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Abstract

In this paper, first we study the rough Liouville equivalence of non-degenerate
integrable Hamiltonian systems with two degrees of freedom using geometric
skeleton. Then consider the rough Liouville equivalence using molecules and
show that both the approaches are equivalent.

Classification: MSC 37J15. MSC 37J35

Keywords: Liouville foliation. Integrable Hamiltonian systems. Rough Liouville
equivalence.

1. INTRODUCTION

Topological investigation of an integrable Hamiltonian system means the study of
the topology of the corresponding Liouville foliation. Liouville theorem completely
describes the Liouville foliation in a neighborhood of a Liouville torus, but no
information about its structure near singular leaves. To classify the dynamical systems,
it is necessary to define an equivalence relation for them first. The second step is to
distinguish a certain class of non-degenerate singularities for which the classification
can be obtained in reasonable forms.

The topological (qualitative) study of integrable Hamiltonian system has
attracted many researchers. It has many applications in symplectic geometry,
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KAM, Poincare- Melnikov theories, Celestial mechanics etc. Integrable systems are a
special case of systems with symmetries. Topological study of integrable systems was
first initiated by Smale [10], using momentum maps. The first and most fundamental
result about qualitative behaviour is theory which classifies integrable systems locally
near non-singular tori. Generalization of this theorem for non-singular systems was
achieved by Nekhoroshev [9], Duistermaat [6] and Dazord and Delzant [5]. Integrable
systems occur in the nature always have singularities. Fomenko and his collaborators
[2][7][8] developed Morse type topological theory for classification of integrable
Hamiltonian system, to take into account singularities. They studied systems with two
degrees of freedom restricted to isoenergy 3-surfaces. Zung [11] obtained a topological
classification of non-degenerate singularities of any codimension, which lead to a
generalization of Fomenko’s theory in higher dimension. In this paper, we study the
rough Liouville classification of the non-degenerate integrable Hamiltonian systems
with two degrees of freedom.

Let M4 be a four dimensional symplectic manifold with an integrable Hamiltonian
system v = sgrad H and f be the smooth function on M4 called an additional integral.

Definition. Decomposition of M4 into connected components of common level
surfaces of f and H is called the Liouville foliation corresponding to v = sgrad H .

Note that base of the Liouville foliation is a topological space whose elements are
the leaves of the Liouville foliation (each leaf represented by a point). The base of
the Liouville foliation of the isoenergy surfaces is defined analogously. Base of the
Liouville foliation is not only a Hausdorff space, but also a CW-complex.

Definition. A point x ∈ M4 is called a critical point of the momentum mapping
F = (H, f) : M4 → R2 if rank dF (x) < 2.

Definition. The set of points {x ∈ M : H(x) = h, a constant} is called an isoenergy
surface, denoted by Q.

Note that Q is invariant with respect to the Hamiltonian field v. Consider Q =

Q3 isoenergy three dimensional surface which we assume to be smooth compact
submanifold of M4 on which dH 6= 0. Since degrees of freedom is two the integrable
system have just one additional integral f functionaly independent of the energy integral
H . This integral f restricted to Q is a smooth function having critical points on Q

coincide with those of the momentum mapping F = (H, f) which belongs to Q. We
shall denote this restriction by the same f .
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In this paper, we consider the case of four dimensional symplectic manifold M4 and
assume that all systems considered are non-resonant and stable (in general position).
We have smooth integrable Hamiltonian v = sgrad H on M4 and Q is a compact
3-dimensional isoenergy surface in M . The second independent integral f is chosen in
the Bott representation. Note that the restriction of f on the transversal to the critical
submanifolds is a Morse function. We consider integrable systems whose critical
submanifolds can be only circles.

2. REEB GRAPH OF A MORSE FUNCTION AND ATOMS

In this section, we discuss about Reeb graph, atom and various types of simple atoms.
Also f -atoms and simple molecules are explained Bolsinov and Fomenko [1].

Properties of a function are determined mostly by the character of its singularities.
For a smooth function f on a smooth manifold Xn, a point p ∈ Xn is a critical

point of f if df =
∑ ∂f

∂xi
dxi vanishes at p, where (x1, x2, · · · , xn) is a local

coordinate at p. The critical point is called non-degenerate if the second differential

d2f =
∑ ∂2f

∂xi∂xj
dxi dxj is non-degenerate at that point. By Morse lemma, in a

neighborhood of a non-degenerate critical point, one can choose local coordinates in
which f(x) = −x21 − x22 − · · · − x2λ + x2λ+1 + · · · + x2n. The number λ is uniquely
defined for any critical point and called its index.

