) —w(s’7 + BNO(x, s) (18)
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and the relation between the two types of temperature:

D*p(,
O(z,ps) = p(z,s) — 3_2(1%) (19)

Combining Egs. (17) and (18) gives:

82
T80 _ et s) 20)
_ B
where Ly = s°7 ' 4561, Ly = s+T§SB 1 E, = 528! E, = wm and L3 =

gt L3> L

(1+ s°77)p!

The Egs. (16)-(20) represent the non-dimensionless governing equations of the present
one - dimensional fractional-order thermoelastic model in the light of generalized
fractional-order thermoelasticity with hyperbolic two-temperature equation.

4. THE SOLUTIONS IN THE LAPLACE DOMAIN

Eliminating e(z, s) and 6(z, s) between the Eqgs. (16) and (17), we get the following
fourth order non homogeneous differential equation;

Pp(x,s)  Mo(z,s)
bgp(xv S) —a o2 + Ot

=0, 1)

where

52 (ﬁ! (P12 4 wsf + 5% + $?(a + Ewel + 1)) + 57 (Toﬁ (a+7PsP +1) + wrl1? (s" + §8261)))

a =
BUHTP(a + 5)sPt2 + awsP + 3 + afswel + as?) + asP (TO’B (858 + 1) + wrl? (s8 + 55261))

st (s2B! + 107 s7)

b =
BUHTP(a + 5)sPt2 + awsP + 3 + afsPwel + as?) + asP (TO'B (858 + 1) + wrl? (s8 + 55261))

The most general solution of (21) according to the current formulation of the problem
takes the form;

2
plr,s) =) Cie ™, (22)
=1

where C; are coefficients depending on s whose values can be evaluated by using
the given boundary conditions, +k; are the roots of the characteristic equations
corresponding to the Eq. (21), which is;

N — MK+ k* = 0.
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After some manipulations to the system of Egs. (16)- (19) we get the following general
solutions of the physical quantities of the present model in the domain of Laplace;
The thermodynamical temperature assumes the form:

2

M) = 5 3G (8 —ak?) 3)

i=1

The strain and the stress in the domain of Laplace takes the form:

i:cl ki 2A2+k2A3>

(24)
=1
2
=Y Cie B (L + K2 Ls) (25)
where
L, — —Aw— (HSBB)AQ’ T B—Zé;ﬁ-sﬁ)Agg
S'BTﬁ : SBTﬁ s2p! asﬁﬂ’? s2(s+a)B!
A =Tl g, = Sus g e era)s)

B = (7 + s%,6)B!.

The Eqgs.(22) -(25) represent the complete solution of the system (16)-(20) in the
Laplace transform domain.

S. DETERMINATION OF THE PARAMETERS

To determine the previous parameters, the following initial conditions have been
provided as well as the medium is set at rest initially and has reference temperature
T, so that the initial conditions are given by;

o(z,0) = 0, e(x,0)=0, o(xz,0) =0,
dp(z,0)/0t = 0, OJe(x,0)/0t=0, 0do(x,0)/0t=0,
(26)

we assume a thermal shock loading so that the medium undergoes the following
boundary conditions at the close end x = 0;

90<O’ t) = Yo H(t)’ 0-(07 t) - Oa (27)
while at x = oo the boundary conditions take the form:

p(oo,t) =0, , o(oco,t) =0, 0<t< oo, (28)
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where H (t) is the Heaviside unit step function and ¢,is the thermal shock intensity.
Applying the Laplace transform to the Eqgs. (27) and (28) we obtain the following
dimensionless form of the boundary conditions:

A0 = 24 F(0.) =0,
(10(0078) = 07 5<OO>S):O7 (29)

Similarly the dimensionless initial conditions in the domain of Laplace can be obtained.
By applying these conditions to (22)-(25), the constants C; can be obtained as given
below;

Clzgo[s (s? —ozk:Q)L67'1w+(s Ly — k3 Lg 3] (30)
( )( 86L6T1W+L85!)
)

02230[ (2—ak2 Lo w + (82 Ly — k2 Lg B1)] 31)
(k? (ozsﬁLﬁle—i—Lgﬂ)
where
Ly = (1+)77 + (s + s2e1)rhw
L = P 4 ws® + 521 +e1éw)
Ly = ($4+ 87 +a s+ aws’ +as?(1+eéw))

After substituting with the constants given by the Eq. (30)-(31) into the Eqgs. (22)-
(25), we obtain the complete solution in the Laplace domain of the non-dimensional
field functions; temperature, stress and strain respectively.

