Finite Continuous Ridgelet Transforms with Applications to Telegraph and Heat Conduction

Nitu Gupta and V. R. Lakshmi Gorty

SVKM's NMIMS University, MPSTME Basic Science and Humanities, Mumbai, 400056, India.

Abstract

In this paper, finite continuous Ridgelet transforms and its inversion formula is studied. Using Sturm-Liouville theory with self-adjoint operator; the operational calculus of finite continuous Ridgelet transform is discussed. In the concluding section, engineering applications like telegraph and heat conduction are demonstrated.

Keywords: Finite continuous Ridgelet transform, Fourier-Ridgelet expansion, adjoint operator, testing spaces, inversion..

AMS Subject Classifications: 46F12, 44A20, 44A45, 80M99, 78M99...

1. INTRODUCTION

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a smooth univariate function with sufficient decay and vanishing mean given by $\int\psi\left(t\right)dt=0.$

Candès [2] demonstrated continuous Ridgelet transform: $\forall \ a>0, \ b\in\mathbb{R}$ and $\theta\in[0,2\pi)$, bivariate function $\psi_{a,b,\theta}:\mathbb{R}^2\to\mathbb{R}^2$ is defined as:

$$\psi_{a,b,\theta}(x,y) = a^{-1/2} \psi \left[\frac{(x\cos\theta + y\sin\theta - b)}{a} \right]$$
 (1.1)

where ridges in (1.1) represent

$$x\cos\theta + y\sin\theta = C \tag{1.2}$$

where C = constant.

The continuous Ridgelet transforms for bivariate function f(x, y) was defined in [2] as

$$\Re_f(a,b,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \,\psi_{a,b,\theta}(x,y) \,dxdy. \tag{1.3}$$

along with reconstruction formula and Parseval relation.

Murata in [12] independently studied and analysed Ridgelet integral representations. In 1998, Donoho [7] broadened the notion of ridgelet and studied orthonormal ridgelets whose elements can be specified in closed form. In [3] author extended the ridgelets to higher dimensions. The discrete finite ridgelet transforms was introduced in 2003 by Do and Vetterli [6]. In [9], using the convolution of quaternion-valued functions authors defined the ridgelet transform on square integrable quaternion-valued functions. Authors have conducted a series of computational experiments to show that there exists an interesting similarity between the scatter plot of hidden parameters in a shallow neural network after the BP training and the spectrum of the ridgelet transform in [8]. In this paper, classical work of finite continuous Ridgelet transform is been introduced. Using Sturm-Liouville theory [1] developed the study of finite continuous Ridgelet transforms. Fourier-Ridgelet type of series expansion is also demonstrated analogous to [10]. The self-adjoint operator and operational calculus are derived using [1] and [13]. The testing function spaces, inversion formula and uniqueness condition have been developed by using the method analogous to [10,14] in this study. The operational calculus thus generated in the context is used in solving certain partial differential equations with boundary value problems [11] in the concluding section.

2. PRELIMINARY RESULTS

Consider Sturm-Liouville theory analogues as in [1]

$$(\Omega_{x,y,\theta})\,\psi\,(x,y) = 0\tag{2.1}$$

where

$$\Omega_{x,y,\theta} = (\sin^2 \theta) \Omega_x - (\cos^2 \theta) \Omega_y. \tag{2.2}$$

for the differential operator considered as

$$\Omega_x = \frac{\partial^2}{\partial x^2} \tag{2.3}$$

and

$$\Omega_y = \frac{\partial^2}{\partial y^2} \ . \tag{2.4}$$

Also α , β are real constants and $-\alpha \le x \le \alpha$; $-\beta \le y \le \beta$ satisfies homogeneous separated boundary conditions [1, pp. 43-44]:

$$i\eta\cos\theta\psi\left(-\alpha,y\right) + \psi'\left(-\alpha,y\right) = 0; \ i\eta\cos\theta e^{2i\eta\alpha\cos\theta}\psi\left(\alpha,y\right) + \psi'\left(\alpha,y\right) = 0.$$
 (2.5)

$$i\eta \sin\theta\psi(x,-\beta) + \psi'(x,-\beta) = 0; i\eta \sin\theta e^{2i\eta\beta\sin\theta}\psi(x,\beta) + \psi'(x,\beta) = 0.$$
 (2.6)

Assume from [1, p. 118] follows:

$$\psi(x,y) = a^{1/2} e^{b/a} X_p(x) Y_q(y),$$
 (2.7)

where a, b, p and q are integers.

Using (2.7) and setting each side $-\eta^2$, by variable separable method (2.1) can be written as [1]

$$\frac{X_{p''}(x)}{\cos^{2}\theta X_{p}(x)} = \frac{Y''_{q}(y)}{\sin^{2}\theta Y_{q}(y)} = -\eta^{2}.$$
 (2.8)

Using boundary conditions (2.5) and (2.6), (2.8) can be obtained as

$$X_p(x) = c_2 e^{-i\eta_p x \cos \theta}, \tag{2.9}$$

and

$$Y_q(y) = c_4 e^{-i\eta_q y \sin \theta} \tag{2.10}$$

assuming $\eta_p = \frac{p'\pi}{\alpha\cos\theta}$ for $0 < p' < \infty$ and $\eta_q = \frac{q'\pi}{\beta\sin\theta}$ for $0 < q' < \infty$ are eigenvalues of (2.8) respectively. Here c_2 and c_4 arbitary constants.

