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Abstract

In this paper a generalization of the theorem of Mitchell-Rubel is proved,
namely: If M is an open, complete, and simply connected Riemannian
manifold with nonpositive sectional curvature then every smooth map from
M to M can be factored as an expansion followed by a contraction.
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1. INTRODUCTION

In 1988 Mitchell and Rubel published a short article in which they proved several
beautiful results in advanced calculus about the possibility of factoring smooth maps,
see [3]. Their main theorem, characterized by a nice geometrical flavor, establishes
that if F' : R” — R” is a smooth map, then F' can be expressed as the composite of
a contraction with an expansion, that is, there are two smooth maps C, £ : R” — R"
such that

F=CoF,

with

[C(z) = Cy)| < |z —y| < |E(z) — E(y)]
for all z,y € R". Furthermore, they exhausted all the possibilities of related
propositions in the setting of Euclidean spaces. Additionally, in a remark (pg. 714)
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they established that a generalization of the result can be set in the context of smooth
manifolds.

What follows is a proof of the general version of the theorem of Mitchell and Rubel,
presented as a motivational illustration problem for the outline of a course in differential
geometry which would combine classical and modern topics of the subject, and whose
requirements are basic elements of advanced calculus as in Spivak [6], with some basics
of topology of metric spaces as in Kaplansky [1] or Munkres [4]. Here we highlight the
geometric faces of the main points of the subject that are directly related to the problem.

2. PRELIMINARIES FROM CALCULUS

Because the setting of the theorem of Mitchell-Rubel is in the context of Euclidean
space and given the plethora of references available, each with its own conventions
about notation, and just to have a uniform presentation on this matter, we state some key
points about the subject, in any case we adopt the notation, results, etc., from Spivak

[6].

For z € R" we denote by |z| the norm of = and by (x, y) the inner product between x
and y. Amap f : R” — R" is called a contraction if

[f(@) = fy) < |z —y| forallz,yeR™
similarly, f is said to be an expansion if

|f(x) = fly)| > |xr —y| forallz,y € R™.

Given p € R", the tangent space of R" at p is denoted by R",, and the corresponding
norm and inner product by |-|, and (-, -),, respectively. For a smooth map f : R" — R™
the derivative at p is a linear map Df(p) : R" — R™, which induces a linear map
Jep 1 R?) — R™ () defined by

far(vp) = (Df(p)(v)) 5 p)-

The collection of all those f., is denoted by f,.. For a smooth curve v : [a,b] — R”
the length of v is denoted by £2 () or (). The following lemma is a consequence of
problem 4-14 in Spivak [6].

Lemma 1. Let f,g : R" — R" be two smooth functions such that

|f*x(vm)|f(w) < |g*m(vx)|g(:c)a (D)

forall x € R™ If~ : [a,b] — R™ a smooth curve then

U(fory) <Llgon) (2)
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We will construct some functions depending on the following result.

Lemma 2. Let F' : R" — R" be a smooth map, then there exists a smooth function
A (=1,400) = R such that

(i) N(r) >0 forallr € (—1,4+00),
(ii) A(r) > max{|F.(v,)| : |z| =7, v, € R*, and |v,| =1}, and

(iii) N(r) > 1 forallr € (—1,400).

Note that the existence of the maximum indicated in part (ii) is warrantied by the fact
that that /' is smooth and, both the sphere S™~*(r) in R™ and the sphere S"~!(1) in R",,
are compact sets.

3. THE THEOREM OF MITCHELL-RUBEL

In this section we study in detail the main result of[3] which is meant to be motivation
for the general concepts and techniques that follow in our presentation.

Theorem 3 (Theorem of Mitchell-Rubel). If F : R* — R" is a map of class C*, then
there exist two smooth maps s E,C : R" — R", such that E is an expansion, C' is a

contraction C, with

F=CokFE.

