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Abstract

In this paper, finite continuous Ridgelet transforms and its inversion formula
is studied. Using Sturm-Liouville theory with self-adjoint operator; the
operational calculus of finite continuous Ridgelet transform is discussed. In the
concluding section, engineering applications like telegraph and heat conduction
are demonstrated.
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1. INTRODUCTION

Let ψ : R → R be a smooth univariate function with sufficient decay and vanishing

mean given by
∫
ψ (t) dt = 0.

Candès [2] demonstrated continuous Ridgelet transform: ∀ a > 0, b ∈ R and
θ ∈ [0, 2π) , bivariate function ψa,b,θ : R2 → R2 is defined as:

ψa,b,θ (x, y) = a−1/2 ψ

[
(x cos θ + y sin θ − b)

a

]
(1.1)

where ridges in (1.1) represent

x cos θ + y sin θ = C (1.2)

where C = constant.
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The continuous Ridgelet transforms for bivariate function f (x, y) was defined in [2] as

<f (a, b, θ) =

∞∫
−∞

∞∫
−∞

f (x, y)ψa,b,θ (x, y) dxdy. (1.3)

along with reconstruction formula and Parseval relation.
Murata in [12] independently studied and analysed Ridgelet integral representations. In
1998, Donoho [7] broadened the notion of ridgelet and studied orthonormal ridgelets
whose elements can be specified in closed form. In [3] author extended the ridgelets
to higher dimensions. The discrete finite ridgelet transforms was introduced in 2003
by Do and Vetterli [6]. In [9], using the convolution of quaternion-valued functions
authors defined the ridgelet transform on square integrable quaternion-valued functions.
Authors have conducted a series of computational experiments to show that there exists
an interesting similarity between the scatter plot of hidden parameters in a shallow
neural network after the BP training and the spectrum of the ridgelet transform in [8].
In this paper, classical work of finite continuous Ridgelet transform is been introduced.
Using Sturm-Liouville theory [1] developed the study of finite continuous Ridgelet
transforms. Fourier-Ridgelet type of series expansion is also demonstrated analogous
to [10]. The self-adjoint operator and operational calculus are derived using [1] and
[13]. The testing function spaces, inversion formula and uniqueness condition have
been developed by using the method analogous to [10,14] in this study. The operational
calculus thus generated in the context is used in solving certain partial differential
equations with boundary value problems [11] in the concluding section.

2. PRELIMINARY RESULTS

Consider Sturm-Liouville theory analogues as in [1]

(Ωx,y,θ)ψ (x, y) = 0 (2.1)

where
Ωx,y,θ =

(
sin2θ

)
Ωx −

(
cos2θ

)
Ωy. (2.2)

for the differential operator considered as

Ωx =
∂2

∂x2
(2.3)

and

Ωy =
∂2

∂y2
. (2.4)



FCRT with Applications to Telegraph and Heat Conduction 85

Also α, β are real constants and −α ≤ x ≤ α; −β ≤ y ≤ β satisfies homogeneous
separated boundary conditions [1, pp. 43-44]:

iη cos θψ (−α, y) + ψ′ (−α, y) = 0; iη cos θe2iηαCos θψ (α, y) + ψ′ (α, y) = 0. (2.5)

iη sin θψ (x,−β) + ψ′ (x,−β) = 0; iη sin θe2iηβ sin θψ (x, β) + ψ′ (x, β) = 0. (2.6)

Assume from [1, p. 118] follows:

ψ (x, y) = a1/2 eb/aXp (x)Yq (y) , (2.7)

where a, b, p and q are integers.
Using (2.7) and setting each side−η2, by variable separable method (2.1) can be written
as [1]

Xp
′′ (x)

cos2θXp (x)
=

Y ′′q (y)

sin2θYq (y)
= −η2. (2.8)