Using (2.7), (2.9), (2.10), and substituting in (2.1) follows:

$$\psi(x,y) = \psi_{p,q}(x,y) = c_2 c_4 a^{1/2} e^{b/a} e^{\frac{-ip'\pi}{\alpha}x} e^{\frac{-iq'\pi}{\beta}y}.$$
 (2.11)

Let ip' = p and iq' = q, $0 < \frac{p}{i} < \infty$ and $0 < \frac{q}{i} < \infty$, then (2.11) becomes

$$\psi_{p,q}(x,y) = c_2 c_4 a^{1/2} e^{-\left[\frac{(pa\pi x/\alpha) + (qa\pi y/\beta) - b}{a}\right]}.$$
 (2.12)

Then (2.8) can be written [10] as

$$\left(\Omega_x + \eta_p^2 \cos^2 \theta\right) X_p(x) = 0. \tag{2.13}$$

$$\left(\Omega_y + \eta_q^2 \sin^2 \theta\right) Y_q(y) = 0. \tag{2.14}$$

And the boundary conditions are given in (2.5) and (2.6), where $X_p(x)$ and $Y_q(y)$ are the eigenfunctions of (2.8). Hence (2.12) is eigenfunction of the problem (2.1)-(2.6) which corresponds to the non-zero eigenvalues η_p and η_q .

Then the orthogonality and orthonormality condition of (2.12) [1, p. 94] is given by can be written as

$$\left| \left\langle \psi_{p_1,q_1} \left(x,y \right), \psi_{p_2,q_2} \left(x,y \right) \right\rangle \right|^2 = \begin{cases} 4ae^{2b/a} \left(c_2 c_4 \right)^2 \alpha \beta & ; \quad p_1 = p_2, \ q_1 = q_2 \\ 0 & ; \quad p_1 \neq p_2, \ q_1 \neq q_2 \end{cases} . \quad (2.15)$$

3. MAIN RESULTS (THE FOURIER-RIDGELET SERIES AND CLASSICAL FINITE CONTINUOUS RIDGELET TRANSFORMATION)

Assume f(x,y) is a square integrable function over rectangle [1, p. 122], Fourier-Ridgelet series expansion follows from (2.15), [1, p. 124] and using (2.12):

$$f(x,y) = \psi_{p,q}(x,y) = c_{p,q}a^{1/2} \left(1 + \sum_{p,q=1}^{\infty} e^{((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a} \right)^{-1}.$$
 (3.1)

Multiplying $a^{-1/2} \left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}\right)^{-1}$ to (3.1); solving double integral w.r.t x, y in $[-\alpha, \alpha]$, $[-\beta, \beta]$ respectively yields:

$$\int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x,y) a^{-1/2} \left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a} \right)^{-1} dx dy = 4\alpha \beta c_{p,q}.$$

Thus

$$c_{p,q} = \frac{1}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x,y) a^{-1/2} \left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a} \right)^{-1} dx dy.$$
 (3.2)

From [4],
$$\left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}\right)^{-1}$$
 represents the regularized sigmoid

function which is a ridge function or ridgelet with parameters:

- i) a; the scale of the ridge function
- ii) b; location of the ridge function
- iii) $[(pa\pi x/\alpha) + (qa\pi y/\beta)]$; its orientation and can be represented by:

$$a^{-1/2} \left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a} \right)^{-1} = a^{-1/2} \psi \left(((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a \right)$$
(3.3)

Hence (3.2) becomes

$$c_{p,q} = \frac{1}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x,y) a^{-1/2} \psi\left(\left(\left(pa\pi x/\alpha\right) + \left(qa\pi y/\beta\right) - b\right)/a\right) dx dy.$$
 (3.4)

The convergence of the series (3.1) is straightforward by [13, p. 433] and the following theorem 3.1 [13, pp. 425-432].

Theorem 3.1. Let f(x,y) be a function defined and absolute integrable on the rectangle $\{(x,y): -\alpha < x < \alpha, -\beta < y < \beta\}$, then

$$c_{p,q} = \frac{1}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x,y) a^{-1/2} \psi\left(\left(\left(pa\pi x/\alpha\right) + \left(qa\pi y/\beta\right) - b\right)/a\right) dxdy$$

at each point of the open interval $[-\alpha, \alpha] \times [-\beta, \beta]$ at which f(x, y) is continuous. At any point of the interval at which f(x, y) has a finite discontinuity the symbol f(x, y) is taken to mean $\frac{1}{2}[f(x+,y+)+f(x-,y-)]$ and at point $x=-\alpha, y=-\beta$ or $x=\alpha, y=\beta$ it is taken to mean $\frac{1}{2}[f(-\alpha,-\beta)+f(\alpha,\beta)]$.

Remark 3.2. Let $U_{p,q}=\left(\frac{\pi ap}{\alpha}+\frac{\pi aq}{\beta}\right)\in\mathbb{R}^2$ and $a,b\in\mathbb{R}$. Substituting

$$I\left(U_{p,q},a,b\right) = \left\{ (x,y) \in \mathbb{R}^2 \left| U_{p,q} \cdot (x,y) = \left(\frac{\pi a p}{\alpha} x + \frac{\pi a q}{\beta} y\right) = \frac{b}{a} \right. \right\},\,$$

where $I\left(U_{p,q},a,b\right)$ is a hyperplane, more precisely: $I\left(U_{p,q},a,b\right)$ is the right in the rectangle $[-\alpha,\alpha]\times[-\beta,\beta]\subset\mathbb{R}^2\cdot\mathbb{P}^2,\ \left\{I\left(U_{p,q},a,b\right)\left|\left(U,a,b\right)\in\mathbb{R}^2\times\mathbb{R}\times\mathbb{R}\right.\right\}$ is the differentiable variate.

