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Abstract

In this paper, we prove the existence of a solution for a variational inequality
associated with the Maxwell-Stokes type equation in a bounded multiply
connected domain with holes. Our equation is nonlinear and contains,
the so called, p-curlcurl equation. Furthermore, we obtain the continuous
dependence of the solution on the data.
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1. INTRODUCTION

In this paper, we consider a stationary nonlinear electromagnetic field in a multiply
connected domain in R3 with holes. The electric and magnetic fields e and h satisfy the
following Maxwell equations

g =curlh in Q)
divh=0 inQ,
dive=¢q in{,
curle = f in (),
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where j denotes the total current density, ¢ is the electric charge and f is here a given
external field. We use the following nonlinear extension of Ohm’s law

325 = oe,

where o is the electric conductivity. Then the magnetic field h satisfies

(1.1)

curl [1[curl h|P~2curl h] = f  in Y,
divh =0 in ).

The left-hand side of the first equation in (1.1) is called the p-curlcurl operator. For a
weak solution to such a system under certain boundary condition, see Yin et al. [17],
Miranda et al. [10], [11], Pan [13], and Aramaki [4]. A necessary condition for the
existence of a solution of the problem (1.1) is that the external field f must satisfy
div f = 01in 2. However, if this condition is not satisfied, then it is expected to demand
an unknown potential function 7 such that

1.2
divh =0 in ). (12)

{ curl [2[curl h[P~2curlh] + Vo = f in,
Whether a solution to (1.2) exists or not depends heavily on the boundary conditions
and the geometry of the domain (2.

We also consider another constitutive law that arises in type-II superconductors, which
is known as an extension of the Bean critical-state model in Prigozhin [14]. In this case
the current density j = curl h cannot exceed the critical value ¥ = U(z) > 0 and we
have
) Yewlh[pPewrlh i |curlh| < ¥(z),
€= { (2wr=2 4 Ncurlh  if [curl b| = U(z),

where A = A(z) > 0 is regarded as a unknown Lagrange multiplier. This leads to the
variational inequality

1
/ ~|curl kP 2curl b - curl (v — h)dz + / V7 (v—h)dx > / f-(v—h)dzx
Q0 Q Q

for any test function v such that |curl v| < ¥(x) a.e. in Q.

In this paper, we consider such a variational inequality. We use a nicely extended
Carathéodory function S(z,t) defined in 2 x [0, c0) by Aramaki [5], and we consider
the following system

(1.3)

curl [S(z, [curlul?)curlu] + Vo= f  in €,
divu =0 in €2,
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where S; = 05/0t. Since we allow that ) is multiply connected and has holes, we
assume that € satisfies (O1) and (O2) defined in section 2. In particular, the boundary
I' of € has finitely many connected components 'y, I'y, ..., ['; with Iy denoting the
boundary of the infinite connected component of R? \ Q.

We impose boundary conditions to system (1.3),

{uxn:O on [, (1.4)

(u-n,1)p, =0 fori=1,...,1,

where n is the outer unit normal vector to I' and (-, -)r, denotes some duality bracket
defined in section 2.

Thus we consider the following variational inequality: to find (u, 7) in an appropriate
space such that

/ Sy(z, |curl u|?)curl u - curl (v — u)dz — / mdiv (v — u)dz
Q Q

E/Qf-(v—u)dm (1.5)

for all v such that |curl v| < ¥(z) a.e. in (2.

The first purpose of this paper is to show the existence of a unique solution to (1.5)
under boundary conditions (1.4) (Theorem 3 3). More precisely, let the constrained
function ¥ be of the form U(x) = F(p(x)), where F' : R — [0, 00) is a continuous
function and ¢ € L>(1), To get a solution to (1.5), we use the standard minimization
problem of some functional on a closed convex subset

K, ={v e X} (Q) : [curlv| < F(p) a.e. in N},

where X%, () is a reflexive Banach space associated with the boundary condition (1.4)
defined in section 2. We note that the functional

/ S(z, |curl v|*)dx
Q

is not coercive on K,. To overcome this, we use the penalty method introduced by
Temam [16]. As aresult, we can find a unique solution to (1.5) as (u, 7) € Kp x L7 (),
where

K, = {v € V2(Q) : [curlv| < F(¢) ae. in Q}.

Here V% () is a reflexive Banach space defined in section 2.

The second purpose of this paper is to derive the continuity of the solution to (1.5) on
the data f and . Let f,,, f € X% (Q)" (XX, (22)" denotes the dual space of X% (2)), and
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let (uw,,m,) € ]IA{% x L7 () be the solution to (1.5) with f = f, and ¢ = ¢,. We
show that if f, — f in X5(Q)" and ¢, — ¢ in L>(Q2), then we can prove that
w, — w strongly in V3,(Q) and 7, — 7 weakly in LP'(Q2). To show that {u,}
converges strongly in V3, (€2), we use the celebrated result of Mosco [12] (Theorem
4.2).