There are three types of non-degenerate critical points ( maximum, minimum and
saddle) for functions on 2-dimensional surfaces. In suitable coordinates the functions
can be written as (if f(p) = 0)

1. f = x2 + y2 (minimum, λ = 0)

2. f = −x2 − y2 (maximum, λ = 2)

3. f = −x2 + y2 (saddle, λ = 1)

A smooth function is called a Morse function if all its critical points are non-degenerate.
In the space of all smooth functions on a smooth manifold, the Morse functions are
everywhere dense. So degenerate critical points split into several Morse type (that is,
non-degenerate) singularities. If Xn is a closed manifold, then Morse functions form
an open everywhere dense subset in c2-topology in the space of smooth functions on
Xn. A point a ∈ R is a regular point of f if f−1(a) contains no critical points. In this
case, f−1(a) is a smooth submanifold of Xn. Let c ∈ R be a critical value of f , that is,
preimage of c contains at least one critical point. By arbitrarily small perturbations, we
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can have exactly one critical point in every critical level f−1(c) = {x ∈ Xn : f(x) =

c}. That is, critical points which occur in the level can be moved close but different
levels. If each critical level f−1(c) contains exactly one critical point, then f is called a
simple Morse function.

Definition. Let f : Xn → R be a Morse function. For each a ∈ R, consider the level
surface f−1(a) and its connected components, called fibers. Let Γ be the collection of
all fibers. Considering each fiber to be a point, introduce the natural quotient topology
on Γ. For a Morse function, the quotient space Γ is a finite graph, called Reeb graph of
the Morse function f on the manifold Xn.

A vertex of the Reeb graph is the point corresponding to a singular fiber of f . A vertex
is called end vertex, if it is an end of an edge. Otherwise the vertex is called interior
vertex.

Let f be a Morse function on a surfaceX2. Every Morse function determines a foliation
on the surface. Its fibers are the connected components of level sets of f . In the
neighborhood of each regular fiber, this foliation is trivially being the direct product
of a circle by an interval. In the neighborhood of a singular fiber the foliation have a
complicated structure. Now we give a detailed description of the topological invariants
introduced by Fomenko[8] .

Definition. Let c be a critical value of f on X2 . An atom is a neighborhood P 2 of a
critical fiber P 2 = {x ∈ X2 : c− ε ≤ f(x) ≤ c + ε} foliated into level lines of f and
considered upto the fiber equivalence. The atom P 2 is simple, if the Morse function f ,
in the pair (P 2, f) is simple. Otherwise it is called a complicated atom.

Definition. Let f and g be Morse functions on X2 and Y 2 , respectively and c and c′ be
critical values of f and g, respectively. Morse functions f and g are said to be fiberwise
frame equivalent in the neighborhoods of singular fibers f−1(c) and g−1(c′) if there
exists ε > 0, and ε′ > 0 and a diffeomorphism λ : f−1(c−ε, c+ε)→ g−1(c′−ε′, c′+ε′)
that maps level lines of f into those of g and preserves the direction of the growth
of functions. That is, λ maps {x | f(x) > c} into {y | g(y) > c′} . Note that
P 2 = {x ∈ X2 |c− ε ≤ f(x) ≤ c+ ε} is a surface with boundary.

Definition. Consider a pair (P 2, f), where P 2 is a connected compact surface with
boundary ∂P 2 and f be a Morse function on it with a single critical value c such that
f−1(c− ε) ∪ f−1(c + ε) = ∂P 2. The fibre frame equivalence class of this pair (P 2, f)

is called an f− atom or framed atom.

Note that each atoms corresponds to two f -atoms. They are obtained one from the other
by changing the sign of the functions on the given atom. Sometimes they coincide.



Rough Liouville Equivalence of Integrable Hamiltonian Systems 157

To see the level lines of a Morse function on a 2-dimensional surface. Let a be a regular
value of f , then corresponding level lines consists of several non-intersecting smooth
circles. Now to look at what happens to these circles when they cross a singular level.

