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Abstract

In this paper, we prove the existence of a solution for a variational inequality
associated with the Maxwell-Stokes type equation in a bounded multiply
connected domain with holes. Our equation is nonlinear and contains,
the so called, p-curlcurl equation. Furthermore, we obtain the continuous
dependence of the solution on the data.

2010 Mathematics Subject Classification: 35A05, 35A15, 35H30, 35E10,
35J25

Keywords: Variational inequality, Maxwell-Stokes type equation, penalty
method, minimization problem.

1. INTRODUCTION

In this paper, we consider a stationary nonlinear electromagnetic field in a multiply
connected domain in R3 with holes. The electric and magnetic fields e and h satisfy the
following Maxwell equations 

j = curlh in Ω,

divh = 0 in Ω,

div e = q in Ω,

curl e = f in Ω,
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where j denotes the total current density, q is the electric charge and f is here a given
external field. We use the following nonlinear extension of Ohm’s law

|j|p−2j = σe,

where σ is the electric conductivity. Then the magnetic field h satisfies{
curl

[
1
σ
|curlh|p−2curlh

]
= f in Ω,

divh = 0 in Ω.
(1.1)

The left-hand side of the first equation in (1.1) is called the p-curlcurl operator. For a
weak solution to such a system under certain boundary condition, see Yin et al. [17],
Miranda et al. [10], [11], Pan [13], and Aramaki [4]. A necessary condition for the
existence of a solution of the problem (1.1) is that the external field f must satisfy
div f = 0 in Ω. However, if this condition is not satisfied, then it is expected to demand
an unknown potential function π such that{

curl
[

1
σ
|curlh|p−2curlh

]
+ ∇π = f in Ω,

divh = 0 in Ω.
(1.2)

Whether a solution to (1.2) exists or not depends heavily on the boundary conditions
and the geometry of the domain Ω.

We also consider another constitutive law that arises in type-II superconductors, which
is known as an extension of the Bean critical-state model in Prigozhin [14]. In this case
the current density j = curlh cannot exceed the critical value Ψ = Ψ(x) > 0 and we
have

e =

{
1
σ
|curlh|p−2curlh if |curlh| < Ψ(x),(
1
σ
Ψp−2 + λ

)
curlh if |curlh| = Ψ(x),

where λ = λ(x) ≥ 0 is regarded as a unknown Lagrange multiplier. This leads to the
variational inequality∫

Ω

1

σ
|curlh|p−2curlh · curl (v − h)dx+

∫
Ω

∇π · (v − h)dx ≥
∫

Ω

f · (v − h)dx

for any test function v such that |curlv| ≤ Ψ(x) a.e. in Ω.

In this paper, we consider such a variational inequality. We use a nicely extended
Carathéodory function S(x, t) defined in Ω × [0,∞) by Aramaki [5], and we consider
the following system{

curl
[
St(x, |curlu|2)curlu

]
+ ∇π = f in Ω,

divu = 0 in Ω,
(1.3)
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where St = ∂S/∂t. Since we allow that Ω is multiply connected and has holes, we
assume that Ω satisfies (O1) and (O2) defined in section 2. In particular, the boundary
Γ of Ω has finitely many connected components Γ0,Γ1, . . . ,ΓI with Γ0 denoting the
boundary of the infinite connected component of R3 \ Ω.

We impose boundary conditions to system (1.3),{
u× n = 0 on Γ,

〈u · n, 1〉Γi
= 0 for i = 1, . . . , I,

(1.4)

where n is the outer unit normal vector to Γ and 〈·, ·〉Γi
denotes some duality bracket

defined in section 2.

Thus we consider the following variational inequality: to find (u, π) in an appropriate
space such that∫

Ω

St(x, |curlu|2)curlu · curl (v − u)dx−
∫

Ω

πdiv (v − u)dx

≥
∫

Ω

f · (v − u)dx (1.5)

for all v such that |curlv| ≤ Ψ(x) a.e. in Ω.