Let $S(\mathbb{P}^2)$ be the Schwartz space (3.1) and (3.4) and theorem 3.1 suggest introducing the finite continuous Ridgelet transform analogous to [13, p. 425] as follows:

$$\Re f\left(I\left(U_{p,q},a,b\right)\right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f\left(x,y\right) \psi\left(\left(U_{p,q}\cdot\left(x,y\right)-b\right)/a\right) dx dy \tag{3.5}$$

where $U_{p,q}\cdot(x,y)=\left(\frac{\pi ap}{\alpha}x+\frac{\pi aq}{\beta}y\right)$. Hence $\Re:T\left(\mathbb{R}^2\right)\to T\left(\mathbb{P}^2\right):f\to\Re f$. The inversion formula of (3.5) is given by

$$\Re^{-1}\left(\Re f\left(I\left(U_{p,q},a,b\right)\right)\right) = f\left(x,y\right) = a^{1/2} \sum_{p,q=1}^{\infty} \Re f\left(I\left(U_{p,q},a,b\right)\right) \psi\left(\left(b - U_{p,q} \cdot (x,y)\right)/a\right). \tag{3.6}$$

We point out the following operational rules:

(1) If
$$f(x,y) \in \mathbb{R}^2([-\alpha,\alpha] \times [-\beta,\beta])$$
,

$$\Re\left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \left(I\left(U_{p,q},a,b\right)\right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} \left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \psi\left(\left(U_{p,q}\cdot(x,y)-b\right)/a\right) dx dy,$$

Integrating by parts we get,

$$\Re\left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \left\{ \begin{array}{l}
f'\left(\alpha, y\right) \psi\left(\left(U_{p,q} \cdot (\alpha, y) - b\right) / a\right) \\
-f'\left(-\alpha, y\right) \psi\left(\left(U_{p,q} \cdot (\alpha, y) - b\right) / a\right) \\
-f\left(\alpha, y\right) \psi'\left(\left(U_{p,q} \cdot (\alpha, y) - b\right) / a\right) \\
+f\left(-\alpha, y\right) \psi'\left(\left(U_{p,q} \cdot (\alpha, y) - b\right) / a\right) \\
+\int_{-\alpha}^{\alpha} f\left(x, y\right) \frac{\partial^{2} \psi\left(\left(U_{p,q} \cdot (x, y) - b\right) / a\right)}{\partial x^{2}} dx \end{array} \right\} dy.$$
(3.7)

Assuming f(x,y) vanishes on the boundary of $[-\alpha,\alpha]\times[-\beta,\beta]$ as in [13],

$$f(\alpha, y) = f(-\alpha, y) = f'(\alpha, y) = f'(\alpha, y) = 0$$

Hence (3.7) becomes

$$\Re\left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \left(I\left(U_{p,q},a,b\right)\right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f\left(x,y\right) \frac{\partial^{2} \psi\left(\left(U_{p,q}\cdot\left(x,y\right)-b\right)/a\right)}{\partial x^{2}} dx dy. \tag{3.8}$$

But from (3.3),

$$\frac{\partial^{2}\psi\left(\frac{U_{p,q}\cdot(x,y)-b}{a}\right)}{\partial x^{2}} = \frac{\partial^{2}}{\partial x^{2}} \left[\left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}\right)^{-1} \right] \\
= \frac{\partial^{2}e^{((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}}{\partial x^{2}}, \\
\frac{\partial^{2}\psi\left(\frac{U_{p,q}\cdot(x,y)-b}{a}\right)}{\partial x^{2}} = \left(\frac{p\pi}{\alpha}\right)^{2}e^{((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}, \\
\frac{\partial^{2}\psi\left(\frac{U_{p,q}\cdot(x,y)-b}{a}\right)}{\partial x^{2}} = \left(\frac{p\pi}{\alpha}\right)^{2} \left(1 + \sum_{p,q=1}^{\infty} e^{-((pa\pi x/\alpha) + (qa\pi y/\beta) - b)/a}\right)^{-1}. \quad (3.9)$$

Using (3.8), (3.9) becomes

$$\Re\left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) \\
= \frac{a^{-1/2}}{4\alpha\beta} \left(\frac{p\pi}{\alpha}\right)^{2} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f\left(x, y\right) \left(1 + \sum_{p, q=1}^{\infty} e^{-\left((pa\pi x/\alpha) + (qa\pi y/\beta) - b\right)/a}\right)^{-1} dxdy \\
\Re\left\{\frac{\partial^{2} f}{\partial x^{2}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \frac{a^{-1/2}}{4\alpha\beta} \left(\frac{p\pi}{\alpha}\right)^{2} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f\left(x, y\right) \psi\left(\left(U_{p,q} \cdot (x, y) - b\right)/a\right) dxdy.$$

Using (3.5), we get

$$\Re\left\{\frac{\partial^2 f}{\partial x^2}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \left(\frac{p\pi}{\alpha}\right)^2 \Re f\left(I\left(U_{p,q}, a, b\right)\right). \tag{3.10}$$

(2) If f(x, y) at boundary is zero, and

$$f^{s}(-\alpha, y) = f^{s}(\alpha, y) = 0,$$

then

$$\Re\left\{\frac{\partial^{s} f}{\partial x^{s}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \left(\frac{-p\pi}{\alpha}\right)^{s} \Re f\left(I\left(U_{p,q}, a, b\right)\right)$$
(3.11)

where s being a positive integer.