The case of maximum and minimum - Atom A: Let X2 be an orientable surface
and f has a local maximum. As the regular value tends to the local maximum, the
circle (non-singular level lines) shrinks to a point. Every regular level line (a circle)
represented by a point which is located on the level a. As a changes, this point moves
running through a segment. When the value of the function becomes critical value c, a
circle has shrunk to a point. Denote this event by the letter A with a segment going out
of it. In the case of local minimum , this segment is directed upwards, going out of A.
Atom A can also be denoted by a disc with a marked center foliated into concentric
circles. There are two different types of f− atoms corresponding to the atom.

The case of an orientable saddle - Atom B: Let c be an orientable saddle point. Then
the regular level line looks like a figure eight curve. As a tends to c , two circles getting
closer and finally touch a point. After that level line bifurcation happens and we get
just one circle. By changing the direction one circle splitted into two circles. At level
c two points of the circle glues together and figure eight curve obtained, then it divides
into two circles. Representing each regular circle by a point and looking after their
evolution we obtain a graph, denote this atom by B. There are two different f− atoms
corresponding to B. Atom B can also be imaged as a flat disc with two holes foliated
into level lines of the Morse function.

The case of non-orientable saddle - Atom B̃: Let X2 be non-orientable and c be
a saddle point of f . The bifurcation of type A are similar in both orientable and
non-orientable cases. Saddle bifurcation happens in the orientable case is to a boundary
circle one glues a narrow rectangular strip so that the surface obtained is orientable.
Then the boundary becomes homeomorphic to two circles. After replacing f by
−f , two boundary circles transforms into one. In the non orientable case, instead of
rectangular strip, a 180◦ twisted strip is glued to the boundary circle. As a result a
Mobius strip appears inside the surface. There after crossing the critical level c one
circle {f = c − ε} turns again into one circle {f = c + ε}. Representing each regular
circle by a point and looking after their evolution the graph obtained is the B̃ atom.

Theorem 2.1. A simple atom has either type A, or B, or B̃. These three atoms
corresponds to five f− atoms, two for the atom A , two for the atom B and one for
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the atom B̃.

Proof. Since f is a Morse function, Morse lemma says any bifurcation of the surface
{f ≤ c− ε} through the critical point c is reduced to either gluing a 2-disc or rectangle
to the boundary of the set {f ≤ c − ε}. Gluing a 2-disc results the atom A and gluing
rectangle results atomB or B̃ . Since for atomA two f− atoms which is corresponding
to minimum and maximum and for atom B two f− atoms and one f− atom only for
B̃. The result follows.

Now we consider a simple Morse function f on a compact closed surface X2. The
singular leaves can be of different types, therefore the information about their structure
should be added to the Reeb graph Γ. Then we obtain a graph called molecule which
will carry more information than the Reeb graph Γ.

Definition. Let f be a Morse function on a compact closed surface X2 and Γ be the
Reeb graph. The vertices of Γ corresponds to critical fibers of f . Replace these vertices
by corresponding atomsA, orB, or B̃. Each edge of the Reeb graph incident to a certain
vertex is assigned to one of the boundary circles of the model and the correspondence
is assumed to be fixed. The graph now obtained is called simple molecule W .
Endow the edges of W with orientation corresponding to the direction of increasing f .
The directed graph thus obtained is called a simple f− molecule.

Next is the geometrical definition of an atom.

Definition. An atom is defined to be a pair (P 2, K) where P 2 is a connected compact
two dimensional surface with boundary (orientable or nonorientable) and K ⊆ P 2 is a
connected graph satisfying the following conditions:

1. either K consists of a single point or all the vertices of K have degree 4;

2. each connected component of P 2 \K is homeomorphic to an annulus S1× (0, 1]

and the set of all annuli can be divided into two classes (positive annuli and
negative annuli) in such a way that, for each edge of K, there is exactly one
positive annulus and exactly one negative annulus incident to the edge.

Two atoms (P 2, K) and (P
′2, K ′) are equivalent if there exists a homeomorphism

mapping P ′2 onto P 2 and K ′ onto K.

Definition. An f -atom is an atom with a fixed partition of its annuli into positive and
negative ones.
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Morse functions on an f -atom (P 2, K) can be defined such that f is positive on positive
annuli and negative on the negative annuli.