Proof. Letus define F/ : R" — R" by
B(z) = Ma]) - .
From lemma 2-(iii) we have
E(z) > |z| forall z € R".
For a fixed z € R" let G : R®™ — R" be the map given by
G(y) = Allz]) -y
If |y| > |x|, then A(|y|) > A(]z|) by lemma 2-(iii), therefore
[E(x)] = [G(x)] < [G(y)], 3)

also
G| < [A(y]) -yl = [E(y)]. (4)
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Then
|E(z) — E(y)| = [A(|z]) z = AMly]) y| = [A(|z]) 2 — A(|z]) y]

and
[z =yl < A(|z]) - [z —y| < [E(z) — E(y)],

and we have that £ is an expansion.

Let v € R™ with (x,v) > 0, then
|z 4+ 0* = |2 + 2(z,v) + o],

then |z + v| > |x|. The map E' is smooth because so is A, therefore there exists a map
¢ : R™ — R" such that ¢(v) — 0 as v — 0, and

E(x+v) — E(z) = DE(z)(v) + |[v|¢(v).
Then for all v with |v| small enough we have
Allz]) - [ol < |E(x +v) = E(z)] < |[DE(z)(v)]
But [v] = |v,], and |E. g (V)| B@) = |[DE(2)(V2)]iE@) | B(z)- Thus we have
A|2]) - [vele < |Eap@)(v2)| B

or,

Allz]) - |ve| < |Ei(va)]. (5)
If (z,v) < 0 we obtain the same inequality by applying F. (which is linear) to —v,.

For a given x € R™ and any v € R", with |v| # 0 we have by lemma 2-(ii) and (5)

)
||

B (v2)| 2 |Fu(v)]- (6)

| E(vz)| = All]) - Jvg] =

thus

Let 7,y € R™ be two arbitrary points and let a = E~*(z), b = E~(y). Let L(z,y) be
line segment connecting = and y an ¢ : [0, 1] — R™ given by ¢(t) = ty + (1 — t)z.
Then v = E~! o ¢ is a parametric curve connecting a and b. By inequality (6) we may
apply lemma 1 and get

((Fony) <{(Eoy),

but
[F(a) = F(b)]| < (Fovy) and ((Eovy)=|E(a)— E([)],
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then
|F(a) — F(b)| < |E(a) — E(b)],

but this last inequality is equivalent to
[F(E™ (2) = F(E™ ()] < |z =yl

or
[FoE(z) = FoE™(y)| < |z —yl.

This means that the map C' = F'o E~! is a contraction. By the chain rule and the inverse
function theorem we have that C' is smooth, see theorems 2.2 and 2.11 in Spivak [6].

O

4. SMOOTH MANIFOLDS

In order to establish a general version of the theorem of Mitchell-Rubel one could
think of metric spaces, where the notions of contraction and expansion may be easily
established, in fact if (M, d) is a metric space, a function £ : M — M is an expansion
if

d(z,y) < d(E(x),E(y)) forallz,€ M.

Similarly a function C' : M — M is said to be a contraction if
d(C(x),C(y)) < d(z,y) forallz,€ M.

On the other hand we have that the notion of smoothness in this context, in general, does
not make sense. Thus we have to work with metric spaces with some more structure,
which somehow look like Euclidean space.

A manifold is a metric space (M,d) such that for each p € M there exists a
neighborhood U of p and a homeomorphism ¢ : U — R", for some n; we say that M is
locally like Euclidean space. The number 7 is constant on each connected component
of M and if M is connected we say that n is the dimension of M (sometimes we write
M™ to indicate this fact.)

The pair (¢, U) is known as a coordinate system around p. Two of such coordinate
systems (¢, U) and (¢, V') are said to be C*°-related if the maps
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are C'°. A family of mutually C'*-related of coordinate systems A = {(¢;, U;)} such
that {U; } is a cover of M is called an atlas of M. If A is a maximal atlas for M/ we say
that is (M, A) a smooth manifold.

If (M, A) and (N, B) are two smooth manifolds, we say that a function f : M"™ — N™
is differentiable (or smooth) if for all (¢,U) € A and (¢,V) € B, the function
o fopt:R* — R™is C. If fis a smooth homeomorphism we say that it is
a diffeomorphism.