(3) If $f(x,y) \in \mathbb{R}^2([-\alpha,\alpha] \times [-\beta,\beta])$, upon integrating by parts, we deduce the relation

$$\Re\left\{\frac{\partial^2 f}{\partial y^2}\right\} \left(I\left(U_{p,q},a,b\right)\right) = \left(\frac{q\pi}{\beta}\right)^2 \Re f\left(I\left(U_{p,q},a,b\right)\right). \tag{3.12}$$

(4) If f(x, y) at boundary is zero and

$$f^{s}(x, -\beta) = f^{s}(x, \beta) = 0,$$

then

$$\Re\left\{\frac{\partial^{s} f}{\partial y^{s}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \left(\frac{-q\pi}{\beta}\right)^{s} \Re f\left(I\left(U_{p,q}, a, b\right)\right). \tag{3.13}$$

(5) If f(x, y) at boundary is zero as

$$f(-\alpha, y) = f(\alpha, y) = 0$$
 and $f(x, -\beta) = f(x, \beta) = 0$.

$$\Re\left\{\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \left[\left(\frac{p\pi}{\alpha}\right)^{2} + \left(\frac{q\pi}{\beta}\right)^{2}\right] \Re f\left(I\left(U_{p,q}, a, b\right)\right). \tag{3.14}$$

And also

$$\Re\left\{\frac{\partial^{s} f}{\partial x^{s}} + \frac{\partial^{s} f}{\partial y^{s}}\right\} \left(I\left(U_{p,q}, a, b\right)\right) = \left[\left(\frac{-p\pi}{\alpha}\right)^{s} + \left(\frac{-q\pi}{\beta}\right)^{s}\right] \Re f\left(I\left(U_{p,q}, a, b\right)\right). \tag{3.15}$$

4. THE TESTING FUNCTION SPACE A_{θ} AND A_{θ}^* AND THEIR DUALS

In this, we employ the same notation and terminology as those used in [14]. Thus $I_{\alpha,\beta}$ denote the interval $[-\alpha,\alpha]\times[-\beta,\beta]$. $L_2\left(I_{\alpha,\beta}\right)$ and $L_2^*\left(I_{\alpha,\beta}\right)$ represent the space of equivalence class of functions that are quadratically integrable on $I_{\alpha,\beta}$.

A mixed inner product is defined on $L_2(I_{\alpha,\beta}) \times L_2^*(I_{\alpha,\beta})$ for $f \in L_2(I_{\alpha,\beta})$, $g \in L_2^*(I_{\alpha,\beta})$ [1] as follows:

$$\langle f(X), g(X) \rangle = \int_{I_{\alpha, \beta}} f(X) \overline{g(X)} dX$$
 (4.1)

where (x, y) = X, $\overline{g(X)}$ denotes the complex conjugate of g(X).

This definition is consistent with the inner product on $L_2(I_{\alpha,\beta})$ and $L_2^*(I_{\alpha,\beta})$. And note that f(X) and g(X) both are in $L_2(I_{\alpha,\beta})$ and $L_2^*(I_{\alpha,\beta})$. The symbol $D(I_{\alpha,\beta})$ will denote the space of infinitely differential function on $I_{\alpha,\beta} = [-\alpha, \alpha] \times [-\beta, \beta]$, which have compact support on $I_{\alpha,\beta}$.

The topology of $D(I_{\alpha,\beta})$ is that which makes its dual $D'(I_{\alpha,\beta})$ of Schwartz's distribution. $E(I_{\alpha,\beta})$ will denote the space of distribution with compact support.

The adjoint of Ω_x from (2.3) if it exists, is the operator Ω_x^* which satisfies [1, p. 55],

$$\langle \Omega_x X_p, u \rangle = \langle X_p, \Omega_x^* u \rangle, \tag{4.2}$$

where u is the dummy function having every characteristics of X_p . If $\Omega_x^* = \Omega_x$, then Ω_x is said to be self-adjoint operator [1, p. 55].

The proof is as follows

$$\langle \Omega_x X_p, u \rangle = \int_{-\alpha}^{\alpha} u \frac{d^2 X_p}{dx^2} dx.$$
 (4.3)

On integrating by parts, we get

$$\langle \Omega_x X_p, u \rangle = J(u, X_p) + \int_{-\infty}^{\alpha} X_p \Omega_x^* u dx,$$
 (4.4)

where $J(u, X_p) = \left[u \frac{dX_p}{dx}\right]_{-\alpha}^{\alpha} - \left[\frac{du}{dx}X_p\right]_{-\alpha}^{\alpha}$ is called Bi-linear concomitant.

$$J(u, X_p) = \left[u \frac{dX_p}{dx} \right]_{-\alpha}^{\alpha} - \left[\frac{du}{dx} X_p \right]_{-\alpha}^{\alpha}$$

$$= u(\alpha) \frac{dX_p(\alpha)}{dx} - u(-\alpha) \frac{dX_p(-\alpha)}{dx} - \frac{du(\alpha)}{dx} X_\alpha(\alpha) + \frac{du(-\alpha)}{dx} X_p(-\alpha).$$

Applying the boundary conditions from (2.5), we obtain

$$J(u, X_p) = \frac{dX_p(\alpha)}{dx} [u(\alpha) - u(-\alpha)] - X_p(\alpha) [u'(\alpha) - u'(-\alpha)]. \tag{4.5}$$

In order to get the Bi-linear concomitant to vanish in (4.5), we assume a) $u(\alpha) - u(-\alpha) = 0$

b) and $u'(\alpha) - u'(-\alpha) = 0$.

Therefore (4.5) becomes

$$J\left(u,X_{p}\right)=0. (4.6)$$

And (4.4) becomes

$$\langle \Omega_x X_p, u \rangle = \int_{-\alpha}^{\alpha} X_p \Omega_x^* u dx,$$

which can be written as

$$\langle \Omega_x X_p, u \rangle = \langle X_p, \Omega_x^* u \rangle,$$

thus is the proof of (4.2). Hence the operator Ω_x is a self-adjoint operator. Thus (2.9) gives eigenfunctions and $(\frac{p\pi}{\alpha\cos\theta})$ are eigenvalues (positive roots of (2.13)). Similarly from (2.4) it follows:

$$\langle \Omega_y Y_q, v \rangle = \langle Y_q, \Omega_y^* v \rangle \tag{4.7}$$

for $\Omega_y^* = \Omega_y$, where v is the dummy function has every characteristic of Y_q , which means adjoint of Ω_y exists and is also a self-adjoint operator.