This paper is organized as follows. Section 2 covers preliminaries in which we give the
geometry of the domain €2, some spaces of functions and their properties. In section
3, we consider a variational inequality as in (1.5) and give the main theorem on the
existence of a solution. In section 4, we consider the continuity of the solution obtained
in section 3 on the data f and the constrained function. We apply the result of Mosco
[12].

2. PRELIMINARIES

In this section, we introduce the geometry of the domain, a Carathéodory function
S(z,t) on Q x [0,+00) satisfying some structural conditions, and some spaces of
functions.

Let 2 be a bounded domain in R?® with a C'! boundary I'. Since we allow (2 to be a
multiply-connected domain with holes in R3, we assume that € satisfies the following
conditions as in Amrouche and Seloula [2] (cf. Amrouche and Seloula [1], Dautray and
Lions [7, vol. 3] and Girault and Raviart [9]). €2 is locally situated on one side of I" and
satisfies the following (O1) and (O2).

(O1) I has a finite number of connected components 'y, 'y, ..., ['; with ['y denoting
the boundary of the infinite connected component of R? \ Q.

(02) There exist J connected open surfaces ¥;, (j =1, ..., J), called cuts, contained
in €2 such that
(a) each surface X; is an open subset of a smooth manifold M,

(b) 0¥, CcI' (j =1,...,J), where 90X, denotes the boundary of ¥, and ¥; is
non-tangential to [,

©) SN =0(j #k),

(d) the open set Q° = Q \ (U/_,%;) is simply connected and has
Lipschitz-continuous boundary.

The number J is called the first Betti number and [ is the second Betti number. We say
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that 2 is simply connected if J = 0 and €2 has no holes if I = 0. If we define
KE(Q) = {v € W'P(Q);curlv = 0,divo =0in Q,v-n=0onT}
and
K2 (Q) = {v € W'(Q);curlv = 0,divv =0in Qv x n =0on T},

then it is well known that dim K7.(Q) = J and dim K%,(Q) = 1.

Throughout this paper, let 1 < p < oo and we denote the conjugate exponent of p by
P, ie., (1/p) + (1/p') = 1. From now on we use L”(Q), W, () and W(Q) for
the standard L” and Sobolev spaces of functions. For any Banach space B, we denote
B x B x B by the boldface character B. We use this character to denote vector and
vector-valued functions, and we denote the standard Euclidean inner product of vectors
a and b in R® by a - b. For the dual space B’ of B, we write (-, -) g p for the duality
bracket.

We assume that a Carathéodory function S(x,t) in © x [0, 00) satisfies the following
structural conditions. For a.e. z € Q, S(z,t) € C?((0,00)) N C°(]0, 00)), and positive
constants 0 < A < A < oo such that for a.e. z € (,

S(x,0) =0and AP 2/2 < S (x,t) < AP/ fort > 0, (2.1a)
P22 <G (1) + 2t Sy (x,t) < AtP=2D 2 for t > 0, (2.1b)
If1 <p<2 Sy(x,t) <0, andifp > 2, Sy(x,t) > 0fort > 0, (2.1¢)

where S; = 9S/0t and Sy = 925/0t*. We note that from (2.1a), it follows that

2 2
SMP2 < S(x,t) < SAP 2 for t > 0. (2.2)
p p

Example 2.1. If S(x,t) = v(x)g(t)t"/?, where v is a measurable function in Q and
satisfies 0 < v, < v(x) < v* < oo for a.e. x € ) for some constants v, and v*, and

g € ([0, 00)),
When ¢(t) = 1, it follows from elementary calculations that (2.1a)-(2.1¢) hold.

As another example, we can take

) aet+ 1) ift>o0,
g(t)—{ a ift=20

with a constant a > 0. Then S(x,t) = v(z)g(t)t?/? satisfies (2.1a)-(2.1¢) if p > 2. (cf.
Aramaki [6, Example 3.2]).
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We remember the monotonic property of \S;.

Lemma 2.2. There exists a constant ¢ > 0 such that for all a,b € R?,

(Si(@, lal*)a — Si(z, [b]*)b) - (a — b)

- cla — b|P ifp=>2,
~ | c(Ja] + |b])P2|la —b|* ifl<p<2.

In particular, if a # b, we have

(Si(z,|al*)a — Si(z, [b[*)b) - (@ — b) > 0.

For the proof, see Aramaki [5, Lemma 3.6].

Lemma 2.3. There exists a constant Cy > 0 depending only on A and p such that for
any a,b € R?,

Clla—b]p_l ifl<p<2,

*Ja — b|*)b| <
|St(l’,|a‘ )CL St<x7’ ‘ ) | — { Cl(’a| + |b])p_2\a—b] lfp Z 2.