The first purpose of this paper is to show the existence of a unique solution to (1.5)
under boundary conditions (1.4) (Theorem 3 3). More precisely, let the constrained
function Ψ be of the form Ψ(x) = F (ϕ(x)), where F : R → [0,∞) is a continuous
function and ϕ ∈ L∞(Ω), To get a solution to (1.5), we use the standard minimization
problem of some functional on a closed convex subset

Kϕ = {v ∈ Xp
N(Ω) : |curlv| ≤ F (ϕ) a.e. in Ω},

where Xp
N(Ω) is a reflexive Banach space associated with the boundary condition (1.4)

defined in section 2. We note that the functional∫
Ω

S(x, |curlv|2)dx

is not coercive on Kϕ. To overcome this, we use the penalty method introduced by
Temam [16]. As a result, we can find a unique solution to (1.5) as (u, π) ∈ K̂ϕ×Lp

′
(Ω),

where
K̂ϕ = {v ∈ Vp

N(Ω) : |curlv| ≤ F (ϕ) a.e. in Ω}.

Here Vp
N(Ω) is a reflexive Banach space defined in section 2.

The second purpose of this paper is to derive the continuity of the solution to (1.5) on
the data f and ϕ. Let fn,f ∈ Xp

N(Ω)′ (Xp
N(Ω)′ denotes the dual space of Xp

N(Ω)), and
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let (un, πn) ∈ K̂ϕn × Lp
′
(Ω) be the solution to (1.5) with f = fn and ϕ = ϕn. We

show that if fn → f in Xp
N(Ω)′ and ϕn → ϕ in L∞(Ω), then we can prove that

un → u strongly in Vp
N(Ω) and πn → π weakly in Lp

′
(Ω). To show that {un}

converges strongly in Vp
N(Ω), we use the celebrated result of Mosco [12] (Theorem

4.2).

This paper is organized as follows. Section 2 covers preliminaries in which we give the
geometry of the domain Ω, some spaces of functions and their properties. In section
3, we consider a variational inequality as in (1.5) and give the main theorem on the
existence of a solution. In section 4, we consider the continuity of the solution obtained
in section 3 on the data f and the constrained function. We apply the result of Mosco
[12].

2. PRELIMINARIES

In this section, we introduce the geometry of the domain, a Carathéodory function
S(x, t) on Ω × [0,+∞) satisfying some structural conditions, and some spaces of
functions.

Let Ω be a bounded domain in R3 with a C1,1 boundary Γ. Since we allow Ω to be a
multiply-connected domain with holes in R3, we assume that Ω satisfies the following
conditions as in Amrouche and Seloula [2] (cf. Amrouche and Seloula [1], Dautray and
Lions [7, vol. 3] and Girault and Raviart [9]). Ω is locally situated on one side of Γ and
satisfies the following (O1) and (O2).

(O1) Γ has a finite number of connected components Γ0,Γ1, . . . ,ΓI with Γ0 denoting
the boundary of the infinite connected component of R3 \ Ω.

(O2) There exist J connected open surfaces Σj, (j = 1, . . . , J), called cuts, contained
in Ω such that

(a) each surface Σj is an open subset of a smooth manifoldMj ,

(b) ∂Σj ⊂ Γ (j = 1, . . . , J), where ∂Σj denotes the boundary of Σj , and Σj is
non-tangential to Γ,

(c) Σj ∩ Σk = ∅ (j 6= k),

(d) the open set Ω◦ = Ω \ (∪Jj=1Σj) is simply connected and has
Lipschitz-continuous boundary.

The number J is called the first Betti number and I is the second Betti number. We say
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that Ω is simply connected if J = 0 and Ω has no holes if I = 0. If we define

Kp
T (Ω) = {v ∈W 1,p(Ω); curlv = 0, div v = 0 in Ω,v · n = 0 on Γ}

and

Kp
N(Ω) = {v ∈W 1,p(Ω); curlv = 0, div v = 0 in Ω,v × n = 0 on Γ},

then it is well known that dimKp
T (Ω) = J and dimKp

N(Ω) = I .

