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Abstract

On the basis of tensor production of the real Hilbert spaces, functional-
geometric conditions (necessary and sufficient) are given for the existence of a
differential realization model for experimental data of an "input—output" type
describing the dynamic behavior of the "black box" in the class of controllable
bilinear nonstationary ordinary differential equations of the second order with
delay (including non-autonomous quasi-linear hyperbolic models) in the
separable Hilbert space. Incidentally, the topological-metric conditions of
continuity of the projectivization of the entropic Rayleigh—Ritz operator are
substantiated with calculating the fundamental group of its image. The results
obtained give incentives to develop a qualitative theory of non-linear structural
identification of polylinear non-autonomous differential systems of higher
orders with delay, as the tools of mathematical modeling for the weakly-
structured neurodynamic processes.

Keywords: mathematical neuroscience, inverse problems of nonlinear
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1. INTRODUCTION

R. Kalman, one of the founders of the qualitative theory of differential realization
(QTDR), when stating that the realization task plays a pivotal role in the general
theory of dynamic systems, formulated the following approach [1]: to consider the
task of realization as an attempt to guess the equations of the motion of the dynamic
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system by the behavior of its input and output signals or as construction of the
physical model, explaining experimental data of an "input—output" type presented in
the form of a cybernetic "black box" model. The current period of intensive
development of the qualitative theory of differential realization in an infinite-
dimensional formulation is largely related to the creation of a new mathematical
language — the entropic theory of extensions of M,-operators [2]. This theory has
substantially reconstructed and strengthened theoretical and system foundations of
QTDR and provided harmonic connection of purely geometric ideas of M,-
extendibility with the methods of a posterior modeling of differential equations of
higher orders [3, 4] in infinite-dimensional spaces, with an emphasis on the
application [5, 6] and not on achieving maximum generality of presentation.

The latter circumstance could not but leave its mark on the content of this work,
namely, since in many practically important problems of mathematical
neurophysiology the realization model of differential representation of temporal
processes of a "reaction, controlling action" type requires taking into account non-
linear non-stationary relationship as from the reaction itself and its flow speed, and
from the controlling action, then below, the main attention is focused on the study of
the differential realization model depending on five nonstationary bilinear structures.
The first of these depends on the reaction (response as function of time), the second
bilinear operator depends on the reaction and its speed, and the third bilinear operator
depends only on the speed of this reaction, and the other two take these variables into
account due to the impact of the delay parameter and the signal of the software
controlling action.

In addition, the qualitative theory of differential realization, considered in line with
infinite-dimensional formulation of the inverse problems of mathematical physics, is
more complex, more interesting, deeper in application and is very important for
understanding the basic properties of differential models themselves. Its geometric
structures can serve as the starting points of the modern development of the general
(axiomatic) theory of systems (in the line of [5]), incidentally creating a reputation for
these structures as a very useful mathematical tool in the precision a posterior
modeling of complex infinitely dimensional dynamic models.

2. PROBLEM FORMULATION

Furthermore, (X ’””x ), (Y ,||||Y) are the real separable Hilbert spaces (i.e. standards
fulfill the "parallelogram condition" [7, p. 162]; with that, below we use [7, p. 176]
linear isometry (preserving the norm) E:Y — X of spaces Y and X . As usual, the
L(.5',-8") is the Banach space (with operator norm) of all linear continuous
operators for two Banach spaces .5' and A", Z(X? X) is the space of all
continuous bilinear mappings from the Cartesian square X x X into the space X,
below we actively use the linear isometry [7, p. 650] of spaces Z(X? X) and
L(X,L(X,X)).



Existence of a Bilinear Delay Differential Realization of Nonlinear ... 201

Let us write down the segment of the number scale R with the Lebesgue measure
uas T :=[ty,t,], the o-algebra of all u-measurable subsets out of T as #, » notation

S < Q (S,Qegp,) means p(S\Q)=0. Moreover, let us accept that ACY(T,X) is a
mod p

set of all the functions ¢: T — X, the first derivative of which is the absolutely
continuous function (with respect to measure ) at the interval T .