Using boundary conditions (2.5) and (2.6), (2.8) can be obtained as

Xp (x) = c2e
−iηpx cos θ, (2.9)

and
Yq (y) = c4e

−iηqy sin θ (2.10)

assuming ηp =
p′π

α cos θ
for 0 < p′ < ∞ and ηq =

q′π

β sin θ
for 0 < q′ < ∞ are

eigenvalues of (2.8) respectively. Here c2 and c4 arbitary constants.
Using (2.7), (2.9), (2.10), and substituting in (2.1) follows:

ψ (x, y) = ψp,q (x, y) = c2c4a
1/2 eb/a e

−ip′π
α

xe
−iq′π
β

y. (2.11)

Let ip′ = p and iq′ = q, 0 <
p

i
<∞ and 0 <

q

i
<∞, then (2.11) becomes

ψp,q (x, y) = c2c4a
1/2 e−[ (paπx/α )+(qaπy/β )−b

a ]. (2.12)

Then (2.8) can be written [10] as(
Ωx + η2pcos2θ

)
Xp (x) = 0. (2.13)(

Ωy + η2qsin
2θ
)
Yq (y) = 0. (2.14)

And the boundary conditions are given in (2.5) and (2.6), where Xp (x) and Yq (y) are
the eigenfunctions of (2.8). Hence (2.12) is eigenfunction of the problem (2.1)-(2.6)
which corresponds to the non-zero eigenvalues ηp and ηq.
Then the orthogonality and orthonormality condition of (2.12) [1, p. 94] is given by can
be written as

|〈ψp1,q1 (x, y) , ψp2,q2 (x, y)〉|2 =

 4ae2b/a (c2c4)
2αβ ; p1 = p2, q1 = q2

0 ; p1 6= p2, q1 6= q2
. (2.15)
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3. MAIN RESULTS (THE FOURIER-RIDGELET SERIES AND CLASSICAL
FINITE CONTINUOUS RIDGELET TRANSFORMATION)

Assume f (x, y) is a square integrable function over rectangle [1, p. 122],
Fourier-Ridgelet series expansion follows from (2.15), [1, p. 124] and using (2.12):

f (x, y) = ψp,q (x, y) = cp,qa
1/2

(
1 +

∞∑
p,q=1

e((paπx/α )+(qaπy/β )−b)/a

)−1
. (3.1)

Multiplying a−1/2

(
1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
to (3.1); solving double

integral w.r.t x, y in [−α, α], [−β, β] respectively yields:

β∫
−β

α∫
−α

f (x, y) a−1/2

(
1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
dxdy = 4αβcp,q.

Thus

cp,q =
1

4αβ

β∫
−β

α∫
−α

f (x, y) a−1/2

(
1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
dxdy. (3.2)

From [4],

(
1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
represents the regularized sigmoid

function which is a ridge function or ridgelet with parameters:
i) a; the scale of the ridge function
ii) b; location of the ridge function
iii) [(paπx/α ) + (qaπy/β )] ; its orientation
and can be represented by:

a−1/2

1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

−1 = a−1/2 ψ (((paπx/α ) + (qaπy/β )− b) /a)

(3.3)

Hence (3.2) becomes

cp,q =
1

4αβ

β∫
−β

α∫
−α

f (x, y) a−1/2 ψ (((paπx/α ) + (qaπy/β )− b) /a) dxdy. (3.4)

The convergence of the series (3.1) is straightforward by [13, p. 433] and the following
theorem 3.1 [13, pp. 425-432].
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Theorem 3.1. Let f (x, y) be a function defined and absolute integrable on the
rectangle {(x, y) : −α < x < α,−β < y < β} , then

cp,q =
1

4αβ

β∫
−β

α∫
−α

f (x, y) a−1/2 ψ (((paπx/α ) + (qaπy/β )− b) /a) dxdy

at each point of the open interval [−α, α]× [−β, β] at which f (x, y) is continuous. At
any point of the interval at which f (x, y) has a finite discontinuity the symbol f (x, y)

is taken to mean
1

2
[f (x+, y+) + f (x−, y−)] and at point x = −α, y = −β or

x = α, y = β it is taken to mean
1

2
[f (−α,−β) + f (α, β)].