Definition. The vertices of the graph K, that is critical points of f , are called the
vertices of the atom. The number of vertices is called the complexity of the atom.

An atom is usually defined by same letter with several incoming and outgoing edges.
Each edge represents certain annulus of the atom and endpoint of the edge represents
the boundary circle of the annulus.

Definition. The ends of the edges in the above description is called the ends of the atom,
and the number of ends is called valency. The positive and negative edges corresponds
to the positive and negative annuli. Assume positive edges as outgoing and negative
edge as incoming.

We endow the edges of the atoms with the arrows indicating their orientation. The
arrows on the edges of atoms show the direction of increasing the function f .

3. CRITICAL SUBMANIFOLDS OF THE BOTT INTEGRAL AND SEIFERT
FIBRATION

This section deals with critical submanifolds of the additional integral and the Seifert
manifold structure of the neighborhood of a singular leaf. Also the structure of the
Seifert fibration on the neighborhood of a singular leaf Fomenko[7], Bolsinov and
Fomenko[1], Bolsinov and Matveev[3].

Let M4 be the symplectic manifold with integrable Hamiltonian system v = sgrad H .
Let Q3 be a non-singular compact connected isoenergy 3-surface in M4. Let f be an
additional integral of the system which is independent of H . Restriction of f to Q3 is
denoted by f itself and f is assumed to be a Bott function onQ3. Its non-singular leaves
are Liouville tori and the singular ones corresponds to the critical level of the integral f
on Q3. Now we describe the critical submanifolds of f .

Proposition 3.1. Let the system v be non-resonant onQ3, and let the additional integral
of f be a Bott function. Consider the corresponding Liouville foliation on Q3. Then
this foliation is completely determined by the Hamiltonian H and does not depend on
additional integral f .

Proof. The system v = sgrad H is non resonant implies that almost all the Liouville
tori are the closures of the integral trajectories of v. Thus, almost all non singular level
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surfaces of the integral f are defined by the Hamiltonian H . If f and f ′ be two Bott
integrals of the system v = sgrad H . Almost all non-singular level surfaces of f and
f

′ are same (uniquely defined by H), implies that the remaining level surfaces will
coincide. That is, f and f ′ gives the same Liouville foliation.

Note. If gradH 6= 0 on Q3, then f does not have any isolated critical points on Q3.
So the critical points of f are always form either one dimensional or two dimensional
non-degenerate submanifold in Q3. Moreover, the connected critical submanifolds of f
in Q3 can be of three types - circles, tori and Klein bottles.

Proposition 3.2. (a) Non-degenerate critical circles of the Bott integral f can be both
manifolds of local minimum or maximum and saddle ones.
(b) Non-degenerate critical tori and Klein bottles are submanifolds of local minimum
or maximum.

Proof. Let S be a critical submanifold. Assume D is a normal disc to S. Then the
restriction of f onto D is a Morse function. If S is a circle, then D is two dimensional.
Then the Morse function have either a local minimum or a local maximum or a saddle
at the center of the disc. If the submanifold S is two dimensional, then the dimension
of normal disc D is one. Then f must have a local maximum or minimum at the
center.

We consider integrable systems whose critical submanifolds can only be circles. The
reason for this is in most of the practical problems critical tori and Klein bottles do not
appear. By an arbitrary small perturbation of H and f , Bott integral can be turned into
a system without critical tori and Klein bottles and the foliation into a Liouville tori in
a neighborhood of a critical torus is trivial.

Now we discuss the Seifert manifold structure of the three dimensional invariant
neighborhood U(L) of a singular leaf L of the Liouville foliation on the isoenegy
manifold Q3 and the structure of the Seifert fibration on U(L). Then the structure of
U(L) to be uniquely obtained by a surface with a Morse function f on it.

Definition. A solid torusD2×S1 divided into fibers {∗}×S1 is called a trivially fibered
solid torus where D2 is the unit open disc and S1 is the unit circle.

Let α, ν be numbers, where α > 1, be relatively prime. Take the solid cylinder D2 × I
and glue it by rotation through an angle 2πν

α
to obtain a solid torus. The separation of the

cylinder into segments {∗}×I determines a foliation of the solid torus into circles called
fibers. The fiber obtained by gluing the ends of the segment {0}×I goes along the torus
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only once, called singular fiber. Every other fiber goes along the torus exactly α times
called singular fiber of multiplicity α. The numbers (α, ν) are called the parameters of
the non-trivially fibered solid torus.