Using (2.10) eigenfunctions of Ω_y^* are obtained. Positive roots of (2.4) are given by are eigenvalues $\frac{q\pi}{\beta \sin \theta}$

Since Ω_x and Ω_y are self-adjoint operator, $\Omega_{x,y,\theta}$ is also a self-adjoint operator whose eigenfunctions by (3.1) are given by:

$$\psi_{p,q}(x,y) = a^{1/2} \sum_{p,q=1}^{\infty} c_{p,q} \psi\left((b - U_{p,q} \cdot (x,y)) / a \right). \tag{4.8}$$

This is equivalent to say that $\left\{\psi_{p,q}\left(X\right)\right\}_{p,q=1}^{\infty}$ is orthogonal function of differential operator using (2.15) as

$$\Omega_{x,y,\theta}\psi_{p,q}\left(X\right) = 0. \tag{4.9}$$

 A_{θ} is defined as the testing function space of all infinitely differentiable complex-valued functions $\psi(X)$ on $I_{\alpha,\beta}$ such that by [14, p. 252].

(i)
$$\varsigma_k \psi\left(X\right) = \left[\int\limits_{I_{\alpha,\beta}} \left|\Omega_{x,y,\theta}^k \psi\left(X\right)\right|^2 dX\right]^{\frac{1}{2}}$$
 exist for every $k = 0, 1, 2 \cdots$

(ii) For each p, q and k.

$$\left\langle \Omega_{x,y,\theta}^{k}\psi,\psi_{p,q}\right\rangle =\int\limits_{I_{\alpha,\beta}}\Omega_{x,y,\theta}^{k}\psi\left(X\right)\psi_{p,q}dX$$

$$= \int_{I_{\alpha,\beta}} \psi(X) \Omega_{x,y,\theta}^{k} \psi_{p,q} dX$$

$$\langle \Omega_{x,y,\theta}^{k} \psi, \psi_{p,q} \rangle = \langle \psi, \Omega_{x,y,\theta}^{k} \psi_{p,q} \rangle. \tag{4.10}$$

 A_{θ} is the countable multinormed space having the topology generated by $\{\varsigma\}$. A_{θ} is also complete. Consequently A_{θ} is a Fréchet space.

In our context we can establish a result analogous to [14].

Theorem 4.1. Every member $\psi \in A_{\theta}$ can be expanded into a series of the form

$$\psi = \sum_{p,q=1}^{\infty} \langle \psi, \psi_{p,q} \rangle \, \psi_{p,q}, \tag{4.11}$$

where converges in A_{θ} .

Proof. Note that $\Omega_{x,y,\theta}^k \psi \in L_2(I_{\alpha,\beta})$. Hence by (4.10) and (4.11), we have

$$\begin{split} \Omega_{x,y,\theta}^k \psi &= \sum_{p,q=1}^{\infty} \left\langle \Omega_{x,y,\theta}^k \psi, \psi_{p,q} \right\rangle \psi_{p,q}, \\ &= \sum_{p,q=1}^{\infty} \left\langle \psi, \Omega_{x,y,\theta}^k \psi_{p,q} \right\rangle \psi_{p,q}, \\ &= \sum_{p,q=1}^{\infty} \left\langle \psi, \psi_{p,q} \right\rangle \Omega_{x,y,\theta}^k \psi_{p,q}, \end{split}$$

where the series involved converge in $L_2(I_{\alpha,\beta})$. Therefore

$$\varsigma_k \left[\psi - \sum_{p,q=1}^{\infty} \langle \psi, \psi_{p,q} \rangle \psi_{p,q} \right] \to 0,$$

as $p, q \to \infty$. This complete the proof of theorem 4.1. A'_{θ} is dual space of A_{θ} and also complete.

We now list some of the properties of these spaces:

- (a) $D(I_{\alpha,\beta}) \subset A_{\theta} \subset E(I_{\alpha,\beta})$. $E'(I_{\alpha,\beta})$ is a space of A'_{θ} .
- (b) It can be seen that $\psi_{p,q}$, given by (4.8) belongs to A_{θ} .
- (c) The operation $\psi \to \Omega^k_{x,y,\theta} \psi$ is a continuous linear mapping of A_θ into itself.

Consequently, the operation $f \to \Omega^k_{x,y,\theta} f$ defined on A'_{θ} by

$$\langle \Omega_{x,y,\theta} f, \psi \rangle = \langle f, \Omega_{x,y,\theta} \psi \rangle.$$
 (4.12)

is also a continuous linear mapping of A'_{θ} into itself.

It is important to note that operator $\Omega_{x,y,\theta}$ is self-adjoint on A_{θ} . Therefore A_{θ} is equivalent to A_{θ}^* and A_{θ}' is equivalent to A_{θ}^* by [14, p. 255].

Remark 4.2. Since the $\{\psi\}$ is an orthogonal system on $I_{\alpha,\beta}$, verifying the orthogonality condition (2.15), we propose to consider finite continuous Ridgelet transform

$$\Re f(I(U_{p,q}, a, b)) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x, y) \, \psi((U_{p,q} \cdot (x, y) - b) / a) \, dx dy. \tag{4.13}$$

The inversion formula given by

$$f(x,y) = a^{1/2} \sum_{p,q=1}^{\infty} \Re f(I(U_{p,q}, a, b)) \psi((b - U_{p,q} \cdot (x, y)) / a)$$
(4.14)

can be known inversion formula for finite continuous Ridgelet transform.