If there is some Banach space below (-5, ||) , then, as usual, let L (T,-5), p €[L,)

denote the Banach space of all classes of p-equivalence of Bochner integrable [8]

mappings f:T —>.5 with norm (j||f(t)||pp(dr))1/p, respectively, let L_(T,.B)
T

denote a Banach space of these classes with norm €sSsup; ||f|| In this context we

agree that

L, =L, (T, L(X, X)) x L, (T, L(X, X)) x L, (T, L(Y, X)) x
x L, (T, Z(X?, X)) x L, (T, Z(X?, X)) xL,(T,Z(X* X))x L,(T,L(X? X)) xL,(T,L(X? X)),

L= L(X, X)x L(X, X)x LY, X)x Z(X 2, X)) T(X 2, X)x T(X 2, X)x T(X 2, X)x Z(X2, X).

Further we assume that on the time interval T the behaviour of the studied
(simulated) behavioral system [5] is recorded a posteriori in the form of non-
restricted by power nonlinear cluster of N observable multidimensional dynamic
processes (behavioral model of “black box), represented by couples of temporal
vector functions of a “reaction, action” type, i.e. formally:

N c{(x,u): xe AC*(T, X), ue L,(T,Y)}, Card N <exp N,,
where (using terminology [1]) (x,u) is the “trajectory, program control” pair, X, is

the aleph zero, exp X, is the continuum; above (and below) the term “a nonlinear

bundle” means that for the trajectory curves of this bundle, it is a priori not assumed
that there is a presence of the superposition principle (when the dependency of output
quantities on input actions is linear [1]). In addition, let a statement function with the
second derivative (in the realization model) from the t+—> x(t) trajectory of the type

below be specified as an inertia-mass characteristic of the simulated system:
AeL, (T,L(X,X)),
pfteT: At)=0eL(X,X)}=0;
with that, violation of the condition of equivalence to the normal system, namely:
ufteT: Ker A(t) ={0} = X}=0,

is permissible; in this context, see Note 1 below.
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Let us consider the problem: for a fixed pair (N, A) we need to define necessary
and sufficient conditions, expressed in terms of a non-linear bundle of dynamic

processes N and statement function A , of the existence of an ordered set from eight
statement functions

(Ai’Ab’B' D1’D21D3’D4’D5)€L2’

for which the second-order bilinear differential realization (BDR) is implementable
with a delay 7 = constant > 0, which has an analytical representation in the form of:!

A%+ AX+AX=
=Bu+D,(x,x)+D,(x,x)+ D, (X,X)+ (1)
+D,(E(u),y)+Ds(E(u),y), V(xu)eN,

X(t—71),if t,+T<t<t;
Oe X, if t, <t <t +1.

t y(t) :={ (19
If the simulated operators of the BDR-system (1) are supposed to be searched for
in the class of stationary ones, then we will build them in the class of continuous

ones, and at the same time write
(A, A,B,D,D,, D,D,D)eL.

In connection with the above mathematical formulation, we note that each area of
mathematics, as a rule, contains its major problems which are so difficult that their
complete solution is not even expected, but they stimulate a constant flow of work
and serve as the main milestones to progress in this area. Within the framework of
QTDR studies, such a problem is that of a classification of continuous behavioristic
systems, considered as if they exactly coincided with the solutions of idealized
differential models, including those of higher orders. In its strongest form it
presupposes the classification of such systems within the accuracy of a corresponding
class of differential realization models, in particular, and a class of non-stationary
BDR-models (1). This is substantiated below in Theorems 1-3 (and its corollaries)
that allows us, in the classification defined, to get significantly closer to the ideal
combination of functional transparency and geometric clarity [9].

3. THE CHARACTERISTIC FEATURE OF THE BDR-MODEL.: Equivalent
Formulations

We will now describe an analytical diagram for solving the issue of solvability (or
unsolvability) of the BDR-problem (1). So let Z =X ® X be a Hilbert tensor product

[10, p. 54) of Hilbert spaces X and X with the cross-norm |||

, » defined by the scalar

'Equality in (1) is regarded as an identity in the L, (T, X).
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product [8] in X . Moreover, we will introduce new designations , which will be
widely used in the future:

U=XxXxXYXZXxZxZxZxZ,

L, =L, (T,L(X, X))x L, (T,L(X, X)) xL,(T,L(Y, X))
x L, (T, L(Z, X)) x L, (T, L(Z, X)) x L, (T, L(Z, X)) x L, (T, L(Z, X)) x L, (T, L(Z, X));

it is clear that functional space 1., (with product topology) is linearly homeomorphic
to Banach space L, (T,L(U, X)).