For the proof, see Aramaki [3].

We can see the convexity of S(x,t) in the following sense.

Lemma 2.4. If S(x,t) satisfies (2.1a) and (2.1b), then for a.e. x € ), the function
R >t g[t] = S(z,t?) is strictly convex.

For the proof, see [6, Lemma 2.3].

The following inequality is used frequently (cf. [2]). If 2 is a bounded domain in R?
with a C'! boundary T, and if u € LP(Q) satisfies curlu € LP(Q),divu € LP(Q) and
uxn e WYPP(D), then w € W'P(Q) and there exists a constant C' > 0 depending
only on p and 2 such that

[ullwie@) < Clllcurlul[pr @) + [|div u||ze) + [[ullzr @)
+ H’U, X n”Wl—l/p,p(F)>. (2.3)
Moreover, if u € LP(Q) satisfies curlu € LP(Q), then u x n € W V/PP(T') is well

defined, and if u € LP(Q) satisfies divu € LP(Q), then u - n € W=/PP(T') is well
defined by the formulae

(u X n, ¢>Wfl/p,p(mwlfl/p/,p,(r) = / u - curl pdxr — / curlu - ¢pdx
Q Q
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for all € W' (Q) and

u - Vodr + /(div u)pdx

Q

for all ¢ € W' (Q). Furthermore, if u € WP(Q) satisfies u x n = 0 on T, then
there exists a constant C' > 0 depending only on p and €2 such that

1

lull o) < C(lleurlul|poo) + [[divul @) + Y [(w-n, L,
i=1

where (-, )r, = (-, ‘>W71/w(ri),W1*1/P’*P’(Fi)'

Define a space

X% () ={v € LP(Q); curlu € LP(Q),dive € LP(Q),u xn=0onT,
(u-n,l)p, =0fori=1,..., I}
with the norm
1/p.

[0l @) = (leurlwllpr g + l[dival,q)

We note that [|[v|[xz () is equivalent to [[v]|yrq) for v € X5(Q2) (cf. [2]). Since
XA () is a closed subspace of W'?()), we can see that XX () is a reflexive Banach
space and W "(Q) — X2 (Q) — W?'P(Q), where the symbol < means that the
inclusion map is continuous. Furthermore, we define a closed subspace V4 (§2) of
Xy (€2) by

V&(Q) = {v € X{,(Q);divo = 0in Q}

with the norm [|v||yz () = |[curlv| rr() which is also equivalent to ||v||y1s (). We
note that V() is also a reflexive Banach space.

Lemma 2.5. Ifv € L” (Q), then curlv € X, (Q)’ and

(curlw, cp)X?V(Q),,X%(Q) = / v - curl pdz for all p € X5, (Q). (2.4)
Q

Moreover, there exists a constant C' > 0 depending only on p and ) such that

leurlv ||z @y < Cl[v|l g g for all v € L ().
Proof. Letv € L (Q). Then the distribution curl v € D’(Q) is defined by

(curlv, ) = / v - curl ppdx for all p € D(2) = CF(Q2).
Q
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Define temporarily a Banach space
Hy(curl, Q) = {v € LP(Q); curlv € LP(Q2),v xn=0o0n T}

with the norm ||v|| gy (curt ,0) = (||'v||2Lp(Q) + ||curlv||i,,(m)1/p. Then by Temam [16]
or [9], D(R) is dense in Hy(curl, 2). Hence for any ¢ € Hy(curl, ), there exists a
sequence {p;} C D(Q2) such that ¢; — ¢ in Hy(curl, 2). Define

(curlv, ) = lim [ v -curlp;dr.
Jj—=oo Jq

Clearly, the definition is well defined (independent of the choice of a sequence {¢;}
such that ; — ¢ in Hy(curl,(2)), and

/ v - curl p;dz
Q

|(curlv, )| = lim

oo = jhlﬁlo 10l L g lcurl gl 22 (e

< vl g (g lleurl @] o).

Therefore, we have
(curlv, ) = jlggo g v - curlp;dr = /Q’U - curl ppdx for all ¢ € Hy(curl, Q).