Given a smooth manifold M, to each p € M we may associate an n-dimensional vector
space M, which called the tangent space at p, elements of M, are some special linear
operators denoted v,. Given a coordinate system (¢, U) around p € M, a basis for M,
is formed by the linear operators

0

9!

9
p 00

9
s g

p p

Any smooth function f : M — N induces a linear map f,, : M, — Ny, for each
p € M; the collection of all such maps is denoted by f,. Details of all these structures
can be found in Spivak [5, chapter 1.3].

A vector field on M is function X that assigns to each p € M an element X (p) € M,
If (¢, U) is a coordinate system (¢, U) then there are functions X', ... . X" : M — R

such that
0

0t

The vector field is said to be continuous (smooth) if all the X? are continuous (smooth).
The collection of all the smooth vector fields is denoted by X(M).

X(p) = ZXi(p)

p

A parametrized curve in a smooth manifold M is a smooth function v : I — M, for
some interval I. A vector field V along a curve vy is a map such that V (¢) € M, for

d
each t € I, in particular, the velocity of + is the vector field d—z along vy given by

dry d

@ =

S. CURVATURE

As we said before, a smooth n-manifold M is a metric space which is locally
diffeomorphic to R, now we want to get a sort of a measure of the difference between
the two spaces, to do so we start from the geometric notion that Euclidean spaces are
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flat, therefore we want to know how far is M of being as flat as R", from this idea we
get the notion of “curvature.”

For a smooth curve in 7 : [0, L] — R? parametrized by arc-length (which is a smooth
1-manifold) the unit tangent vector at s is t(s) = 7/(s) and the normal n(s) the unit
vector which is orthogonal to t(s) and [t(s),n(s)] is the standard orientation. The
curvature of k(s) of v at s is defined by

t'(s) = k(s) - n(s). (7)

If M is a surface in R3, for p € M we can find a coordinate system (¢, O) around p
such that 3 = f(z!,2?) foramap f : $(O) — R and (z!,2?) € O. Let L be a straight
line through p parallel to the z3-axis. Then if II is a plane containing L, [T N M is a
plane curve. A theorem by Euler establishes that among all the possible planes II there
are two II; and I, such that the curvatures at p of the corresponding curves II; N M and
[T, N M have the maximum and the minimum values, see Spivak [5, theorem I1.2.1].
Those numbers are called the principal curvatures of M at p.

In 1827 Gauss published a paper in Latin which is probably the most important single
research in differential geometry: Disquisitions generales circa superficies curvas ,
where he introduced the concept of curvature. It can be proved that for any p € M?, the
Gaussian curvature K (p) is given by

K(p) = ki(p) - ka2(p).

For example, let us consider the following smooth 2-manifolds. First, the Euclidean
space R? we have that k; = ky = 0, therefore K = 0. For the sphere 5> (a) (radius a),
ki = ke = 1/a (the curvature of great circles on S%(a)), thus K = 1/a®. A 2-manifold
with nonpositive curvature is obtained by considering the Poincaré plane:

R2 = {(z',2%) : 2% > 0},

in which “lines” are the arcs of circles with center on the z!-axis and the segments of
the form {(a, 2?) : 22 > 0}.

The sphere S? The Poincaré plane
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6. RIEMANNIAN METRICS

The notion of a manifold was introduced in 1854 by Bernhard Riemann in his paper
Uber die Hypothesen, welche der Geometric zu Grunde liegen (On the Hypotheses
which lie at the Foundations of Geometry), in order to establish a general version of
curvature. For translation into English of Riemann’s work as well as the cited Gauss’
paper with an exhaustive analysis of both of them see Spivak [5, chapters 11.3 and 11.4].

Let M be smooth manifold. A Riemannian metric is function ( , ) that assigns to each
p € M a positive definite inner product ( , ), on M, and it induces a norm || - ||, on M,,
for each p € M.

The following result is a generalization of lemma 1 will be useful in our project.