Let a universal bilinear mapping n:XxX > X®X denote n. In the category
language, the morphism 7 defines tensor product as a universal repelling object [10,
p. 40]. The versatility of the bilinear mapping 7 is also consists in the fact that

T XXX >X®X,
(X1, X)) = (X, X5) = X; @ Xy,

[} ®x, [, =[%] [%2] ;

these ratios are important for determining the structure of the non-linear functional
Rayleigh—Ritz operator in terms of the specification of the norm ||||U .

Further, we believe that the Cartesian square X? =X x X is endowed with the

norm (||||i +||||i )2, In this formulation me Z(X?,Z) and, taking into consideration

Theorem 2 [7, p. 245], for any bilinear mapping D € L(X?, X) there will always be a
linear continuous operator D e L(Z, X), such that :D=Dom, with that, inclusions
with be performed for any pair (x,u) € N (according to (17)):

n(X,X), T(x,X), w(x,X) eL,(T,Z),
n(E(u),y), m(E(u), ) € L,(T,Z).

These constructions are summed up by the following statement.

Lemma 1. For any set (A, A,,B, D,,D,,D,,D,,D.) e L, and mapping
Fo L, (T, X)xL, (T, X)xL,(T,Y)x
x L, (T, X?)x L, (T, X?)x L, (T, X?)x L, (T, X*)xL,(T,X?) = L,(T, X),
(Y1:Y2: Y3 Yar ¥s: Y1 Y20 Ya) = F(Y1: Y20 Va0 Var Yoo Yoo V7 Ya) =
=AYy, +AY,+By,+ Dy, + D,y. + Dy, + D,y; + D.y,,
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there is a single 8-tuple of statement functions
(b,,b,,Db,,D,,D,,D,,D,,D;) €1,
and, respectively, the only linear mapping
M :L,(T,U) > L,(T,X),
with an analytical representation of the form
(2,,2,,25,2,,25,24,2,,25) > M (2,,2,,25,2,,25, 24,25, 25) =
=Dz, +D,z,+D,;z, + D,z, + D,z; + Dsz, + D,z, + D,z
such that the following functional equality is satisfied:
(Y11 Y21 Y3 Yar Yo Yoo Y70 Ya) > F(Y1s Y20 Yas Yar Y50 Yoo Y7 Vo) =
=M (Y1, Y2, Y5, (Y4 ) (Y5 ), T (Y5), (Y,), (Vs)),

which, in turn, induces the following operator equations for statement functions from
the constructions of mappings F and M :

A =D, A =D,, B=D;,
D,=D,on, D,=D,on, D;=Dgom, D, =D, 0on, D, =Dgom.
Everywhere further (in the context of the BDR-problem (1)) we will accept that

V, =Span{(X, x,u, (X, X), T(X,X), (X, X),

n(E(u),y), m(E(u),¥)) € L,(T,U): (x,u) € N}.

The next Lemma generalizes the behaviorist condition (7) [11].

Lemma 2. Let
S={teT:(g(t), w(t), v(t), a(t), s(t), h(t), at),u(t)) =0 e U},
Q={teT:g(t)=0e X},

where (g,w,v,q,s,h,4,u) eV,,. Then S < Q takes place.

mod p

Next, let (L, (T, R),<, ) be a positive cone [12] of classes of 1 -equivalence of all real
non-negative p-measurable at the interval of T functions with quasi-ordering <, , at
which &'<| &" if and only if & (t) <&'(t) p is almost everywhere in T . At that, for
the given subset WL, (T,R), let sup, W denote the smallest upper bound of the
subset W if this bound exists in the cone L, (T,R) in the structure of quasi-ordering
<., In particular, it is easy to establish that there is a ratio

sup {8, & =& vE =27 (E+E"+[E-L")).
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In this formulation, consider the lattice [12]:
RW)={eL (T,R): &< sup W}.
Then (R(W),<,) is the lattice with the smallest ¥, € L, (T,R) and the largest
sup, We L, (T,R) elements; here and on, ¥, is the "zero function" of the cone

L. (T,R). In the context of the Theorem 17 [7, p. 68] and Corollary 1 [7, p. 69] is
easy to extract a more general statement; below inf _ is the largest lower <, -bound.