Moreover, we have |(curlv, @)| < [|v|[r gl Ho(u1 0)- Thus we can see that
curlv € Hy(curl,€)’. On the other hand, since X3 (2) — Hy(curl,2), we have
Hy(curl, )" — X%,(€)’, and there exists a constant C' > 0 depending only on p and
such that

eurlw, @) < Ol g 4l o for all o € X5,(9)

Thus curlv € X3(€)', (2.4) holds and [[curlv|[xz () < C||v| g, for any v €
L (Q). O

Corollary 2.6. If v € X(Q2), then curl [S;(x, |curl v]?)curlv] € XX(Q), and there
exists a constant C' > 0 depending only on p, A and <) such that
[|curl [S; (z|curl v|*)curl v][lxz @y < C|lv] I?gvl(ﬂ)’

Proof. If v € X&,(Q2), then from (2.1b), |S;(x, |curl v|?)curlv| < Alcurlw[P~!. Hence
S,(z, |curl v|?)curlv € LP (Q), and

1/p'
.S (z, ]curlv|2>curlv||Lp/(Q) <A </Q |Curlv|pda:> < A||U||§§V1(Q)-

It suffices to apply Lemma 2.5. U
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3. A VARIATIONAL INEQUALITY FOR THE MAXWELL-STOKES
PROBLEM

In this section, we consider a variational inequality. Let F' : R — [0,00) be a
continuous function, and let ¢ € L>(€2). Define a closed convex subset K,, of XX ()
and a closed convex subset K, of V& () by

K, = {v € X (Q); |curlv| < F(yp) ae. in Q}

and
]I/{g, = {v € V5 (Q); |curlv| < F(p) ae. in Q},

respectively. For a given function f € X%, (€)', we consider the following variational
inequality: to find (u, ) € K, x L' () such that

/ Sy(z, |curl u|*)curl w - curl (v — uw)dx — / mdiv vdx
0 Q

> (f,v—u)xz (yxr (o forallv € K, (3.1)

We solve problem (3.1) by the penalty method introduced by Temam [16]. To do so,
we consider the following functional E. on K, depending on a parameter ¢ € (0, 1]
defined by

E.fv] = % {/Q S(a, Jeurl v]?)da + é /Q S(, (divv)z)dx}

— <f, ’U>XIJ)\I(Q)/>XIJ)V(Q) forv € K@. 3.2)

We derive the following minimization problem: to find u. € K, such that

E.[u.] = inf E.|v]. (3.3)

veK,

We call such a u. € K, a minimizer of E..

Proposition 3.1. Assume that f € X%, (Q)'. Then the minimization problem (3.3) has a
unique minimizer u. € K, and there exists a constant C > 0 depending only on p, A
and Q, but independent of € € (0, 1] such that

||’u’€||§g§’v(g) S C”f”?gll’v(ﬂ)/ (34)

and
[|div uf:‘”ip(ﬂ) < Ca“f”?gg’v(g)w (3.5
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Proof. 1t is clear that E. is proper from (2.2), and that the functional E. is strictly
convex from Lemma 2.4. Moreover, E. is lower semi-continuous on K, (cf. [5]). For
any € € (0,1] and for any v € K, it follows from (2.2) and the Young inequality that

A 1 i
Efv] > — {/ |curl v[Pdz + —/ |d1VU|pd$} — I fllxz @ llvlixe @
p Q € Ja
A p
i p _ P o 14
> pHUHX?\I(Q) C((S)|’fHX§’V(Q)’ 5”UHX7V(Q)

for any 0 > 0 and some C'(§) > 0. If we choose 6 = \/(2p), then we have

A » A o
E.[v] > 2_pH’UHX§}V(Q) - C(Q_Z))HfHXII’V(Q)/‘

Hence FE. is coercive on K. From Ekeland and Témam [8, Chapter II, Proposition
1.2], problem (3.3) has a unique minimizer u. € K.

Forany v € K, and 0 < p < 1, since (1 — p)u. + pv = ue + p(v — u.) € K, we
have

d
—FE |u. + pu(v — u, > 0.
Pt —w)|

That is to say, the minimizer w. satisfies the following inequality

/ Sy(z, |curl u.|?)curl u, - curl (v — u.)dz
Q

+ é/ Sy (z, (div u.)?)(div . )div (v — u.)dx
Q

> (f,v— uE>X§V(Q)/’X7V(Q) forallv € K,. (3.6)

Taking v = 0 € K, in (3.6) as a test function, we have

. L .
AlJewrlwe |[7p o) + [[div ue 7, q) < A([Jcurl Ue oo + g”le ua||]£p(m)
< <.f: ue)X@’\,(Q)’,ij\,(Q) < 0(5)||f||§%(g)/ + 5Hu6||§§v(g)
for any 0 > 0. If we choose 6 > 0 so that § < A, we have estimate (3.4). Using (3.4),
we also get estimate (3.5). L]

Thus we showed that the variational problem (3.6) has a solution. We derive the
uniqueness of solution to the problem (3.6).