Definition. A compact orientable three dimensional manifold (with or without
boundary) foliated into non-intersecting simple closed curves (fibers) is called a Seifert
manifold if each of its fibers has a neighborhood consisting of the whole fibers and
is homeomorphic to the fibered solid torus. A Seifert manifold with the given fiber
structure is called a Seifert fibration.

Assume 0 < ν < α, since the fibered solid tori with parameters (α, ν) and (α, ν + kα)

are fiberwise homeomorphic. The pair (α, ν) is an invaiant of a fibered solid torus.

Definition. Two points on a Seifert manifold (with or without boundary) is said to
be equivalent if they belong to the same fiber. The quotient space S̃ of S by this
equivalence relation is called the base of the Seifert fibration.

Note that the space S̃ is obtained from S by shrinking each fiber into a point. Images
of the singular fibers are called singular points of the base S̃. The base S̃ of every
Seifert fibration is a compact two dimensional surface. We consider only connected
Seifert manifolds with boundary. The base of the corresponding Seifert fibrations are
two dimensional connected surfaces with boundary.

4. ATOMS IN THE CASE OF TWO DEGREES OF FREEDOM

In this section, we discuss about the atoms of two and three dimensions. Also prove
a bijection between 2-atoms and 3-atoms Bolsinov and Oshemkov[4], Bolsinov and
Fomenko[1].

Let Q3 = {H = h} be an isoenergy surface of an integrable Hamiltonian system
v = sgrad H on M4. Let f : Q3 → R be a Bott integral of the system v and L be
a regular leaf of the Liouville foliation on Q3 given by f . Suppose S1, S2.. · ··, Sk are
critical circles of f lying on the regular leaf L and oriented by the flow v.

In section 3, it is seen that the neighbourhood of a singular leaf of the Liouville
foliation has the structure of an orientable Seifert fibration.

Definition. Let f be a Bott integral on an isoenergy 3-surfaceQ and L a singular leaf of
one Liouville foliation on Q of a topologically stable integrable Hamiltonian system.
Consider a neighborhood U(L) as the connected components of f−1(c − ε, c + ε) that
contains L(= f−1(c)). Two such 3-manifolds U(L) and U ′(L′) with the structure of the
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Liouville foliation is fiberwise equivalent if (1) there exists a diffeomorphism between
them that maps the leaves of the first Liouville foliation into those of the secondary.
(2) diffeomorphism prserves both orientation on 3-manifolds and the orientation on the
critical circles defined by the Hamiltonian flows.

The equivalence class of the 3-dimensional manifold U(L) is called a 3-atom. The
number of critical circles in the 3-atom is called atomic weight (or complexity). The
representative U(L) of a 3-atom is always oriented. By changing the orientation we get
a different 3-atom.

Note. Let f be a Morse function on an oriented surface and c be its critical value. By an
atom means a neighborhood P 2 of the critical levelK = f−1(c) foliated into level lines
of the function f and considered up to fiber equivalence. In fact, an atom is considered
as a pair (P 2, K), so that two atoms (P 2, K) and (P ′2, K ′) are identical if there exists
an orientation preserving homeomorphism which sends P ′2 onto P 2 and K ′ onto K.
We consider only oriented atoms. That is, the surface P 2 is orientable and the
orientation on it is fixed. Also consider one more simple atom obtained as an annulus
P and assume some of its axial circles to be the graph K.

Definition. Let (P 2, K) be an arbitrary atom and K = {f = c} its graph. Fix some
interior points on the edges of K and declare them to be new vertices of K and denote
by stars. An atom with one star vertex is called an atom with stars.

Note. Previous atoms are 2-atoms without stars. Let π : U(L)→ P 2 be a projection of
a 3-atom U(L) with the structure of a Seifert fibration on it onto a 2-dimensional base
P 2 with embedded graph K = π(L).

Theorem 4.1. (a) Under the projection, π : U(L) → P 2, the 3-atom U(L) turns into
the 2-atom (P 2, K) and, moreover, the singular fibers of the Seifert fibration on the
3-atom are in one-to-one correspondence with the star vertices of the 2-atom.
(b) This correspondence between 2-atoms and 3-atoms is a bijection.