Lemma 3. The lattice ® (W) is full, that is,
inf_ V, supVe®rW) YVWccrRW).
Let ¥:V, —>L,(T,R) be an entropic Rayleigh—Ritz operator [2]:

t Y(o)(t) = HA(t)g(t)Hx /”(P(t)”U ,if o(t)=0eU;
OeR,if p(t)=0eU;

where ¢ :=(g,w,v,q, s,h, 4, U) eV, . It is clear that the following equality holds:
(9@, w(t).v(®), a(), s@), hv), ac), Tw)], =

= (o ®[, + W) + VOl +Ja®, +[s@l; +[h®]; +[a®]; +[Fm]2)"> .

at the same time, let us call the functions

(9, w,v) = n, (g, w,Vv) = g,w,v,0,...,0|3,
(9,5,h,0,0) > ng(g,s,h,4,0) = 0,0,0,q,,h,4,d |7,

respectively, the linear and bilinear characteristics of the Rayleigh—Ritz operator.

By virtue of Lemma 2, the following is performed at the time interval T
supp¥ (¢) =supp|Ag| (mod p);

here, in the definition of the supp-construction of the function support, we follow [7,

p. 137] (i.e. the support is determined within the accuracy of a zero to a set of measure
Z€ro).

Entropic operator ¥ satisfies very simple (but important) ratios
Xo SL P(e)=Y(ro),
where reR" :=R\{0}, ¢€V,; in the designations below we will distinguish the
image of the point (@) and the image of the set ‘P[{¢p}].

The theory of the Rayleigh—Ritz operator needs an exact functional-geometric
language, which makes us pay special attention to this language. Therefore, it will be
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useful to introduce additional terminology before proceeding further. Specifically, the
functional operator ‘¥ induces the mapping PY:P, - L, (T,R), which, according to

the established tradition in representation theory [10, p. 239], we will call the
projectivization of the Rayleigh—Ritz operator:

PY(y) =Y[yl, ye R, (y=Vy),

where P, is the real projective space, associated with the linear manifold V (with
topology, induced from space L,(T,U)); i.e. P, is a set of orbits of a multiplicative
group R’, acting on V, \{0}. In this geometric interpretation, the key point is the
topological properties of space B, dimP, <¥,, of course, first of all, (in the context of
Theorem 2), its compactness, in particular, if dimV, =3, takes place, then a compact
2-manifold P, is arranged like the Mobius strip, to which a circle is glued along its
border [13, p. 162]. We mention in passing that on P, we can introduce a geometric

structure of a CW-complex [13, p. 140], which, in its turn, simplifies regarding the
issue of the geometric realization of the manifold P, — Theorem 9.7 [13, p. 149].

Theorem 1 (existence of differential model of “black box™). Each of the following
three conditions results in the other two:

(i) the BDR-problem (1) is solvable with respect to
(ALA,B D, D,,Dy,D,,Ds) e Ly

(i) F0elL,(T,R):¥(p) <, 0 VoeV,;
(iii) 3Jsup, PY[P,]: sup, PY[P,]1€L,(T,R),

at the same time, to perform (A, A, B, D, D, D,, D, D)el, it is
essential that

(iv) ®R(PY[ARI<L.(T.R).

Note 1. Theorem 1 can be seen as an initial step in the study of the problem? when
the bundle of controllable trajectory curves N from the implicit differential equation
of the higher order is required to be paired with the explicit nonstationary bilinear
differential system of the second order with the same bundle of controllable trajectory
curves N .

2 In particular, this formulation is appropriate, when a BDR-problem that is solvable for the pair (N ) Al) must be reduced to a

solvable BDR-problem for the pair (N , Az) in such a position, when H{t cT:Ker Ai(t) =0e X}¢ 0, A2 — a homothetic
operator with coefficient 1; the nature of the accompanying calculations is illustrated in Examples 1, 2.
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Proof. We will use the ideas of work [2]. Adhering to Definition 1 [2], we will
introduce into consideration the structure of the M, -operator M :L,(T,U) - L,(T,X) of
the form

3(D,,D,,D,,D,,D,, Dy, D,,D;) € 1,: M(g,W,v, g, ,h, U, U) ==
=D,g+D,w+D,v+D,q+ D;s+ D;h+ D0+ Dyu
v(g,w,v,q,s,h,d,u) e L,(T,U).