Throughout this paper, let 1 < p < ∞ and we denote the conjugate exponent of p by
p′, i.e., (1/p) + (1/p′) = 1. From now on we use Lp(Ω), W 1,p

0 (Ω) and W 1,p(Ω) for
the standard Lp and Sobolev spaces of functions. For any Banach space B, we denote
B × B × B by the boldface character B. We use this character to denote vector and
vector-valued functions, and we denote the standard Euclidean inner product of vectors
a and b in R3 by a · b. For the dual space B′ of B, we write 〈·, ·〉B′,B for the duality
bracket.

We assume that a Carathéodory function S(x, t) in Ω × [0,∞) satisfies the following
structural conditions. For a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C0([0,∞)), and positive
constants 0 < λ ≤ Λ <∞ such that for a.e. x ∈ Ω,

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1a)

λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0, (2.1c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.1a), it follows that

2

p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0. (2.2)

Example 2.1. If S(x, t) = ν(x)g(t)tp/2, where ν is a measurable function in Ω and
satisfies 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. x ∈ Ω for some constants ν∗ and ν∗, and
g ∈ C∞([0,∞)),

When g(t) ≡ 1, it follows from elementary calculations that (2.1a)-(2.1c) hold.

As another example, we can take

g(t) =

{
a(e−1/t + 1) if t > 0,

a if t = 0

with a constant a > 0. Then S(x, t) = ν(x)g(t)tp/2 satisfies (2.1a)-(2.1c) if p ≥ 2. (cf.
Aramaki [6, Example 3.2]).
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We remember the monotonic property of St.

Lemma 2.2. There exists a constant c > 0 such that for all a, b ∈ R3,(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b)

≥

{
c|a− b|p if p ≥ 2,

c(|a|+ |b|)p−2|a− b|2 if 1 < p < 2.

In particular, if a 6= b, we have(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b) > 0.

For the proof, see Aramaki [5, Lemma 3.6].

Lemma 2.3. There exists a constant C1 > 0 depending only on Λ and p such that for
any a, b ∈ R3,

|St(x, |a|2)a− St(x, |b|2)b| ≤

{
C1|a− b|p−1 if 1 < p < 2,

C1(|a|+ |b|)p−2|a− b| if p ≥ 2.

For the proof, see Aramaki [3].

We can see the convexity of S(x, t) in the following sense.

Lemma 2.4. If S(x, t) satisfies (2.1a) and (2.1b), then for a.e. x ∈ Ω, the function
R 3 t 7→ g[t] = S(x, t2) is strictly convex.

For the proof, see [6, Lemma 2.3].

The following inequality is used frequently (cf. [2]). If Ω is a bounded domain in R3

with a C1,1 boundary Γ, and if u ∈ Lp(Ω) satisfies curlu ∈ Lp(Ω), divu ∈ Lp(Ω) and
u×n ∈W 1−1/p,p(Γ), then u ∈W 1,p(Ω) and there exists a constant C > 0 depending
only on p and Ω such that

‖u‖W 1,p(Ω) ≤ C(‖curlu‖Lp(Ω) + ‖divu‖Lp(Ω) + ‖u‖Lp(Ω)

+ ‖u× n‖W 1−1/p,p(Γ)). (2.3)

Moreover, if u ∈ Lp(Ω) satisfies curlu ∈ Lp(Ω), then u × n ∈ W−1/p,p(Γ) is well
defined, and if u ∈ Lp(Ω) satisfies divu ∈ Lp(Ω), then u · n ∈ W−1/p,p(Γ) is well
defined by the formulae

〈u× n,φ〉W−1/p,p(Γ),W 1−1/p′,p′ (Γ) =

∫
Ω

u · curlφdx−
∫

Ω

curlu · φdx
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for all φ ∈W 1,p′(Ω) and