Remark 3.2. Let Up,q =

(
πap

α
+
πaq

β

)
∈ R2 and a, b ∈ R.

Subsituting

I (Up,q, a, b) =

{
(x, y) ∈ R2

∣∣∣∣Up,q · (x, y) =

(
πap

α
x+

πaq

β
y

)
=
b

a

}
,

where I (Up,q, a, b) is a hyperplane, more precisely: I (Up,q, a, b) is the right in the
rectangle [−α, α] × [−β, β] ⊂ R2 · P2,

{
I (Up,q, a, b)

∣∣(U, a, b) ∈ R2 × R× R
}

is the
differentiable variate.
Let S

(
P2
)

be the Schwartz space (3.1) and (3.4) and theorem 3.1 suggest introducing
the finite continuous Ridgelet transform analogous to [13, p. 425] as follows:

<f (I (Up,q, a, b)) =
a−1/2

4αβ

β∫
−β

α∫
−α

f (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy (3.5)

where Up,q · (x, y) =

(
πap

α
x+

πaq

β
y

)
. Hence < : T

(
R2
)
→ T

(
P2
)

: f → <f.

The inversion formula of (3.5) is given by

<−1 (<f (I (Up,q, a, b))) = f (x, y) = a1/2
∞∑

p,q=1

<f (I (Up,q, a, b))ψ ((b− Up,q · (x, y)) /a).

(3.6)

We point out the following operational rules:

(1) If f (x, y) ∈ R2 ([−α, α]× [−β, β]),

<
{
∂2f

∂x2

}
(I (Up,q, a, b)) =

a−1/2

4αβ

β∫
−β

α∫
−α

{
∂2f

∂x2

}
ψ ((Up,q · (x, y)− b) /a) dxdy,
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Integrating by parts we get,

<
{
∂2f

∂x2

}
(I (Up,q, a, b)) =

a−1/2

4αβ

β∫
−β



f ′ (α, y)ψ ((Up,q · (α, y)− b) /a)
−f ′ (−α, y)ψ ((Up,q · (α, y)− b) /a)
−f (α, y)ψ′ ((Up,q · (α, y)− b) /a)
+f (−α, y)ψ′ ((Up,q · (−α, y)− b) /a)

+

α∫
−α

f (x, y)
∂2ψ ((Up,q · (x, y)− b) /a)

∂x2
dx


dy.

(3.7)

Assuming f (x, y) vanishes on the boundary of [−α, α]× [−β, β] as in [13],

f (α, y) = f (−α, y) = f ′ (α, y) = f ′ (α, y) = 0.

Hence (3.7) becomes

<
{
∂2f

∂x2

}
(I (Up,q, a, b)) =

a−1/2

4αβ

β∫
−β

α∫
−α

f (x, y)
∂2ψ ((Up,q · (x, y)− b) /a)

∂x2
dxdy.

(3.8)
But from (3.3),

∂2ψ
(
Up,q ·(x,y)−b

a

)
∂x2

=
∂2

∂x2

(1 +
∞∑

p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
=
∂2e((paπx/α )+(qaπy/β )−b)/a

∂x2
,

∂2ψ
(
Up,q ·(x,y)−b

a

)
∂x2

=
(pπ
α

)2
e((paπx/α )+(qaπy/β )−b)/a,

∂2ψ
(
Up,q ·(x,y)−b

a

)
∂x2

=
(pπ
α

)2(
1 +

∞∑
p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

)−1
. (3.9)

Using (3.8), (3.9) becomes

<
{
∂2f

∂x2

}
(I (Up,q, a, b))

=
a−1/2

4αβ

(pπ
α

)2 β∫
−β

α∫
−α

f (x, y)

1 +
∞∑

p,q=1

e−((paπx/α )+(qaπy/β )−b)/a

−1 dxdy

<
{
∂2f

∂x2

}
(I (Up,q, a, b)) =

a−1/2

4αβ

(pπ
α

)2 β∫
−β

α∫
−α

f (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy.
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Using (3.5), we get

<
{
∂2f

∂x2

}
(I (Up,q, a, b)) =

(pπ
α

)2
<f (I (Up,q, a, b)) . (3.10)

(2) If f (x, y) at boundary is zero, and

f s (−α, y) = f s (α, y) = 0,

then

<
{
∂sf

∂xs

}
(I (Up,q, a, b)) =

(
−pπ
α

)s
<f (I (Up,q, a, b)) (3.11)

where s being a positive integer.