The rest of the proof details with minor clarifications (taking into account Lemmas
1-3 for the lattice ® (PWY[P,])) is included in a diagram of M,-continuability in the

form of Corollary 2 [2] and Theorem 3 [2] (maximum entropy principle). At this, the
necessary condition for the

(Aii Ab! Ba D1;D21D3,D4,D5) (S L*
is set up by modifying the proof of Theorem 3 [11]. m

Note 2. It should be noted that even in the case of 1<CardN <X, there is a
proposition of Card P, =exp ¥, ; but it can be shown that there is (Theorem 17 [7, p.
68]) a countable set G — P, such that if sup, P¥[PR,] lies in space L (T,R), then
the real function {:=sup, PY[P,] is performed by the following sup-structure:

t— {(t) =sup{P¥(y)(t) eR: yeG}.

Note 3. The proof of Theorem 1 can be easily modified to formulate an analogue
of Theorem 3 [12], expressing in terms of the angular distance in the Hilbert space the
conditions for the existence of a bilinear system (1) that implements bundles N;, N,,

each of which has its BDR-model, alongside with that, in a mathematical formulation
[11], when the simulated operators of the differential system (1) are stationary, i.e.

(A A,B D, D,,D,,D,, Dy) € L*,
in particular, with the optimal norm [14].
The following particular case is also important in specific discussions:

Corollary 1. If dimV,, <¥N,, Y[V, 1< L,(T,R)and thereisa p[l, «), at which

(o, +¢,) <. p¥(9,) + p¥(9,), (9.,0,)eV xV,
then the BDR-problem (1) is solvable.

Note that at p =1, this property (in the context of quasi-ordering <, ) is akin to the
property of "sub-linearity" [12] of functional operators.
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4. CONTINUITY OF THE RAYLEIGH-RITZ OPERATOR IN THE BDR-
PROBLEM SOLVABILITY ANALYSIS

In the case of compactness of the projective manifold P, (equivalently,
dim P, <¥,), it is natural to try to connect this property with the problem of
constructing a lattice ® (PW[P,]) in the context of the continuity conditions for the

projectivization of the Rayleigh—Ritz operator (see also [15]); below, when choosing
a metric structure in a cone L (T,R), in Theorem 2 ], we have resorted to Theorems

15, 16 [7, pp. 65, 67] (in this formulation, L (T,R) is a complete separable metric
space).

Theorem 2. Let dim P, <, and the cone L, (T,R) be endowed with a topology
induced by convergence in measure p, or, equivalently, by an invariant > metric

pr (fy, f,) ::J-l f,(0)- () |Q+] f,(7) - f,(x) |)71H(dT)> f,, f,eL, (T,R).

Then the operator P¥Y: P, — L, (T,R) will be continuous if the bundle N is such that

Vo eV, \{0}:supplo], =T (mod p), )
in particular, if
Vy e P, :suppPY¥(y) =T (mod p). 3)

Note that Theorem 2 is the development of the Theorem 3 [16], which confirms its
methodological importance in the a posterior simulation of complex dynamic systems
[2—6]. One of the applications of this result is the following statement.

Corollary 2. If, when performing (2) or (3) the PW¥ is one-to-one, then PW is
homeomorphism, and the fundamental group of the metric space (PWY[P,],p;) IS
isomorphic to the additive group of integers Z at dim SpanN =2 and the residue
group Z, at dim Span N >3, moreover, the space (PW¥[P,].p;) is orientable if the
dimension of the linear envelope Span N is even and non-orientable if this
dimension is odd.

Taking into account that the continuous real function on the compact space reaches
its highest and lowest values, we come to the conclusion that in the formulation of
Corollary 2 and Theorem 5 [7, p. 28], for the case when 1<dimP, <N, and with

sup, PY[P,], there will be such points v, y"e P, that

pr (PY(Y).xg) =sup{pr (P¥(v).xz) v € Py} < pr (SUp. PY[P ] %) <u(T),
pr (PY(y"),sup_ PY[R]) =inf{p, (P¥(y), sup. P¥Y[P]):yePR}>0.