6. NUMERICAL FORM OF THE INVERSION OF THE LAPLACE
TRANSFORM

The physical quantities p(z,t), 0(x,t), o(x,t) and e(x, t) can be obtained by inverting
the system of Egs.(22)-(25) back to the time domain. Therefore, we use a numerical
equation based on the expansion of Fourier. In this technique any function f (s) is
inverted back to the original function f(¢) in the time domain as given below;

exp(ct) 1 al ikm vkm
f(t) = 2P 57+ ROT( (c+ = exp(=)] 0<t <2, (32)
1 1

where R is the real part, ¢ is imaginary number unit and N is a sufficiently large integer
representing the number of terms in the truncated Fourier series chosen such that;

exp(ct)R {f (c+ #) exp(iNﬂt

1 ty

)| < e, (33)
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where €; is a small positive number that represents the degree of accuracy required.
The parameter c is a positive free parameter that must be greater than the real part of
all the singularities of f(s) . The optimal choice of ¢ was obtained according to the
criteria described in Honig and Hirdes [23]. Details about the analysis of the formula
(32) can be found in [24].

7. DISCUSSION OF THE RESULTS

For numerical computations, we used the physical constants of the Copper material
used in [21]. We investigate the distributions of the field functions ¢, o and e with the
variation of the values of the parameters (3, 7; and ¢. The results are collected in groups
of figures; each group presents the effect of one of the mentioned parameters on the
physical quantities.

Figure (1) illustrates the effects of the fractional-order parameter 5 on the field
functions. Fig.1 (a) illustrates the effects of the variation of the fractional order
parameter 3 on the distribution of the field functions. It is noticed that there is a direct
variation between (3 and the amplitude of the heat conduction . An asymptotic stability
in the heat conduction curve can also be noticed. Figure 1(b) represents the stress with
different values of . It is noticed that the amplitude changed its sign from positive to
negative at x ~ 1.35. The absolute vale of the magnitude of the stress distribution is in
inversely proportional to the increasing value of the fractional order parameter. Figure
1(c) represents the variation of the strain distribution with the variance of /. It shows
that the strain resembles the behaviour of the stress up to the point x ~ 2.0 but for
x ~ 2 the effect of the fractional order on the distribution curve of the strain disappear.
The strain attains its equilibrium point faster than the other than the physical quantities.
Figure (2) represents the effect of the second relaxation time 7; on the functions ¢, o
and e. It is seen that there is no changes on the distribution curve of the heat conduction
o with different values of 71. Figure 2(b) illustrates the behaviour of the stress with the
variance of the second relaxation time 7;. A very slight change in the amplitude of the
stress near the point where we apply the thermal shock is seen up to the point = ~ 1.0.
Changes of the amplitude of the stress have been noticed at + > 1.0. The stress
distribution has an asymptotic stability. Unlike the behaviour of the stress, the strain
distribution curve changes its absolute value of the amplitude near the point of the heat
source and the effect of the second relaxation time starts to disappear at z = 1.0. Strain
distribution curve has an asymptotic stability like the stress.

Figure (3) shows the variation of the field functions with the variation of time ¢. The
variation of the heat conduction ¢ with the variation of time ¢ resemble its behaviour
with the variation of the fractional order parameter /3. In fig.3(b) the stress distribution
curves show an inverse variation with change in time. It is also noticed that the peak
positions of the stress curve move away from the point of the heat source. The stress
distribution curve has an asymptotic stability during the variation of time.
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FIGURE 1: Effect of fractional-order parameter 5 on ¢, 0 and e at ¢t = 0.05, 7, =
0.2, 71 =0.25

(a)Distribution of hyperbolic conductive temperature ¢; (b) Distribution of Stress o; (c)
Distribution of Strain
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FIGURE 2: Effect of the Second Relaxation Time 7, on ¢, 0 and e at t = 0.5, 7, =

0.01,8=0.6
(a) Distribution of hyperbolic conductive temperature ; (b) Distribution of Stress o;
(c) Distribution of Strain
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FIGURE 3: Variation of Physical field functions with Time ¢ on ¢, ¢ and e at
t=0.51,=0.01,5=0.6

(a) Distribution of hyperbolic conductive temperature ; (b) Distribution of Stress o;
(c) Distribution of Strain
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8. CONCLUSION

We noticed that the distributions of the field function ¢, o and e has an asymptotic
stability with the variation of all parameters /3, 7; and time ¢. We also noticed that the
second relaxation time 77 has no effect on the heat conduction . The amplitude of the
distribution curve of the stress changes its sign at the same point with the variation of
all parameters. The figures of the heat conduction and the stress are coincident with the
boundary conditions.
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