(3) If f (x, y) ∈ R2 ([−α, α]× [−β, β]), upon integrating by parts, we deduce the
relation

<
{
∂2f

∂y2

}
(I (Up,q, a, b)) =

(
qπ

β

)2

<f (I (Up,q, a, b)) . (3.12)

(4) If f (x, y) at boundary is zero and

f s (x,−β) = f s (x, β) = 0,

then

<
{
∂sf

∂ys

}
(I (Up,q, a, b)) =

(
−qπ
β

)s
<f (I (Up,q, a, b)) . (3.13)

(5) If f (x, y) at boundary is zero as
f (−α, y) = f (α, y) = 0 and f (x,−β) = f (x, β) = 0.

<
{
∂2f

∂x2
+
∂2f

∂y2

}
(I (Up,q, a, b)) =

[(pπ
α

)2
+

(
qπ

β

)2
]
<f (I (Up,q, a, b)) .

(3.14)
And also

<
{
∂sf

∂xs
+
∂sf

∂ys

}
(I (Up,q, a, b)) =

[(
−pπ
α

)s
+

(
−qπ
β

)s]
<f (I (Up,q, a, b)) .

(3.15)

4. THE TESTING FUNCTION SPACE Aθ AND A∗θ AND THEIR DUALS

In this, we employ the same notation and terminology as those used in [14]. Thus Iα,β
denote the interval [−α, α] × [−β, β]. L2 (Iα,β) and L∗2 (Iα,β) represent the space of
equivalence class of functions that are quadratically integrable on Iα,β.
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A mixed inner product is defined on L2 (Iα,β) × L∗2 (Iα,β) for f ∈ L2 (Iα,β) , g ∈
L∗2 (Iα,β) [1] as follows:

〈f (X) , g (X)〉 =

∫
Iα,β

f (X) g (X)dX (4.1)

where (x, y) = X , g (X) denotes the complex conjugate of g (X).
This definition is consistent with the inner product on L2 (Iα,β) and L∗2 (Iα,β). And note
that f (X) and g (X) both are in L2 (Iα,β) and L∗2 (Iα,β). The symbol D (Iα,β) will
denote the space of infinitely differential function on Iα,β = [−α, α] × [−β, β], which
have compact support on Iα,β .
The topology of D (Iα,β) is that which makes its dual D′ (Iα,β) of Schwartz’s
distribution. E (Iα,β) will denote the space of distribution with compact support.
The adjoint of Ωx from ( 2.3) if it exists, is the operator Ω∗x which satisfies [1, p. 55],

〈ΩxXp, u〉 = 〈Xp,Ω
∗
xu〉 , (4.2)

where u is the dummy function having every characteristics of Xp.
If Ω∗x = Ωx, then Ωx is said to be self-adjoint operator [1, p. 55].
The proof is as follows

〈ΩxXp, u〉 =

α∫
−α

u
d2Xp

dx2
dx. (4.3)

On integrating by parts, we get

〈ΩxXp, u〉 = J (u,Xp) +

α∫
−α

XpΩ
∗
xudx, (4.4)

where J (u,Xp) =

[
u
dXp

dx

]α
−α
−
[
du

dx
Xp

]α
−α

is called Bi-linear concomitant.

J (u,Xp) =

[
u
dXp

dx

]α
−α
−
[
du

dx
Xp

]α
−α

= u (α)
dXp (α)

dx
− u (−α)

dXp (−α)

dx
− du (α)

dx
Xα (α) +

du (−α)

dx
Xp (−α) .