Proof. (a) Under the projection π : U(L) → P 2, π(L) = K and the neighborhood
U(L) maps to P 2. Therefore, projection of U(L) is a 2-atom.
(b) From (a) the 3-atom turns into 2-atom under this projection. Now, we construct an
inverse mapping which assigns a certain 3-atom to every 2-atom. Take 2-atom (P 2, K)

and construct a Morse function f on P 2 such that its single critical level coincides with
K. The function f is defined up to fiber equivalence. Then P 2 is foliated into level lines
of f . It is possible to reconstruct the 3-manifold U(L) with the structure of a Seifert
fibration over the base P 2 ( with fixed star-vertices correspond to the singular fibers),
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uniquely upto fiber equivalence. The star vertices on P 2 correspond to the singular
fibers. Take the composition f̃ = f ◦ π : U(L) → R. The regular level surfaces
on U(L) are diffeomorphic to the Liouville torus. The critical circles on U(L) are the
preimages of the vertices in K including star vertices. This f̃ is well defined, since
changing the function f on P 2 leads to a Liouville foliation on U(L) which is fiberwise
equivalent to the initial one.
Now consider the direct product V(L) = U(L) × I with a symplectic structure for
which the foliation on U(L) is Lagrangian. Thus, foliation discussed above on U(L)

into 2-tori represents a Liouville foliation to some integrable Hamiltonian systems
on the symplectic manifold V(L). Thus corresponding to a 2-atom we get a 3-atom.
That is, the correspondence (P 2, K)→ (U(L), L) between 2-atoms and 3-atoms is the
inverse of the projection π : U(L) → L gives a one-to-one correspondence between
2-atoms and 3-atoms.

There are 3 types of 3-atoms.
1) 3-atom A: The 3-atom A can be topologically presented as a solid torus foliated into
concentric torus, shrinking into the axis of the solid torus. That is, the 3-atom A is the
direct product of a circle and a disc foliated into concentric circles. The 3-atom A is a
neighbourhood a stable periodic orbit.

2) Saddle 3-atom without stars
Consider an arbitrary 2-atom without stars. That is, an oriented compact two
dimensional surface P with a Morse function f : P → R where f has only one critical
value. The corresponding 3-atom is U = P × S1. The Liouville foliation on U is
determined by the function f . Extend f onto Q by

f(x, ϕ) = f(x), x ∈ P, ϕ ∈ S ′.

This is the simple 3-atom B.

3) Saddle 3-atoms with stars:
Consider a 2-surface P̂ with a Morse function f̂ on it. On the surface take a smooth
mapping τ : P̂ → P̂ with the following properties:
1) τ 2 = id

2) τ preserves the function f̂ , ie., f̂(τ(x)) = f̂(x) for any x ∈ P̂
3) τ preserves the orientation.
4) The fixed points of τ are some of the critical points of f̂ .
Consider the cylinder P × [0, 2π] and glue its feet by the involution τ which identifies
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the points (x, 2π) and (τ(x), 0), yeilds an orientable 3-manifold with boundary. Extend
the function f̂ to U by f̂(τ(x)) = f̂(x), x ∈ P̂ . Its level surface dtermine the structure
of the Liouville foliation on U with only one critical leaf. Then the manifold U is a
fiber bundle over a circle with fibers homeomorphic to P̂ . This is the simple 3-atom A∗.
Note: The 2-atom (P,K) where K = {f = c} is obtained from the pair (P̂ , K̂) where
K̂ = {f̂ = c} by factorisation with respect to the involution τ .

Definition. The pair (P̂ , K̂) is called the double of the 2-atom (P,K) with stars.

The double (P̂ , K̂) is a two-sheeted branching covering over the 2-atom (P,K), where
the branching points are the star vertices of the atom (P,K).

Remark. : The same 2-atom can have many different doubles. Therefore, different
doubles can generate the same 3-atom with stars. By theorem(4.1) there exists a
bijective correspondence between 3-atoms and 2-atoms. Then, the classification of
3-atoms is reduced to classification of 2-atoms (with and without stars).