Remark 4.3. A_{θ} may be identified with a subspace of A'_{θ} that is $A_{\theta} \subset A'_{\theta}$. Indeed, every member $f \in A_{\theta}$ generates a regular distribution in A'_{θ} represented by

$$(f, \psi) = \int_{I_{\alpha, \beta}} f(X) \psi(X) dX, \ \psi \in A_{\theta}.$$

Since $|(f, \psi)| \leq \varsigma_0(\psi) \varsigma_0(\psi)$.

Furthermore, two members of A_{θ} which give rise to the same member of A'_{θ} must be identical.

In similar way A_{θ} can be considered as a subspace of A'_{θ} .

5. INVERSION FORMULA

The main result of this section can be sated as follows:

Theorem 5.1. Every member $f \in A'_{\theta}$, then

$$f = \sum_{p,q=1}^{\infty} \langle f, \psi_{p,q} \rangle \psi_{p,q}$$
 (5.1)

where the series converges in A'_{θ} .

Proof. By virtue of theorem 4.1, it is inferred that

$$\langle f, \psi \rangle = \left\langle f, \sum_{p,q=1}^{\infty} \langle f, \psi_{p,q} \rangle \psi_{p,q} \right\rangle$$
$$= \sum_{p,q=1}^{\infty} \langle f, \psi_{p,q} \rangle \overline{\langle \psi, \psi_{p,q} \rangle}$$
$$= \sum_{p,q=1}^{\infty} \langle f, \psi_{p,q} \rangle \langle \psi, \psi_{p,q} \rangle$$

 $\forall \ \psi \in A_{\theta}$. This implies (5.1) converges in A'_{θ} .

In the view of theorem 5.1, the distributional finite continuous Ridgelet transform of $f \in A'_{\theta}$ is defined by

$$\Re' f(I(U_{p,q}, a, b)) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} f(x, y) \, \psi((U_{p,q} \cdot (x, y) - b) / a) \, dx dy. \tag{5.2}$$

Its corresponding inversion formula is supplied by theorem 5.1 and can be expressed as

$$\Re^{\prime -1} \left(\Re f \left(I \left(U_{p,q}, a, b \right) \right) \right) = f \left(x, y \right) = a^{1/2} \sum_{p,q=1}^{\infty} \Re f \left(I \left(U_{p,q}, a, b \right) \right) \psi \left(\left(b - U_{p,q} \cdot (x, y) \right) / a \right).$$
(5.3)

We invoke (4.11) to get

$$\frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} \left\{ \Omega_{x,y,\theta}^{k} f(x,y) \right\} \psi\left(\left(U_{p,q} \cdot (x,y) - b \right) / a \right) dx dy$$

$$= \left(-\eta^{2} \right)^{k} \left[\sin^{2}\theta \cos^{2k}\theta - \cos^{2}\theta \sin^{2k}\theta \right] \frac{a^{-1/2}}{4\alpha\beta} \int_{-\alpha}^{\alpha} \int_{-\beta}^{\beta} f(x,y) \psi\left(\left(U_{p,q} \cdot (x,y) - b \right) / a \right) dx dy$$

 $\forall f \in A'_{\theta} \text{ and } k = 0, 1, 2, \cdots.$

Thus the result:

$$\frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} \left\{ \Omega_{x,y,\theta}^{k} f(x,y) \right\} \psi\left(\left(U_{p,q} \cdot (x,y) - b \right) / a \right) dx dy$$

$$= \left(-\eta^{2} \right)^{k} \left[\sin^{2}\theta \cos^{2k}\theta - \cos^{2}\theta \sin^{2k}\theta \right] \Re' f\left(I\left(U_{p,q}, a, b \right) \right) \tag{5.4}$$

Theorem 5.2 (The Uniqueness Theorem). Let $f, g \in A'_{\theta}$ and let finite continuous Ridgelet transform of f and g be $\Re f(I(U_{p,q},a,b))$ and $\Re g(I(U_{p,q},a,b))$ respectively, as defined by (4.13). If $\Re f(I(U_{p,q},a,b)) = \Re g(I(U_{p,q},a,b))$, then f = g in the sense of equality in $D'(I_{\alpha,\beta})$.

Proof. By (4.14)

$$f - g = a^{1/2} \sum_{p,q=1}^{\infty} \left[\Re f \left(I \left(U_{p,q}, a, b \right) \right) - \Re \left(I \left(U_{p,q}, a, b \right) \right) \right] \psi \left(\left(b - U_{p,q} \cdot (x, y) \right) / a \right),$$

$$f - g = 0.$$

as

$$\Re f\left(I\left(U_{p,q},a,b\right)\right) = \Re g\left(I\left(U_{p,q},a,b\right)\right).$$

Hence f = g in the sense of equality in $D'(I_{\alpha,\beta})$.

6. APPLICATION OF FINITE CONTINUOUS RIDGELET TRANSFORM TO SOLVE BOUNDARY VALUE PROBLEM.

Example 6.1 (The Telegraph Equation). The Finite continuous Ridgelet transform can also be used to solve boundary-value problems for partial differential equations. Consider the equation

$$u_{xx} = Au_{tt} + Bu_t + Cu, (6.1)$$

for every $0 < t < \infty$ and where A, B and C are nonnegative constant. This equation, known as the telegraph equation, describes an electromagnetic signal $u\left(x,t\right)$ such as an electric current or voltage, traveling along a transmission line. The constant A, B, C are determined by the distributed inductance, resistance and capacitance (per unit length) along the line [5]. If the transmission line extends over l < t < -l, then two initial conditions at t = 0 on u and u_t are sufficient to specify u. Hence the initial condition becomes

$$u(x, y, 0) = f(x, y)$$
 and $u_t(x, y, 0) = 0.$ (6.2)

Taking finite continuous Ridgelet transform on both sides of (6.1)

$$\Re\left[\frac{\partial^{2}u}{\partial x^{2}}\right]\left(I\left(U_{p,q},a,b\right)\right)=\Re\left[A\frac{\partial^{2}u}{\partial t^{2}}+B\frac{\partial u}{\partial t}+Cu\right]\left(I\left(U_{p,q},a,b\right)\right)$$