Applying the boundary conditions from (2.5), we obtain

J (u,Xp) =
dXp (α)

dx
[u (α)− u (−α)]−Xp (α) [u′ (α)− u′ (−α)] . (4.5)

In order to get the Bi-linear concomitant to vanish in (4.5), we assume
a) u (α)− u (−α) = 0
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b) and u′ (α)− u′ (−α) = 0.

Therefore (4.5) becomes
J (u,Xp) = 0. (4.6)

And (4.4) becomes

〈ΩxXp, u〉 =

α∫
−α

XpΩ
∗
xudx,

which can be written as
〈ΩxXp, u〉 = 〈Xp,Ω

∗
xu〉 ,

thus is the proof of (4.2). Hence the operator Ωx is a self-adjoint operator.
Thus (2.9) gives eigenfunctions and (

pπ

α cos θ
) are eigenvalues (positive roots of (2.13)).

Similarly from (2.4) it follows:

〈ΩyYq, v〉 =
〈
Yq,Ω

∗
yv
〉

(4.7)

for Ω∗y = Ωy, where v is the dummy function has every characteristic of Yq, which
means adjoint of Ωy exists and is also a self-adjoint operator.
Using (2.10) eigenfunctions of Ω∗y are obtained. Positive roots of (2.4) are given by are

eigenvalues
qπ

β sin θ
.

Since Ωx and Ωy are self-adjoint operator, Ωx,y,θ is also a self-adjoint operator whose
eigenfunctions by (3.1) are given by:

ψp,q (x, y) = a1/2
∞∑

p,q=1

cp,qψ ((b− Up,q · (x, y)) /a). (4.8)

This is equivalent to say that {ψp,q (X)}∞p,q=1 is orthogonal function of differential
operator using (2.15) as

Ωx,y,θψp,q (X) = 0. (4.9)

Aθ is defined as the testing function space of all infinitely differentiable complex-valued
functions ψ (X) on Iα,β such that by [14, p. 252].

(i) ςkψ (X) =

∫
Iα,β

∣∣Ωk
x,y,θψ (X)

∣∣2dX


1
2

exist for every k = 0, 1, 2 · · ·

(ii) For each p, q and k.〈
Ωk
x,y,θψ, ψp,q

〉
=

∫
Iα,β

Ωk
x,y,θψ (X)ψp,qdX
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=

∫
Iα,β

ψ (X) Ωk
x,y,θψp,qdX

〈
Ωk
x,y,θψ, ψp,q

〉
=
〈
ψ,Ωk

x,y,θψp,q
〉
. (4.10)

Aθ is the countable multinormed space having the topology generated by {ς}. Aθ is
also complete. Consequently Aθ is a Fréchet space.
In our context we can establish a result analogous to [14].

Theorem 4.1. Every member ψ ∈ Aθ can be expanded into a series of the form

ψ =
∞∑

p,q=1

〈ψ, ψp,q〉ψp,q, (4.11)

where converges in Aθ.

Proof. Note that Ωk
x,y,θψ ∈ L2 (Iα,β). Hence by (4.10) and (4.11), we have

Ωk
x,y,θψ =

∞∑
p,q=1

〈
Ωk
x,y,θψ, ψp,q

〉
ψp,q,

=
∞∑

p,q=1

〈
ψ,Ωk

x,y,θψp,q
〉
ψp,q,

=
∞∑

p,q=1

〈ψ, ψp,q〉Ωk
x,y,θψp,q,

where the series involved converge in L2 (Iα,β). Therefore

ςk

[
ψ −

∞∑
p,q=1

〈ψ, ψp,q〉ψp,q

]
→ 0,

as p, q →∞. This complete the proof of theorem 4.1.
A′θ is dual space of Aθ and also complete.

We now list some of the properties of these spaces:

(a) D (Iα,β) ⊂ Aθ ⊂ E (Iα,β) . E ′ (Iα,β) is a space of A′θ.