5. ROUGH LIOUVILLE EQUIVALENCE USING GEOMETRIC SKELETON

Here, we discuss the geometric skeleton associated with an integrable Hamiltonian
system and complexity of geometric skeleton Bolsinov and Fomenko[1], Fomenko[7].
Then show that two integrable Hamiltonian systems are rough Liouville equivalent if
and only if the geometrical skeletons are identical.

Let (M4, v = sgrad H) be a non-degenerate integrable Hamiltonian system and let
Q = Q3 be a compact connected isoenergy surface in M . Let v be non-resonance and
integrable on Q and f is the second independent Bott integral. We consider integrable
systems (v,Q) which satisfy:

• The isoenergy surface Q is compact and regular.

• The system v = sgrad H is non-resonant on Q.

• The system v possess a Bott integral of f on Q.

• The system v is topologically stable on Q.

Also, we assume that f has no critical Klein bottles and consider critical tori (if exists)
as regular leaves. That is, f has only critical circles.

Definition. Geometric skeleton is the pair (P,K) where P is a compact closed
oriantable two dimensional surface and K is a graph in P given as follows:
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• Each vertex of K is either isolated or has the degree 2 or 4.

• The surface P \K (the complement to K in P ) is homeomorphic to the union of
several open rings S1 × (0, 1).

• The set of boundary circles of the rings (which form the surface P \ K) can
be seperated in two parts: positive circles and negative ones, in such a way that
exactly one positive circle and exactly one negative circle glued to each other of
the graph K.

• The graph K does not contain loops (circles) without vertices, except in the case
when P is the torus and K is one circle (loop) without any vertices.

Two geometric skeletons are identical if they are homeomorphic as two topological
spaces, with orientation preserved.

Definition. Consider the Liouville foliation of 3-dimensional manifold Q. Cut the
manifold Q along some Liouville torus and then glue the copies appear after cutting the
torus T using some orientation preserving diffeomorphism. The new three dimensional
manifold Q1 thus obtained by the twisting from the foliation on Q.

Definition. Two integrable Hamiltonian systems (v,Q) and (v′, Q′) are said to be
roughly Liouville equivalent if their Liouville foliation are obtained one from another
by some twisting along Liouville torus. The class of all systems roughly equivalent to
a given system is called skeleton of a system.

Remark. Graph K can be non-connected and can contain loops and multiple edges.
The isolated vertices ofK represent the minimal and maximal critical circles of f onQ.
Other connected components ofK correspond to connected components of critical level
surface of f , which contain saddle critical circles. The orientable saddle correspond to
the vertices of degree 4 and non-orientable saddle to the vertices of degree 2. The
connected component of P \K correspond to the one parameter families of Liouville
tori.
Thus to an integrable Hamiltonian system, we can associate a skeleton (P,K). In
fact, there exists a natural one-to-one correspondence between the set of all geometric
skeletons and the set of all skeletons of integral Hamiltonian systems.

Definition. Let m be the total number of all maximal, minimal and saddle critical
circles of the integral f . By removing all regular fibers of the Liouville foliation
the manifold Q transforms into the union of a finite number of open manifolds
homeomorphic to S1 × S1 × (0, 1). Denote the total number of such manifolds by
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n. The pair (m,n) of non-negative integers is called complexity of a given integrable
Hamiltonian system.

Note that, the complexity of geometric skeleton (P,K) is the pair (m,n) wherem is the
number of vertices of the graph K and n is the number of connected components of the
manifold P \K. Complexity is an invariant of the skeleton of an integrable Hamiltonian
system.

Theorem 5.1. The number of different skeletons of a given fixed complexity (m,n) is
finite.

Proof. Complexity is fixed, so the total numberm of all critical circles of f is fixed. n is
fixed so the number of fibers which are Liouville tori also fixed and hence the number
of connected components of P \ K also fixed. Thus there is only a finite number of
geometric skeletons possible with fixed (m,n). Hence there are only finite number
of different skeletons of integrable Hamiltonian system for a given fixed complexity
(m,n).

Note. Complexity of two roughly equivalent integrable Hamiltonian systems coincides.
Thus complexity is an invariant of the skeleton of the system.

Theorem 5.2. Two integrable systems (v,Q) and (v′, Q′) are roughly Liouville
equivalent if and only if the corresponding geometric skeletons (P,K) and (P ′, K ′)

are identical.