Lemma 3.2. The variational inequality (3.6) has a unique solution.
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Proof. 1t suffices to prove the uniqueness. Let ul, u? € K, be two solutions to (3.6).
Then we have

/ Sy(z, |curl w! [*)curl ! - curl (u? — ul)dw
Q

1

+ g/ Sy(z, (divul)?) (divul)div (u? — ul)dr
0

> (f,ul —ul)xr oy xz (o)

and

/ Sy(z, |curl u?[*)curl w? - curl (u! — u?)dw
Q

1
+ —/ Sy(z, (div u?)?) (div u?)div (u! — u?)dz
€Ja
> (f,ul — U§>X§V(Q)/,X§V(Q)-

Hence we have

/ (Si(z, Jeurlwl*)curlul — Sy(z, [curl w?[*)curl u?) - curl (u! — u?)dz
Q

+ é / (St(x, (divul)?)(dival) — Si(z, (divu?))(div uz))div (u! — u2)dr < 0.
Q

By Lemma 2.2, we can see that curl (u! — u?) = 0 and div (u! — u?) = 0in Q, so

1_ 2
u. = u’. []

Here we prepare the following lemma.

Lemma 3.3. For any i) € LF(SY), there exists vy, € X() such that curlv, =
0,divvy, = ¢ in (), and there exists a constant C > 0 such that

|vpllxz @) < CllY L@

Thus vy € K.

Proof. For any ¢ € LP({), the following Dirichlet problem

A¢p =1 in(),
=0 on[’

has a unique solution ¢ € W2P(Q) N W, (Q). If we define w = V¢ in €, then
w € WP(Q) satisfies curlw = 0,divw = v in Q, Since m x V contains only the
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tangential derivatives, n X w = n x V¢ = 0 on I'. Here let {ey, ..., e;} be a basis of

K% (€2) such that (n - e;, 1)r, = 0,1, and define

I
Uy =w — Z('w -n,1)r,e".
i=1
Then clearly (v, -n,1)r, =0fork =1,...,1. Hence vy, € X} () and vy, € K,. O

We are in a position to state one of the main theorems of this paper.

Theorem 3.4. Assume that f € X%5,(Q)". Then the variational inequality (3.1) has a
unique solution (u, ) € K, x LP(Q), and there exists a constant C' > 0 depending
only on p, \, \ and ) such that

el g + 1711 < CUFIE: o 37)

Proof. Let u. be a unique solution of (3.6). Then from (3.5), we can see that
div u. — 0 strongly in LP(2) as ¢ — +0. Define

1
Te = —gSt(x, (div u.)?)div u..

From (3.4), {u.} is bounded in X% (€2). Passing to a subsequence, we can assume
that u. — u weakly in X%,(Q) for some u € X%(Q) and strongly in LP(2). Since
divu. — divu in D'(Q2), we have divu = 0 in 2. Hence u € V&, (). Since K, is
weakly closed subset of X% (2), we have u € ]Kp, and from (3.4),

|| (3.8)

<l

. P . . P
) = Il @ < T g e ey

p p
VR (Q X2, (2

We show that {7.}.c(01) is bounded in L”(Q2). To show this we note that for any
Y € LP(Q), there exists vy, € W'?(Q) as in Lemma 3.3. Taking v = Mv,, (M > 0)
as a test function in (3.6) and using (3.4), we have

M [ e < CIFIZ, oy + MIFlgor ol o
If we divide this inequality by M and letting M — oo, we can see that
/ 7otz < C| Ly 16 ooy for all § € LP(9).
Q
This implies that

‘/Q mpdx

< Cllfllsxx, @y 19l ooy for all ¢ € LP(Q).
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So, it follows that
||7Ta||Lp’(Q) < O||f||X7V(Q)/-

Thus {.} is bounded in L”'(Q). Passing to a subsequence, we can assume that 7. — 7
weakly in L”'(Q) for some 7 € L¥ () and

. . p/ p/
< liminf |77, ) < CAIlF i oy (3.9)

/
H7r||22p’(9)

By the monotonicity of \S;, for any v € K,

/ Sy(z, |curl u.|?)curl u, - curl (u, — v)dz
Q
> / Sy(z, |curl v|?)curl v - curl (u. — v)dz.
Q
Hence we have

/ Sy(z, |curl v]*)curl v - curl (v — u.)dx — / mediv (v — u.)dz
0 Q
> (f, v —uo)xz @y xz - (3.10)

Since u. — u weakly in X% (2), 7. — 7 weakly in L?' (Q) and div u. — 0 strongly in
LP(Q2), letting ¢ — +0 in (3.10), we can derive

/ Si(z, |curl v]?*)curl v - curl (v — w)dr — / mdiv vdx
0 0

> (f, v — wxz (ayxz (o forallv € K. (3.11)

For any w € K, taking v = (1 — p)u + pw = u + p(w — u),0 < p < 1 as a test
function of (3.11), we have

/ Sy(z, |curl (u + p(w — u))|*)curl (u + p(w — w)) - peurl (w — w)dw
Q
— ,u/ rdivwdr > p(f, w — w)xr oy x2 (@)
Q
If we divide both hand sides by x, and let ;x — +-0, then we have