(b) It can be seen that ψp,q, given by (4.8) belongs to Aθ.

(c) The operation ψ → Ωk
x,y,θψ is a continuous linear mapping of Aθ into itself.
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Consequently, the operation f → Ωk
x,y,θf defined on A′θ by

〈Ωx,y,θf, ψ〉 = 〈f,Ωx,y,θψ〉 . (4.12)

is also a continuous linear mapping of A′θ into itself.
It is important to note that operator Ωx,y,θ is self-adjoint on Aθ. Therefore Aθ is
equivalent to A∗θ and A′θ is equivalent to A

′∗
θ by [14, p. 255].

Remark 4.2. Since the {ψ} is an orthogonal system on Iα,β , verifying the orthogonality
condition (2.15), we propose to consider finite continuous Ridgelet transform

<f (I (Up,q, a, b)) =
a−1/2

4αβ

β∫
−β

α∫
−α

f (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy. (4.13)

The inversion formula given by

f (x, y) = a1/2
∞∑

p,q=1

<f (I (Up,q, a, b))ψ ((b− Up,q · (x, y)) /a) (4.14)

can be known inversion formula for finite continuous Ridgelet transform.

Remark 4.3. Aθ may be identified with a subspace of A′θ that is Aθ ⊂ A′θ.

Indeed, every member f ∈ Aθ generates a regular distribution in A′θ represented by

(f, ψ) =

∫
Iα,β

f (X)ψ (X)dX, ψ ∈ Aθ.

Since |(f, ψ)| ≤ ς0 (ψ) ς0 (ψ) .

Furthermore, two members of Aθ which give rise to the same member of A′θ must be
identical.
In similar way Aθ can be considered as a subspace of A′θ.

5. INVERSION FORMULA

The main result of this section can be sated as follows:

Theorem 5.1. Every member f ∈ A′θ, then

f =
∞∑

p,q=1

〈f, ψp,q〉ψp,q (5.1)

where the series converges in A′θ.
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Proof. By virtue of theorem 4.1, it is inferred that

〈f, ψ〉 =

〈
f,

∞∑
p,q=1

〈f, ψp,q〉ψp,q

〉

=
∞∑

p,q=1

〈f, ψp,q〉 〈ψ, ψp,q〉

=
∞∑

p,q=1

〈f, ψp,q〉 〈ψ, ψp,q〉

∀ ψ ∈ Aθ. This implies (5.1) converges in A′θ.
In the view of theorem 5.1, the distributional finite continuous Ridgelet transform of
f ∈ A′θ is defined by

<′f (I (Up,q, a, b)) =
a−1/2

4αβ

β∫
−β

α∫
−α

f (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy. (5.2)

Its corresponding inversion formula is supplied by theorem 5.1 and can be expressed as

<′−1 (<f (I (Up,q, a, b))) = f (x, y) = a1/2
∞∑

p,q=1

<f (I (Up,q, a, b))ψ ((b− Up,q · (x, y)) /a).

(5.3)
We invoke (4.11) to get

a−1/2

4αβ

β∫
−β

α∫
−α

{
Ωk
x,y,θf (x, y)

}
ψ ((Up,q · (x, y)− b) /a) dxdy

=
(
−η2

)k [
sin2θcos2kθ − cos2θsin2kθ

] a−1/2
4αβ

α∫
−α

β∫
−β

f (x, y)ψ ((Up,q · (x, y)− b) /a)dxdy

∀f ∈ A′θ and k = 0, 1, 2, · · · .
Thus the result:

a−1/2

4αβ

β∫
−β

α∫
−α

{
Ωk
x,y,θf (x, y)

}
ψ ((Up,q · (x, y)− b) /a) dxdy

=
(
−η2

)k [
sin2θcos2kθ − cos2θsin2kθ

]
<′f (I (Up,q, a, b)) (5.4)
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Theorem 5.2 (The Uniqueness Theorem). Let f, g ∈ A′θ and let finite continuous
Ridgelet transform of f and g be <f (I (Up,q, a, b)) and <g (I (Up,q, a, b)) respectively,
as defined by (4.13). If <f (I (Up,q, a, b)) = <g (I (Up,q, a, b)) , then f = g in the sense
of equality in D′ (Iα,β) .