Proof. From the definition of geometric skeleton we have seen that geometric skeletons
are in one-to-one correspondence with the skeletons of integrable Hamiltonian system.
So geometrical skeletons are identical means the Liouville foliation on Q and Q′ are
obtained from same components up to a twist. Hence (v,Q) and (v′, Q′) are roughly
Liouville equivalent.
Conversely, if the two integrable systems are roughly Liouville equivalent then by
definition the skeletons of the system are same. This implies that geometric skeletons
of the system are identical.

6. ROUGH LIOUVILLE EQUIVALENCE USING MOLECULES

In this section, molecules associated with interable Hamiltonian systems and the
necessary and sufficient condition for two integrable systems to be rough Liouville
equivalent using molecules are discussed Bolsinov and Fomenko[1], Fomenko[8].
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Consider the integral f onQ and all singular leaves Li of the Liouville foliation. Divide
Q into three dimensional pieces U(Li) by cutting Q along regular leaves, that is, along
Liouville tori. Note that each of U(Li) contains exactly one leaf Li. Every three
manifold U(Li) is a regular neighborhood of Li and so it has a structure of 3-atoms and
edges correspond to the Liouville tori along which the Q is cut. Note that each 3-atom
has ends and connect these ends which correspond to the pairs of glued Liouville tori.
The graph W thus obtained is called the molecule of the integrable system.

Definition. Two molecules W and W ′ are said to be identical if there exists a
homeomorphism ξ : W → W ′ which transforms, edges to edges, atoms to atoms
and this homeomorphism can be extended to the atoms themselves.

Note. Note that the moleculeW describe the decomposition ofQ, into a union of Seifert
components. Molecule indicate from which Seifert manifolds is the given 3-manifold is
glued, and in what order the boundary tori of these Seifert pieces should be glued. Also
it carries the most essential part of information about Liouville foliation on Q.

Theorem 6.1. Let (v,Q) and (v′, Q′) be two integrable systems, and let W and W ′ be
the corresponding molecules. Then the system v and v′ are roughly Liouville equivalent
preserving orientation if and only if the molecules W and W ′ are same.

Proof. Let the two integrable systems be roughly Liouville equivalent. Then one
Liouville foliation can be obtained from the other by a sequence of twisting operations.
This gives a homeomorphism between the molecule which maps edges to edges, atoms
to atoms and homeomorphism can be extended to the atoms. That is, the molecules are
identical.
Conversely, molecules are identical means the Liouville foliation onQ andQ′ are glued
for the same components. Boundary tori of these components my be glued by different
diffeomorphisms, but the difference can be avoided by suitable twisting operations.
Hence the two integrable systems are roughly Liouville equivalent.

7. EQUIVALENCE OF BOTH THE APPROACHES

In sections 5 and 6 the rough Liouville equivalence of the integrable Hamiltonian
systems were obtained using both geometric skeletons and molecules. Now, we prove
that both the approaches are equivalent.

For classifying integrable Hamiltonian systems one need to the study the topology of the
corresponding Liouville foliation. The topological invariants, geometric skeleton and
molecule of the foliation are important tools for the classification of integrable systems.
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Theorem 7.1. The rough Liouville equivalence of non-degenerate integrable
Hamiltonian systems with two degrees of freedom using geometric skeletons and using
molecules are equivalent to each other.

Proof. Geometric skeleton (P,K) is the graph K in the 2-dimensional surface P and
a molecule W is a graph with 3-atoms as vertices and Liouville tori along which we
cut Q as edges. From theorem (4.1), we know that there is a bijection between 3-atoms
and 2-atoms. Also, the star vertices of the 2-atoms correspond to the singular fibers.
The 3-manifold U(Li) are obtained by cutting Q along regular fibers. We know for the
graph K the complement P \K corresponds to the one parameter family of Liouville
tori. Thus edges of K are the regular fibers. Hence there is a one to one correspondence
between the geometric skeleton and the molecule. Also note that both geometric
skeleton and molecule describe the decomposition of the isoenergy surface into a union
of Seifert manifolds U(Li). Therefore one can define a map between geometric skeleton
and molecule which is a homeomorphism by viewing them as topological objects.
Then, obviously rough Liouville equivalence using geometric skeletons implies rough
Liouville equivalence using molecules and vice versa.
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