/ Sy(z, |curl w|*)curl w - curl (w — w)dw — / mdiv wdzx
Q Q

> (f,w —u)xz (qyxz ) forallw € Ky, (3.12)

This means that the inequality (3.1) holds.
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Finally, we show the uniqueness of the solution. Let (u, ), (us, m) € ]Kg, x L (Q)
be two solution of (3.1). Then since divu; = 0in €2 for i = 1, 2, we have

/ Si(, |eurl w;|*)eurl w; - curl (u; — w;)dz > (f,u; — wi)xr oy x2 (o) fori # j.
Q
Hence

/(St(x, |curl wy [?)curl wy — Sz, |curl us|?)curl wy) - curl (u; — us)dz < 0.
Q

By the monotonicity of .5; (Lemma 2.2), we have curl u; = curlus in €2, so u; = us.
Let v € K. From (3.12) with w = v and w = —v, we have

/ Sy(z, |curl uy [*)curl u; - curl (v — w; )dz — / mdivvdz
Q Q

> (f, v — w)xz (y xz, (@)

and

/ Sy (z, |curl uy [*)curl wy - curl (—v — uy)dx + / modiv vdx
0 Q

> (f,—v— u1>X§’V(Q)’,X§’\,(Q)-

Therefore, we have

/9(7'('1 — 7T2)diV vdx S 2<f7 ul)X?\r(Q)/vxg)v(Q)

- 2/ Si(x, |eurluy [*)|curl uy [*dx for all v € K. (3.13)
Q
From (3.12) with w = 0, we see that

¢ = (f, u)xz qyxe () — / Sy(z, |curl wy |*) |curl w; [2dz > 0.
Q
For any ¢ € C§°(2), choose v,;, as in Lemma 3.3. Then from (3.13), we have

/(m — mo)divvydr < 2c.
Q

For large M > 0, since Mwv,, € K, we see that

2
/Q(?Tl — mp)divvydr < Mc
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Letting M — oo, we have

/(m — mo)bdx < 0 for all p € C°(Q).
Q
This implies that
/(7?1 — mo)tbdx = 0 for all p € C3°(92).
Q

By the celebrated Du Bois Raymond Lemma, we have m; = 7y a.e. in (). This
completes the proof of Theorem 3.4. U

4. CONTINUOUS DEPENDENCE ON THE DATA

In this section, we show the continuous dependence of the solution obtained in section
3 to problem (3.1) on the data. Let f € XX (©2) and ¢ € L>(Q2). For solution w of
(3.1), we consider the following variational inequality.
/ Sy(z, |curlu|*)curl w - curl (v — u)dzr > (f,v — U)? (Q) XE,(Q)
Q
=(f,v —wv @ @1
forallv € Kp.

Lemma 4.1. If (u,7) € ]K@ x L¥(Q) is a unique solution of (3.1), then u € ]K@ is a
unique solution of (4.1).

Proof. 1tis clear that u € ]KSD is a solution of (4.1), since v € ]Kg, satisfies divv = 0 in
Q. Let u, u be two solutions of (4.1). Then

/ Si(, |eurlw|?)curlu - curl (u — w)dz > (f,u — U2 (), V2 ()
Q

and

/ Sy(z, |curlw|*)curl w - curl (w — w)dx > (f, u — U2 () 2 ()
Q

Therefore, we have
/(St(x, |curl w|?)curl w — S;(x, |curl @|*)curl @) - curl (u — @)dz < 0.
Q
By the monotonicity lemma (Lemma 2.2), we have u = u in V4,(Q). O

Now, we give the second main theorem of this paper.
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Theorem 4.2. Assume that F : R — [0,00) is a continuous function satisfying
that there exists a constant v > 0 such that v < F\(s) for all s € R. Let
Fo. € X2(Q)(C VE(Q)) and @, 0 € L®(Q), and let (u,, m,) € K, x LY (Q)
and (u, ) € ]IA{QO x LP(Q) be unique solutions of (3.1) with ¢ = @, and p = ¢,
respectively. If f,, — f in X3(Q)' (so in VR,(Q)') and p,, — p in L>®(Q) as n — oo,
then w,, — w strongly in V%, () and 7, — 7 weakly in L¥ (Q).

Proof. In order to show that u,, — w strongly in V4 (€2), we apply the result of Mosco
[12, Theorem A]. Define an operator S : VA (2) — V& ()’ by

(Su,v) = /QSt(x, |curl w|?)curl w - curl vdz for w, v € V5, (Q).

By the Holder inequality, since

/ Sy(z, |curl w|?*)curl w - curl vdz
Q

, 1/p 1/p
< (/ 1S, (z, |curl w|?)curl w|? dx) (/ \curlv|pda:>
Q Q

§A||u|€/§vl(Q)HUHV§’V(Q), 4.2)

the operator S is well defined. Furthermore, define operators 7,, and 7" from V% (2) to
Viy(§2)" by

Tou=Su—f,and Tu = Su — f.
We check conditions I, I and IIT in Theorem A of Mosco [12] in the following lemmas.