Lemmad. Let f,g: M — M be two smooth functions on a smooth manifold M, such

that
Hf*x(vx)”f(m) < ”g*x(vx)ng(m)v (8)
forallx € M. Ify: [a,b] — M a smooth curve then
((fory) <lgon) 9)

Some more interesting structures can be obtained in this context. Given any two points
p and ¢ in a connected Riemannian manifold M it can be proved that there exists a
piecewise smooth curve v : [0, 1] — M, therefore we may define

p(p,q) = inf{l(y) : v is a piecewise smooth path from p to ¢}.

It turns out that p induces an important structure on M as it is indicated by the following
result, see Spivak [5, theorem 1.9.7].

Theorem 5. The function p is a metric on M, and if d is the metric which makes M a
manifold, then the spaces (M, p) and (M, d) are homeomorphic.

Riemannian metrics give us the opportunity of considering “geodesics” on manifolds,
somehow the shortest paths between pairs of points of M. For some manifolds a
geodesic may be extended from an interval [a,b] to R, in that case we say that M is
geodesically complete. After some hard work the following classical result is obtained,
see Spivak [5, theorem 1.9.18].

Theorem 6 (Theorem of Hopf-Rinow-de Rham). Let M be a Riemannian manifold.
Then M is geodesically complete if and only if the space (M, p) is complete. Moreover,
is M is geodesically complete, for any p,q € M there is a geodesic of minimal minimal

length which connects them.



A Factorization of Smooth Maps on Manifolds 109

In order to proof theorem 6 it is used an existing diffeomorphism exp, : O — M,
where O C M, is open, p € M. This “local” diffeomorphism is called the exponential.

Similarly, the next result plays will be used as lemma 2 in the proof of theorem 3.

Lemma 7. Let M be a smooth n-manifold and F' : M — M be a smooth map and
p € M, then there exists a smooth function X : (—1,+00) — R such that

(i) N(r) >0 forallr € (—1,400),
(ii) A(r) > max{||Fi(v.)| : p(p,z) =1, v, € M, and ||v.|| = 1}, and

(iii) \(r) > 1 forallr € (—1,400).

7. SECTIONAL CURVATURE

Now we must introduce three new elements which are essential to investigate the
geometry of a Riemannian manifold. First, the Lie bracket | ,] : X(M) x X(M) —
X(M) is defined by

(X Y](f) = XY () = Y (X))

for all smooth function f : M — R.

The second ingredient is the notion of connection which is another operation V :
X(M) x X(M) — X(M) which is linear with respect to the vector fields, and whose
image at (X, Y'), denoted by V Y, is linear over smooth functions on M.

Finally the Riemann curvature tensor R : X(M) x X(M) x X(M) — X(M) whose
value for X, Y, Z € M, is denoted by R(X,Y)Z € M,, es defined by

R(X,Y)Z = VyVxZ —VxVyZ + VixyZ.

It turns out that for a Riemannian manifold (M, (,)), given p € M and X,Y € M, are

orthonormal, then
(R(X, Y)Y, X) = K(p) (10)

where K is the Gaussian curvature of the surface exp,(O), and O is a neighborhood of
0 € M, where exp,, is a diffeomorphism.

The quantity on the left hand side of equation (10) is called the sectional curvature
of M. The next result by Cartan provides some geometrical information about M
assuming a condition on the sign of the sectional curvature and some additional
topological hypothesis for M. One short proof of Cartan’s theorem uses techniques
from “Morse theory”, a specialized field in differential geometry, and it is proved
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that for each p € M we have that exp,, is a “global” diffeomorphism, for details see
Milnor [2, pg. 102].

Theorem 8 (Theorem of Cartan). Suppose that M is a simply connected, complete
Riemannian manifold, and that the sectional curvature is everywhere nonpositive. Then
any two points of M are joined by a unique geodesic. Furthermore, M is diffeomorphic
to the Euclidean space R™ .