Proof. By (4.14)

f − g = a1/2
∞∑

p,q=1

[<f (I (Up,q, a, b))−< (I (Up,q, a, b))]ψ ((b− Up,q · (x, y)) /a),

f − g = 0.

as
<f (I (Up,q, a, b)) = <g (I (Up,q, a, b)) .

Hence f = g in the sense of equality in D′ (Iα,β) .

6. APPLICATION OF FINITE CONTINUOUS RIDGELET TRANSFORM TO
SOLVE BOUNDARY VALUE PROBLEM.

Example 6.1 (The Telegraph Equation). The Finite continuous Ridgelet transform
can also be used to solve boundary-value problems for partial differential equations.
Consider the equation

uxx = Autt +But + Cu, (6.1)

for every 0 < t < ∞ and where A, B and C are nonnegative constant. This equation,
known as the telegraph equation, describes an electromagnetic signal u (x, t) such
as an electric current or voltage, traveling along a transmission line. The constant
A, B, C are determined by the distributed inductance, resistance and capacitance (per
unit length) along the line [5]. If the transmission line extends over l < t < −l, then
two initial conditions at t = 0 on u and ut are sufficient to specify u. Hence the initial
condition becomes

u (x, y, 0) = f (x, y) and ut (x, y, 0) = 0. (6.2)

Taking finite continuous Ridgelet transform on both sides of (6.1)

<
[
∂2u

∂x2

]
(I (Up,q, a, b)) = <

[
A
∂2u

∂t2
+B

∂u

∂t
+ Cu

]
(I (Up,q, a, b))

From (3.10) (pπ
α

)2
Ū = A

∂2Ū

∂t2
+B

∂Ū

∂t
+ CŪ, (6.3)
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where

Ū = <u (I (Up,q, a, b)) =
a−1/2

4αβ

β∫
−β

α∫
−α

u (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy.

Thus

A
∂2Ū

∂t2
+B

∂Ū

∂t
+

(
C −

(pπ
α

)2)
Ū = 0, (6.4)

here σ =

(
C −

(pπ
α

)2)
.

Similarly taking finite continuous Ridgelet transform on both of (6.2) gives

Ū (x, y, 0) = <f (x, y) (I (Up,q, a, b)) and Ūt (x, y, 0) = 0. (6.5)

The solution of (6.4); second order differential equation is given by

Ū = A1e
σ1t +B1e

σ2t, (6.6)

where σ1 =

−B +

√
B2 − 4A

(
C −

(
pπ
α

)2)
2A

and

σ2 =

−B −
√
B2 − 4A

(
C −

(
pπ
α

)2)
2A

.

Applying initial conditions (6.5), we get

Ū =
σ2

σ2 − σ1
<f (x, y) (I (Up,q, a, b)) e

σ1t +
σ1

σ1 − σ2
<f (x, y) (I (Up,q, a, b)) e

σ2t

(6.7)
and applying inversion formula (4.14) gives

u (x, y, t) = a1/2
∞∑

p=1,q=1

σ2
σ2 − σ1

<f (x, y) (I (Up,q, a, b)) e
σ1tψ ((b− Up,q · (x, y)) /a)

+
σ1

σ1 − σ2

∞∑
p=1,q=1

σ1
σ1 − σ2

<f (x, y) (I (Up,q, a, b)) e
σ2tψ ((b− Up,q · (x, y)) /a),

(6.8)

which gives the solution of (6.1).
Nevertheless, there are number of significant cases of (6.1), where the solution can be
obtained explicitly.
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(i) If A = 1/c2 and B = C = 0, (6.1) reduces to the wave equation utt = c2uxx.