First we check Mosco’s condition 1.

Lemma 4.3. The above operators T,, and T are monotone hemi-continuous mappings
from VE,(Q) to VR,(Q)', and {T,,} is uniformly bounded in V¥,(Q) and satisfies

G(T) C s-Lim G(T,,) in Vi, (€2) x Vi (), (4.3)

where G(T') and G(T,,) denote the graphs of T and T,, respectively. Here we say that
{T..} is uniformly bounded on V%,(SY), if for any bounded subset B of V4 (2), there
exists a bounded subset B’ of VX,(Q2) such that T,,B C B’ for each n.

Proof. That the operator S is monotone follows from Lemma 2.2 and S is clearly
hemi-continuous since S is a Carathéodory function. For any v, w € V&(), from
(4.2),

(Tov, w)ve e @) = |/ Sy(z, |curl v|?)curl v - curl wdz
Q

—(fns w>vg§(9)w§’v(9)‘

< Aol + 1l @) o]z, o
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Since f,, — f in V& (Q2)’, we can assume that there exists a constant Cjy > 0 such that
1 £ llve @y < Co. Hence

1
||Tnv||V§’\,(Q)’ < AHUHQ’?\[(Q) + Co.

Thus {7} is uniformly bounded in V%;(€2). The inclusion (4.3) means that for every
v € VR (), there exists v, € V5 (Q) such that v,, — v strongly in V& (£2) and
T,v,, — T strongly in V%, (Q)’". We show this. For every v € V& (Q), let v,, = v. For
any w € V§ (),
[(Thvn — To, w)ve oy ve (o)

= [(Svn = Sv,w)vz e o) — (Fn = Frw)ve @y vz, @)

=[(fn — Frw)ve v @l

< |Nfn = Fllvg, @y llwllvg, -
Thus it follows from the hypothesis of the Theorem that

| Tovn — Tollve @y < Ifr — Fllve @) — 0asn — oo.

This completes the proof of Lemma 4.3. [

Next we check Mosco’s condition II.

Lemma 4.4. If o, — ¢ in L>(Q2), then
JK@ = Lim ]IA{% in the sense of Mosco.

This means that if v, € ]K% and v,, — v weakly in V5,(Q), then v € ]IA{SD, and for
given v € K, there exists v,, € K, such that v,, — v strongly in V%, ().

Proof. Letwv,, € I[A{% and v, — v weakly in V%, (Q). Then curl v,, — curl v weakly in
LP(Q2) from Lemma 2.5. For any measurable subset w C (2,

/|curl'v|pda: < liminf/ |curl v, |Pdz < liminf/ F(pp)Pdx = / F(p)Pdx.
w n—oo w n—oo w

w

This implies that |curl v| < F(¢) a.e. in Q,s0 v € ]IA{@.

Next, put A, = ||[F'(¢n) — F(9)| L), then A, — 0 as n — oo. For given v € HA{S(,,
define v,, = v/, with i, = 1 + \,,/v. Then we have

1 1
|curlv,| = —|curlv| < —F(p) < F(p,)
i

n n
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since

=14 [1F'(¢n) = F(o)ll =@ > 14 F) = Flen) _ Fle)

v F(pn) B F(on)

Thus v,, € ]K% and

1
|V — v/ @ = / curl (v, — v)|Pdz = (1 — —) / lcurlv|Pdz — 0
N Q Hn™ Jo

n

as n — oo. This completes the proof of Lemma 4.4. ]

Finally we check Mosco’s condition III.

Lemma 4.5. For any w € HA{@, there exists a continuous strictly increasing function
B :10,00] = [0, 00] with 5(0) = 0 such that

Blllv = wllvg ) < liminf(Tv0 = Tw, v — w)ve @y @

for all v € V&, (Q) uniformly as v varies in a bounded set.

Proof. It follows from Lemma 2.2 that

(Thv — Tw, v — W)z (y 2 ()
= (Sv - Sw,v — w>v§’v(9)w§’v(9) —(fn—Fv— w)va(g)/,vg,(ﬂ)

¢ Jo lewl (v —w)Pdz — || f, — Fllvz oy llv — wllr @ ifp =2,
> < ¢ [y(leurlv| 4 [curl w])P~?|cur] (v — w)|*dx
—[1fn = Fllvz,@yllv — wllvr, @) ifl<p<2
When p > 2, using the Young inequality, for some constant C' > 0 we have
e [ lewrl (v = w)Pds = £, = Fllogiarllo = wlvg o
Q