3The invariance assumes Pr (f+9,9+q)= Pr (f,9) for any of f g,gelL, (T,R)-A version of a non-invariant in-

complete metric that ensures the continuity of the Rayleigh—Ritz operator, is considered in [15].
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It should be noted that the inclusion of PW(y') € L,(T,R) does not guarantee the
embedding of ® (PY[P,]) cL,(T,R) (see Example 1 from [16]). At the same time, it
should be noted that dim P =0 results in the proposition

sup, PY[P,]=PY¥Y[P,]=|Ax

/O I+l + 1 +

X 5+ + TECOT I + Bl 50 @)

In the context of Theorems 1, 2 we can clarify the terms of the existence of the
lattice ® (PW[P,]). As a starting point, we introduce an auxiliary structure: for a

natural n, let W denote some finite n™-dense subset in metric space (P¥[P,],p;);

the subset W, exists by virtue of Theorem 2. Below, Lim b {&,} means the limit of

the sequence {&,} < L. (T,R) in the topology, induced by a metric p; .
Theorem 3. Let W.},, . W, ={¢,,....¢, }= P¥[R] and
fo=&Vv..vE, &= Vv...v(,, 1<i<n.
Then the cone L, (T, R) contains the lattice ® (PW[P,]) if and only if
pr(fy, f,) >0 (n,m — ),

besides, the BDR-solvability takes the following form: the pair (N,A) has a
differential realization (1) if and only if LimpT{fn}e L,(T,R), which is equivalent to

R(PY[P D < L, (T,R).

In conclusion, we give examples which disconfirm a possible view that
everywhere above we laid emphasis solely on the ideological aspect of each concept,
thereby unwittingly neglecting its consideration from a computational point of view;
everywhere below we believe that the simulation is carried out with a zero delay
=0 (i.e. y(-) = X("); according to (1°)).

Example 1. Let T =[0,10], Y =X, A be an operator of homothetic [12] with a
unit coefficient, A =0eL(X,X), D,=D,=D, =D, =0e Z(X? X), ee X, |l e« =1,

t > x(t) = (tsint)e,
tu(t)=0eL,(T, X).

Then the function f :=sup, P¥(P,)=|%lly (Ix% +I x5 %1%) ™" (see Fig. 1) doesn’t

belong to space L, (T,R) and, consequently, according to Theorem 1 and formula (4),
realization (1) for an uncontrollable process N ={(x,u)} does not exist.
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Example 2. Let us change the formulation of the Example 1 by
t > u(t) = (tsin®t+2"t?sin 2t + cost)e.

Then (see Fig. 2) :=sup, PY(P,) =IXll, (IxI5 +IxI5 Ix[5 +Nul§)™ € L,(T,R) and
it means that realization (1) for a controllable process N ={(x,u)} exists; it's easy to
establish that

X+x=2u-2D,(X,X),

where D, =<-->, &, <>y~ is the scalar product in X.

Ia0) 7

it | 8
NS | f
A
4l
| |
3 | Iy |I
i |I / \J | 2
| [ M\ ||| |
\ \ I_,./’l | S Iy
0 2 4 f ] 10 - - : - = ¢
I 2 4 f ] 10
Fig. 1. f%(t)=(2cost —tsint)? x Fig. 2. f2(t)=(2c0s t—tsint)® x(( tsint)® +

x ((tsint)? + (tsint)®(sint +tcost)®)™  +(tsint)’(sint +tcost)? + (tsin’t + 2 *t?sin 2t + cost)?) ™

Note that for the more complex versions of setting the pair (t+ x(t), t+ u(t))

symbolic calculations of the function f?(-) (similar to Fig. 1, 2) can be carried out by
means of computer algebra of mathematical physics [17]. In this context, the scheme
for analyzing the solvability of the BDR-problem in Examples 1, 2 can be modified to
qualitatively analyze the reduction of exact multidimensional diffusion solutions with
power nonlinearities to the Cauchy problem for a countable system of ordinary
differential equations with polylinear structure.

The following example characterizes the fact of the presence of a property of the
nonstationary of the BDR-model as an endogenous factor in the differential
realization of the bundle N (see paragraph (iv) of Theorem 1).
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Example 3. Let T =[0,1] and a coefficient of homothetic of the operator A be
equal to 5 while

N ={(x,u)},
t—= x(t) =t*%, tu(t) =y, (e
Then (as it is easy to establish) the function f :=sup, P¥(P,) according to
formula (4) satisfies the inequalities
0,6t%* <sup, P¥(P,) <48t

where the second inequality guarantees (by virtue of paragraph (iii) of Theorem 1) the
existence of some BDR-model implementing the bundle process N, with that, the
first inequality, according to paragraph (iv) of Theorem 1, shows that this model
cannot be a stationary one.

Let us give an example that illustrates the situation when the linearity property of
the differential realization model is insufficient to the precisely construct the
equations of the N bundle dynamics.