Using (4.13), the transform function becomes

Ū = sinh
(pcπ
α
t
)
<f (x, y) (I (Up,q, a, b))

is easily inverted using (4.14) to

u (x, y, t) = a1/2
∞∑

p,q=1

sinh
(pcπ
α
t
)
<f (x, y) (I (Up,q, a, b))ψ ((b− Up,q · (x, y)) /a).

(ii) If A = C = 0 and B = 1/k , where k is a positive constant, we obtain the heat
equation ut = kuxx.

In this case the finite continuous Ridgelet transform of u is

<
[
∂u

∂t

]
(I (Up,q, a, b)) = k<

(
∂2u

∂x2

)
(I (Up,q, a, b)) .

Hence
∂Ū

∂t
= k
(pπ
α

)2
Ū (6.9)

where

Ū = <u (I (Up,q, a, b)) =
a−1/2

4αβ

β∫
−β

α∫
−α

u (x, y)ψ ((Up,q · (x, y)− b) /a) dxdy.

Now the solution of (6.9) is given by

log Ū = k
(pπ
α

)2
t+ A′ (6.10)

where A′ is constant of integration.
Applying initial conditions (6.5) to (6.10)

log Ū = k
(pπ
α

)2
t+ log [<f (x, y) (I (Up,q, a, b))] .

Hence
Ū = <f (x, y) (I (Up,q, a, b)) e

k( pπα )
2
t.

From (4.14), follows:

u (x, y, t) = a1/2
∞∑

p,q=1

<f (x, y) (I (Up,q, a, b)) e
k( pπα )

2
tψ ((b− Up,q · (x, y)) /a).

(6.11)
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Example 6.2 (Heat Conduction). A square plate has its faces insulated with sides of
length−α < x < α and−β < y < β and it’s sides kept at 0◦C. If the initial temperature
is specified, then the equation for the subsequent temperature at any point of the plate
is given by

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
. (6.12)

The boundary conditions are given by

|u (x, y, t)| < M,

u (−α, y, t) = u (α, y, t) = u (x,−β, t) = u (x, β, t) = 0 (6.13)

and
u (x, y, 0) = f (x, y) (6.14)

where −α < x < α, −β < y < β and t > 0.

To solve the boundary value problem, applying finite continuous Ridgelet transform on
both sides of (6.11), we get

<
[
∂u

∂t

]
(I (Up,q, a, b)) = k<

(
∂2u

∂x2
+
∂2u

∂y2

)
(I (Up,q, a, b)) ,

Hence
∂Ū

∂t
= k

[(pπ
α

)2
+

(
qπ

β

)2
]
Ū . (6.15)

Also finite continuous Ridgelet transform on both sides of (6.13)

Ū (x, y, 0) = <f (x, y) (I (Up,q, a, b)) . (6.16)

Here (6.14) is first order differential equation, whose solution is given by

log Ū = k

[(pπ
α

)2
+

(
qπ

β

)2
]
t+ A, (6.17)

where A is integration constant.
Now applying the condition (6.15) to (6.16), we obtain

log Ū = k

[(pπ
α

)2
+

(
qπ

β

)2
]
t+ log [<f (x, y) (I (Up,q, a, b))] .

Hence
Ū = <f (x, y) (I (Up,q, a, b)) e

k
[
( pπα )

2
+( qπβ )

2
]
t
. (6.18)

We may now invoke the inversion formula (4.14) to provide the required result

u (x, y, t) = a1/2
∞∑

p,q=1

<f (x, y) (I (Up,q, a, b)) e
k
[
( pπα )

2
+( qπβ )

2
]
t
ψ ((b− Up,q · (x, y)) /a).

(6.19)
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CONCLUSION

The finite continuous Ridgelet transforms and its inversion formula is studied in this
paper. Using Sturm-Liouville theory the operational calculus of finite continuous
Ridgelet transforms is analyzed. The study is supported with applications in
engineering field dealt by partial differential equations.
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