& ’
> S~ wlly o)~ Cllfn — FIE -

When 1 < p < 2, we recall the reverse Holder inequality (cf. Sobolev [15, p. 8]). Let
0<s<lands =s/(s—1). If F € L*(Q),FG € L'(Q) and [, |G(s)|*dz < oo,

then
(/Q lF(S)’de) ) = /Q |F(2)G(x)|dz (/Q ’G(:U)P/dx) o ,
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and we apply it, with s = p/2 (so s = p/(p — 2)), FF = |curl (v — w)]*,G =
(lcurlv| + |curl w])P~2,in Q = {z € Q; |curlv(z)| + |curlw(x)| # 0}. So,

([ eurt v wpeyrae) "

(2-p)/2
< /A |curl (v—w)|?(|curl v|+ |curl w|)P2dx (/A(|curl'v] + ]curl'w|)pd1’> :
aQ Q
and so,

/A |curl (v — w) |*(|curl w| + |curl w|)P~?dx
0

2/p (p—2)/2
> (/A(|0url (v — w)|2)p/2dx) (/A(|0urlv| + |cur1'w|)pdm) :
O

Q

Since v varies in a bounded set in V},(2), we can assume that [, |curlv[Pdz < Cf, so
there exists a constant c; > 0 depending only on p and w such that

/{2 curl (v — w)|?*(eurl v| + |curlw|)P~?dz > cafjv — wH%,;;V(Q).
Thus we have

e [ (eurto] + feurlwl)?2fcusl (v = w)Pds £, = £l opllo — wlhvgo
Q

> Sflv - w“%/g’v(g) =Clf. - f||%vg’v(9)'~

N O

Therefore, we can derive

v

hgglf(Tn’U — Tw, v — w>V§)\](Q)/7V;])\I(Q)

%“v - wH{\)ﬂ]’V(Q) ifp > 2,
o — wH%’ﬁ;(Q) ifl <p<2.

If we put 5(s) = §£sP¥2, where pV2 = max{p, 2}, the conclusion holds. This completes
the proof of Lemma 4.5. ]

We continue the proof of Theorem 4.2. From Lemma 4.3, 4.4 and 4.5, the hypotheses
of [12, Theorem A] hold, and we can conclude that w,, — w strongly in V().

Finally, we show that 7,, — 7 weakly in L”'(Q).

Lemma 4.6. If v; — v strongly in VX, (Q2) as j — oo, then
Si(x, |eurlv;[*)eurlv; — Sy (z, |curl v|*)curl v

strongly in Lp/(Q) as j — oo.
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Proof. From Lemma 2.3, we have

1S (z, |curl v;|*)curl v; — Sy (x, |curl v]?)curl v|?’

< Ch|curlv; — curlvf? ifl <p<2,
| Ci(lewrlwy| + |curlv])P=2P jcurl v; — curlw|?  if p > 2.

When 1 < p < 2, the conclusion is clear. When p > 2, using Holder inequality, we
have

/ S, (z, |curl v; |*)curl v; — Si(z, [curl v|?)curl v|P d
Q

(r—p")/p P'/p
< (/(|Cur1vj| + |Curlv|)pd$> (/ lcurlv; — curlv|pd:x) — 0
Q Q

as j — oo. Here we used the fact
/ |curlv;|[Pdz < C
Q

for some constant independent of j since v; — v strongly in V4, (€2). This completes
the proof of Lemma 4.6. ]

We continue the proof of Theorem 4.2. For any ¢ € LP(Q), choose v, € W'?(Q) as
in Lemma 3.3. We note that v, € K, NK,. If we choose —v,; as a test function of
(3.1), then we have

/ Si(z, [eurl w, [*)curl u,, - curl (—vy — w,)dz + / T div vyde
Q Q

> (f, —vy — Un)xz () x2 ()

Adding this inequality and (3.1) with v = v,,, we have
/QSt<l‘, curlw, |*)curl w, - curl (—v,, — u,)dz
+ / Si(z, [eurl u|?)curl w - curl (v, — u)dx + /(7rn — m)divv,de
Q Q
> —(f, un)xr @ xz @ — (Fs Wxe oy x2 @)
Taking the lower limit of this inequality and using Lemma 4.6,

liminf [ (m, —7)divo,de

> =2(f, w)xr oy x2 (@) — Q/QSt(x, |curl w|?)|curl u*dz = —2¢;
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where ¢; > 0. For any M > 0, since Mv,, € K, and —Mwv,, € K, we have

2 2
_ﬁ < lirxlriioglf/ﬂ(wn —m)divuydr < lizn_}solip/ﬂ(wn — m)divvydr < ﬁ
Letting M — oo and using div vy, = v in 2, we have
lim [ (7, —m)Yde = 0forally € LP(Q). (4.4)

n—0o0 0

Since ||, || 1 () < Cll fnllxz, @y < C1. where C1 is a constant independent of n since
fn, — fin X5 (Q2)'. This completes the proof of Theorem 4.2. O
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