The assumption about the sign of the sectional curvature also implies a key point for
our project. Let v,w : I — M be two smooth curves, where [ is an interval. Suppose
that p = v(tg) = w(ty) foraty € I,

(7*;,(250), W*p(to»p >0,

For ty < t; < ta, let 3; be the geodesics connecting ~y(¢;) and w(t;). Then

0(B1) < U(Ba).

Therefore if p is the metric induced by the Riemannian metric we have
p(v(t), w(tr)) < p(y(t2), w(tz)). (11)

8. THE GENERALIZED THEOREM OF MITCHELL-RUBEL

We try to develop the prove a generalized version of the theorem of Mitchell-Rubel
following the ideas of the original result. Thus, given a smooth map of a manifold M
into itself, we will fix p € M and we need to construct a map which expands F'(x) along
the geodesic passing through p and z. But such a construction may not be possible
if, for example, M is compact. Furthermore a local expansion may not extend to a
global expansion as happens on the sphere S?. Therefore we will work in the context
of manifolds as the ones described in Cartan’s theorem.

Theorem 9 (Theorem of Mitchell-Rubel on manifolds). For n > 2, let M be
an n-dimensional open, complete, and simply connected Riemannian manifold with
nonpositive sectional curvature. If F' : M — M is a smooth map, then F' is a

composition of a smooth expansion E followed by a smooth contraction C, that is,
F=CoFE.

Proof. Letp € M be an arbitrary point, then by Cartan’s theorem exp,, : M;, — M is a
diffeomorphism. Furthermore for any x € M there exists a unique geodesic o, which
connects p with x. Let us denote by ¢, the length of the geodesic segment from p to =z,
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thus we have that ¢, = p(p, x) where p is the metric induced on M by the Riemannian
metric.

Define the map Exp, : M — M, by

P if x =p,
Exp,(z) = exp, ' () o2

" llexpyt (@)l

Exp, ()

Essentially Exp, (z) is the unique point in M, which is in the direction of the geodesic
o, and | Exp,(7)| = £,.

Now let A be a smooth real function as in lemma 7 and define £ : M — M by
E(z) = Exp, (A(L,) Exp, ().

Thus E(x) is the unique point in the geodesic «, such that p(p, E(x)) = \({,) - L.
Clearly F is smooth. Then, from lemma 7-(ii1) we have

p(p, E(x)) = lpy) >, forallz € M.
For a fixed z € M let G : M — M be the map given by
G(y) = Exp, " (ML) Exp,(y)).
If p(p,y) > p(p, ), then \(¢,) > A({,) by lemma 7-(iii), therefore
CE@m) = Law) < law), (12)

and
law) < Mly) - by = L) (13)

Then
p(E(x), E(y)) = p(A(lx)lus AM(Ly)ly) = p(A(Li)ley A(L2)E)
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and
p(z,y) < M(z]) - r(z,y) < p(E(x), E(y)),
so we have that £ is an expansion.

Let v, € M, with (o, v,), > 0, where (, ), denotes the inner product in M, which is
given by the Riemannian metric on M.

Therefore, for all v, € M, with ||v,|| small enough we have
Ale) - [lval] < 1B (va)]] (14)

For the case (o/,v,) < 0 is treated using the fact that £, is a linear map.

For x € M and any v, € M, with |v| # 0 we have by lemma 7-(ii) and (14)

.
A, (—) H el
ol

1B (o)l = [|Fx(va)]]- (15)

AN ESARTE \

thus

For any two points =,y € M leta = E~'(z) and b = E~'(y). Let o be the geodesic
segment connecting x and y. Then v = E~! o ¢ is a curve connecting a and b.

Y
¥

By inequality (15) we may apply lemma 4 and to get
U(Fov) < {(Eoy),

but
p(F(a), F(b)) <{(Fovy) and ((Eoy)=p(E(a), E()),

then
p(F(a), F(b)) < p(E(a), E(b)),

but this last inequality is equivalent to

[F(E™ (@) = F(E™ ()| < |z —yl,
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p(FoE~ (), FoE(y)) < p(,y).

This means that the map C' = F o E~! is a contraction. By the chain rule and de inverse
function theorem we have that C' is smooth. U
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