Example4.Let T =[1, 2], A be a homothetic operator with a coefficient of 1, while
N ={(x;, 1), (X2, U,), (X, Us)
t— x, () = (t* +2)e, ti>u (t) =27y (t)e,
t— X, () =te, tu, )=y (e,
t X, (t) = (2—4V2)te, tiou,(t) =y, (t)e.

First of all, we will show that the dynamic bundle N cannot have linear
differential realization. To do this, it is sufficient to establish that the linear

characteristic 1, which responds to the Rayleigh—Ritz operator, induces the function
t—>mn, (9, w,V)(t) with zero of order 2. The characteristic condition of this formulation
will be the following system of equations (relative to the parameters o, 3 ):

[l %, () +ox, (£) +BX; (1) |2 = ((t* +2) +at +B(2 —4/2)t)% =0,

1% (£) + 0%, (£) + B () 15 = (2t + 07 (1) + B(2— 44/ 2)x (1)) =0,

[l u, (t) +aw, (t) +Bu, (t) |2 = (2t +at +pt)* =0,

from where it's easy to calculate that o = -1, f = 0,5, with that, a zero pointis t = V2.

Now let us show that a BDR-model (1) for the bundle N exists. To do this, it is
sufficient to establish that the sum of linear and bilinear characteristics (parametric
representation by o, ) of the Rayleigh—Ritz operator for the bundle N is limited
from below by some function written as:
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t ry; (t), r €(0,).
In doing this, it's easy to see that at any t €[1, 2], o, € R there will be
M (to,) +1g(t o, p) 2
2 %, (£) + 0k, (£) + B (1) 15 + [l uy (0% (8) + ot (€)%, (£) + s (D)% (1) I =
= (2t +a+B2-42))’ + (t* +at+B(2—-4V2)t)’ =
=[(2t+v(o B))” + t7 (t +v(a, B))’]

>
YoB)=o+pR-4v2)

2 [(2t +v(0, B)* + (t+ (e B))*]

Y0B0+B-4v2)

o (3% SR S (309)
>[(t+0(t))° + 0* ()] o1/, =t*/22

> 0,5y (t).

You can check that the BDR-model (1) for the bundle N has analytical
representation:

X+X=Dg(u,x),
where D () =—<->, €.

Important model and theoretical conclusions follow directly from Example 4, as its
analytical generalization. Any qualitative analysis of the BDR-modeling problem
should essentially begin (1) with the verification of these conclusions; at the same
time they make it possible to reduce (on the basis of purely engineering ideas (relying
on experience and common sense) the gap between theory and practice. The first
conclusion is that the final dynamic bundle N can have at the interval T
interpolation representation in the class of polynomial spline-functions [18]. The
second conclusion expresses

Proposition 1. Let the dynamic bundle N fulfill the following condition:
3(9,w,v,0,5,0,0,0) €V, 1| Ag [l (ne (9, wv) +75,) " 2L, (T.R), (5)
where Xs, is the characteristic function of the set S, =T \suppg .

Then, the differential realization of this bundle can't have analytical representation
(1) in which all the bilinear operators are zero.

Condition (5) can be weakened (constructively strengthened) by reducing it to the

search, by means of computer algebra, of zeros of the function 1, +n;, parameterized

by the coefficients of interpolation representation of the bundle N in the class of
polynomial spline-functions.
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5. CONCLUSION

In order to go further, one can quite confidently point out the theoretical and
systemic direction which will constitute the algebraic basis without the excessive
building-up of technical means of algebraic geometry of the next stage of
development of the qualitative theory of differential realization of higher orders [3, 4,
19], namely, the transition from the bilinear structure of nonlinear links to polylinear
links. Methodologically, this transition consists in using a geometric language of
tensor structures of the Fock spaces [20] and projective representations [10, p. 238] in
the context of the study of metric properties of the Rayleigh—Ritz operators [15], by
means of computer algebra of mathematical physics [17].

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (Project:
No. 19-01-00301).

REFERENCES

[1] Kalman R. E., Falb P. L., Arbib M. A. Topics in Mathematical System Theory.
New York: McGraw-Hill. 1969.

[2] Rusanov V.A., Banshchikov A.V., Daneev A.V., Lakeyev A.V. Maximum Entropy
Principle in the Differential Second-Order Realization of a Nonstationary
Bilinear System. Advances in Differential Equations and Control Processes.
2019. 20, N 2. P. 223-248.

[3] Van der Schaft A.J. On Realization of Nonlinear Systems Described by Higher-
Order Differential Equations. Mathematical Systems Theory. 1987. 19. P. 239-
275.