From (3.10)

$$\left(\frac{p\pi}{\alpha}\right)^2 \bar{U} = A \frac{\partial^2 \bar{U}}{\partial t^2} + B \frac{\partial \bar{U}}{\partial t} + C\bar{U},\tag{6.3}$$

where

$$\bar{U} = \Re u \left(I \left(U_{p,q}, a, b \right) \right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} u \left(x, y \right) \psi \left(\left(U_{p,q} \cdot \left(x, y \right) - b \right) / a \right) dx dy.$$

Thus

$$A\frac{\partial^2 \bar{U}}{\partial t^2} + B\frac{\partial \bar{U}}{\partial t} + \left(C - \left(\frac{p\pi}{\alpha}\right)^2\right)\bar{U} = 0, \tag{6.4}$$

here
$$\sigma = \left(C - \left(\frac{p\pi}{\alpha}\right)^2\right)$$
 .

Similarly taking finite continuous Ridgelet transform on both of (6.2) gives

$$\bar{U}(x, y, 0) = \Re f(x, y) (I(U_{p,q}, a, b)) \quad and \quad \bar{U}_t(x, y, 0) = 0.$$
 (6.5)

The solution of (6.4); second order differential equation is given by

$$\bar{U} = A_1 e^{\sigma_1 t} + B_1 e^{\sigma_2 t}, \tag{6.6}$$

and

where $\sigma_1 = \frac{-B + \sqrt{B^2 - 4A\left(C - \left(\frac{p\pi}{\alpha}\right)^2\right)}}{2A}$ $\sigma_2 = \frac{-B - \sqrt{B^2 - 4A\left(C - \left(\frac{p\pi}{\alpha}\right)^2\right)}}{2A}.$ Applying initial conditions (6.5), we get

$$\bar{U} = \frac{\sigma_2}{\sigma_2 - \sigma_1} \Re f(x, y) \left(I\left(U_{p,q}, a, b \right) \right) e^{\sigma_1 t} + \frac{\sigma_1}{\sigma_1 - \sigma_2} \Re f(x, y) \left(I\left(U_{p,q}, a, b \right) \right) e^{\sigma_2 t}$$

$$(6.7)$$

and applying inversion formula (4.14) gives

$$u(x,y,t) = a^{1/2} \sum_{p=1,q=1}^{\infty} \frac{\sigma_2}{\sigma_2 - \sigma_1} \Re f(x,y) \left(I(U_{p,q},a,b) \right) e^{\sigma_1 t} \psi \left((b - U_{p,q} \cdot (x,y)) / a \right)$$

$$+ \frac{\sigma_1}{\sigma_1 - \sigma_2} \sum_{p=1,q=1}^{\infty} \frac{\sigma_1}{\sigma_1 - \sigma_2} \Re f(x,y) \left(I(U_{p,q},a,b) \right) e^{\sigma_2 t} \psi \left((b - U_{p,q} \cdot (x,y)) / a \right),$$
(6.8)

which gives the solution of (6.1).

Nevertheless, there are number of significant cases of (6.1), where the solution can be obtained explicitly.

(i) If $A = 1/c^2$ and B = C = 0, (6.1) reduces to the wave equation $u_{tt} = c^2 u_{xx}$. Using (4.13), the transform function becomes

$$\bar{U} = \sinh\left(\frac{pc\pi}{\alpha}t\right) \Re f\left(x, y\right) \left(I\left(U_{p, q}, a, b\right)\right)$$

is easily inverted using (4.14) to

$$u\left(x,y,t\right) = a^{1/2} \sum_{p,q=1}^{\infty} \sinh\left(\frac{pc\pi}{\alpha}t\right) \Re f\left(x,y\right) \left(I\left(U_{p,q},a,b\right)\right) \psi\left(\left(b-U_{p,q}\cdot(x,y)\right)/a\right).$$

(ii) If A=C=0 and B=1/k, where k is a positive constant, we obtain the heat equation $u_t=ku_{xx}$.

In this case the finite continuous Ridgelet transform of u is

$$\Re\left[\frac{\partial u}{\partial t}\right]\left(I\left(U_{p,q},a,b\right)\right) = k\Re\left(\frac{\partial^{2} u}{\partial x^{2}}\right)\left(I\left(U_{p,q},a,b\right)\right).$$

Hence

$$\frac{\partial \bar{U}}{\partial t} = k \left(\frac{p\pi}{\alpha}\right)^2 \bar{U} \tag{6.9}$$

where

$$\bar{U} = \Re u \left(I \left(U_{p,q}, a, b \right) \right) = \frac{a^{-1/2}}{4\alpha\beta} \int_{-\beta}^{\beta} \int_{-\alpha}^{\alpha} u \left(x, y \right) \psi \left(\left(U_{p,q} \cdot \left(x, y \right) - b \right) / a \right) dx dy.$$

Now the solution of (6.9) is given by

$$\log \bar{U} = k \left(\frac{p\pi}{\alpha}\right)^2 t + A' \tag{6.10}$$

where A' is constant of integration.