[4] Rusanov V.A., Daneev A.V. Lakeyev A.V., Sizykh V.N. Higher-Order
Differential Realization of Polylinear-Controlled Dynamic Processes in a
Hilbert Space. Advances in Differential Equations and Control Processes. 2018.
19, N 3. P. 263-274.

[5] Willems J.C. System Theoretic Models for the Analysis of Physical Systems.
Ric. Aut. 1979. N 10. P. 71-106.

[6] Brzychczy S., Poznanski R. Mathematical Neuroscience. Academic Press. 2013.

[7] Kantorovich L.V., Akilov G.P. Functional Analysis [in Russian]. Moscow:
Nauka Publ. 1977.

[8] Yosida K. Functional Analysis. Berlin: Springer-Verlag. 1965.



214

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

V.A. Rusanov, A.V. Daneev, Yu.E. Linke, P.A. Plesnyov

Rusanov V.A., Daneev AV., Lakeev A.V., Linke Yu.E., Vetrov A.A. System-
Theoretical Foundation for Identification of Dynamic Systems. Far East
Journal of Mathematical Sciences. 2019. 116, N 1. P. 2-68.

Kirillov A.A. Elements of Representation Theory [in Russian]. Moscow: Nauka
Publ. 1978.

Rusanov V.A., Daneev A.V., Lakeev A.V., Linke Yu.E. On the Differential
Realization Theory of Nonlinear Dynamic Processes in Hilbert Space. Far East
Journal of Mathematical Sciences. 2015. 97, N 4. P. 495-532.

Edwards R.E. Functional Analysis: Theory and Applications. New York: Holt.
1965.

Prasolov V.V. Elements of Combinatorial and Differentiable Topology [in
Russian]. Moscow: MTsNMO. 2014.

Rusanov V.A., Antonova L.V., Daneev A.V. Mironov A.S. Differential
Realization with a Minimum Operator Norm of a Controlled Dynamic Process.
Advances in Differential Equations and Control Processes. 2013. 11, N 1. P. 1-
40.

Rusanov V.A., Daneev A.V., Lakeyev A.V., Linke Yu.E. On the Theory
Differential Realization: Criterions for the Continuity of the Nonlinear
Rayleigh—Ritz Operator. International Journal of Functional Analysis, Operator
Theory and Applications. 2020. 12, N 1. P. 1-22.

Rusanov V.A., Daneev A.V. Linke YUu.E. To the Geometrical Theory of the
Differential Realization of Dynamic Processes in a Hilbert Space. Cybernetics
and Systems Analysis. 2017. 53, N 4. P. 554-564.

Banshchikov A.V., Bourlakova L.A. Computer Algebra and Problems of Motion
Stability. Mathematics and Computer in Simulation. 2001. 57, N 3. P. 161-174.

Laurent P.-J. Approximation et Optimisation [in French]. Paris: Hermann. 1972.

Rusanov V.A., Daneev A.V., Linke Yu.E. Adjustment Optimization for a Model
of Differential Realization of a Multidimensional Second-Order System.
Differential Equations. 2019. 55, N 10. P. 1390-1396.

Reed M., Simon B. Methods of Modern Mathematical Physics 1. Functional
Analysis. New York: Academic Press. 1972.



Existence of a Bilinear Delay Differential Realization of Nonlinear ... 215

ABOUT THE AUTHORS

Vyacheslav Anatolievich Rusanov,

Doctor of Physical and Mathematical Sciences, chief researcher at Matrosov Institute
for System Dynamics and Control Theory of the Siberian Branch of the Russian
Academy of Sciences (ISDCT SB RAS),

Irkutsk, Russia,
Email: v.rusanov@mail.ru

Aleksey Vasilyevich Daneev,

Doctor of Physical and Mathematical Sciences, chief researcher at Irkutsk State
Transport University,

Irkutsk, Russia,

Email: daneev@mail.ru

Yurij Ernievich Linke,

Doctor of physical and mathematical sciences, professor for Irkutsk National
Research Technical University,

Irkutsk, Russia.

Pavel Aleksandrovich Plesnyov,
researcher at Irkutsk State Transport University,
Irkutsk, Russia.


mailto:v.rusanov@mail.ru

216 V.A. Rusanov, A.V. Daneev, Yu.E. Linke, P.A. Plesnyov