Applying initial conditions (6.5) to (6.10)

$$\log \bar{U} = k \left(\frac{p\pi}{\alpha}\right)^2 t + \log \left[\Re f\left(x,y\right) \left(I\left(U_{p,q},a,b\right)\right)\right].$$

Hence

$$\bar{U} = \Re f(x,y) \left(I\left(U_{p,q}, a, b \right) \right) e^{k \left(\frac{p\pi}{\alpha} \right)^2 t}.$$

From (4.14), follows:

$$u(x,y,t) = a^{1/2} \sum_{p,q=1}^{\infty} \Re f(x,y) \left(I(U_{p,q},a,b) \right) e^{k\left(\frac{p\pi}{\alpha}\right)^2 t} \psi\left(\left(b - U_{p,q} \cdot (x,y) \right) / a \right).$$
(6.11)

Example 6.2 (Heat Conduction). A square plate has its faces insulated with sides of length $-\alpha < x < \alpha$ and $-\beta < y < \beta$ and it's sides kept at 0°C. If the initial temperature is specified, then the equation for the subsequent temperature at any point of the plate is given by

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right). \tag{6.12}$$

The boundary conditions are given by

$$u(-\alpha, y, t) = u(\alpha, y, t) = u(x, -\beta, t) = u(x, \beta, t) = 0$$
 (6.13)

and

$$u(x, y, 0) = f(x, y)$$
 (6.14)

where $-\alpha < x < \alpha$, $-\beta < y < \beta$ and t > 0.

To solve the boundary value problem, applying finite continuous Ridgelet transform on both sides of (6.11), we get

$$\Re\left[\frac{\partial u}{\partial t}\right]\left(I\left(U_{p,q},a,b\right)\right) = k\Re\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right)\left(I\left(U_{p,q},a,b\right)\right),$$

Hence

$$\frac{\partial \bar{U}}{\partial t} = k \left[\left(\frac{p\pi}{\alpha} \right)^2 + \left(\frac{q\pi}{\beta} \right)^2 \right] \bar{U}. \tag{6.15}$$

Also finite continuous Ridgelet transform on both sides of (6.13)

$$\bar{U}(x,y,0) = \Re f(x,y) \left(I(U_{p,q},a,b) \right). \tag{6.16}$$

Here (6.14) is first order differential equation, whose solution is given by

$$\log \bar{U} = k \left[\left(\frac{p\pi}{\alpha} \right)^2 + \left(\frac{q\pi}{\beta} \right)^2 \right] t + A, \tag{6.17}$$

where A is integration constant.

Now applying the condition (6.15) to (6.16), we obtain

$$\log \bar{U} = k \left[\left(\frac{p\pi}{\alpha} \right)^2 + \left(\frac{q\pi}{\beta} \right)^2 \right] t + \log \left[\Re f(x, y) \left(I(U_{p,q}, a, b) \right) \right].$$

Hence

$$\bar{U} = \Re f(x,y) \left(I\left(U_{p,q}, a, b \right) \right) e^{k \left[\left(\frac{p\pi}{\alpha} \right)^2 + \left(\frac{q\pi}{\beta} \right)^2 \right] t}. \tag{6.18}$$

We may now invoke the inversion formula (4.14) to provide the required result

$$u(x,y,t) = a^{1/2} \sum_{p,q=1}^{\infty} \Re f(x,y) \left(I(U_{p,q},a,b) \right) e^{k \left[\left(\frac{p\pi}{\alpha} \right)^2 + \left(\frac{q\pi}{\beta} \right)^2 \right] t} \psi \left(\left(b - U_{p,q} \cdot (x,y) \right) / a \right).$$
(6.19)

CONCLUSION

The finite continuous Ridgelet transforms and its inversion formula is studied in this paper. Using Sturm-Liouville theory the operational calculus of finite continuous Ridgelet transforms is analyzed. The study is supported with applications in engineering field dealt by partial differential equations.

COPYRIGHT

This manuscript is neither published nor submitted for publication, in whole or in part, either in a serial, professional journal or as a part in a book which is formally published and made available to the public.

REFERENCES

- [1] AL-Gwaiz, M. A., 2008, "Stum-Liouville Theory and its Applications," Berlin: Springer, vol. 7.
- [2] Candès, Emmanuel J., 1996, "Harmonic analysis of neural networks," Technical report, Department of Statistics, University of Stanford.
- [3] Candès, E.J. and Donoho, D.L., 1999, "Ridgelets: A key to higher-dimensional intermittency?," Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1760 (357), pp. 2495-2509.
- [4] Candès, E. J., 1998, "Ridgelets: theory and applications," Doctoral dissertation, Stanford University.
- [5] Hilbert, R. and Courant, D., 1953 and 1963, "Methods of Mathematical Physics," New York: Interscience Publishers, vol. I and II.
- [6] Do, M. N. and Vetterli, M., 2003, "The finite ridgelet transform for image representation," IEEE Transactions on image Processing, 12 (1), pp. 16-28.
- [7] Donoho, D., 1998, "Orthonormal ridgelets and linear singularities," Department of Statistics, Stanford University.
- [8] Sonoda, S., Ishikawa, I., Ikeda, M., Hagihara, K., Sawano, Y., Matsubara, T. and Murata, N., 2018, "The global optimum of shallow neural network is attained by ridgelet transform," arXiv preprint arXiv: 1805.07517.

- [9] Lakshmanan Akila and Rajakumar Roopkumar, 2016, "Ridgelet transform for quarternion-valued functions," International Journal of Wavelets, Multiresolution and Information Processing, vol. 14, No. 01.
- [10] Malgonde, S. P., and Gorty Lakshmi, V. R., 2008, "Orthogonal series expansions of generalized functions and the finite generalized Hankel-Clifford transformation of distribution," Revista de la Academia Canaria de Ciencias 20 (1-2), pp. 49-61.
- [11] Marchenko, V. A., 2011, "Sturm-Liouville operators and applications," American Mathematical Soc, vol. 373.
- [12] Murata, N., 1996, "An integral representation of functions using three-layered networks and their approximation bounds," Neural Networks, 9 (6), pp. 947-956.
- [13] Sneddon, I. N., 1972, "The use of integral transforms".
- [14] Zemanian, A. H., 1968, "Generalized integral transformations," New York: Wiley.