〈u · n, φ〉W−1/p,p(Γ),W 1−1/p′,p′ (Γ) =

∫
Ω

u ·∇φdx+

∫
Ω

(divu)φdx

for all φ ∈ W 1,p′(Ω). Furthermore, if u ∈ W 1,p(Ω) satisfies u × n = 0 on Γ, then
there exists a constant C > 0 depending only on p and Ω such that

‖u‖Lp(Ω) ≤ C(‖curlu‖Lp(Ω) + ‖divu‖Lp(Ω) +
I∑
i=1

|〈u · n, 1〉Γi
|

where 〈·, ·〉Γi
= 〈·, ·〉W−1/p,p(Γi),W 1−1/p′,p′ (Γi)

.

Define a space

Xp
N(Ω) = {v ∈ Lp(Ω); curlu ∈ Lp(Ω), div v ∈ Lp(Ω),u× n = 0 on Γ,

〈u · n, 1〉Γi
= 0 for i = 1, . . . , I}.

with the norm
‖v‖Xp

N (Ω) = (‖curlu‖pLp(Ω) + ‖divu‖pLp(Ω))
1/p.

We note that ‖v‖Xp
N (Ω) is equivalent to ‖v‖W 1,p(Ω) for v ∈ Xp

N(Ω) (cf. [2]). Since
Xp
N(Ω) is a closed subspace of W 1,p(Ω), we can see that Xp

N(Ω) is a reflexive Banach
space and W 1,p

0 (Ω) ↪→ Xp
N(Ω) ↪→ W 1,p(Ω), where the symbol ↪→ means that the

inclusion map is continuous. Furthermore, we define a closed subspace Vp
N(Ω) of

Xp
N(Ω) by

Vp
N(Ω) = {v ∈ Xp

N(Ω); div v = 0 in Ω}

with the norm ‖v‖Vp
N (Ω) = ‖curlv‖Lp(Ω) which is also equivalent to ‖v‖W 1,p(Ω). We

note that Vp
N(Ω) is also a reflexive Banach space.

Lemma 2.5. If v ∈ Lp′(Ω), then curlv ∈ Xp
N(Ω)′ and

〈curlv,ϕ〉Xp
N (Ω)′,Xp

N (Ω) =

∫
Ω

v · curlϕdx for all ϕ ∈ Xp
N(Ω). (2.4)

Moreover, there exists a constant C > 0 depending only on p and Ω such that

‖curlv‖Xp
N (Ω)′ ≤ C‖v‖Lp′ (Ω) for all v ∈ Lp′(Ω).

Proof. Let v ∈ Lp′(Ω). Then the distribution curlv ∈ D′(Ω) is defined by

〈curlv,ϕ〉 =

∫
Ω

v · curlϕdx for all ϕ ∈ D(Ω) = C∞0 (Ω).
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Define temporarily a Banach space

H0(curl ,Ω) = {v ∈ Lp(Ω); curlv ∈ Lp(Ω),v × n = 0 on Γ}

with the norm ‖v‖H0(curl ,Ω) = (‖v‖2
Lp(Ω) + ‖curlv‖pLp(Ω))

1/p. Then by Temam [16]
or [9], D(Ω) is dense in H0(curl ,Ω). Hence for any ϕ ∈ H0(curl ,Ω), there exists a
sequence {ϕj} ⊂ D(Ω) such that ϕj → ϕ in H0(curl ,Ω). Define

〈curlv,ϕ〉 = lim
j→∞

∫
Ω

v · curlϕjdx.

Clearly, the definition is well defined (independent of the choice of a sequence {ϕj}
such that ϕj → ϕ in H0(curl ,Ω)), and

|〈curlv,ϕ〉| = lim
j→∞

∣∣∣∣∫
Ω

v · curlϕjdx

∣∣∣∣ ≤ lim
j→∞
‖v‖Lp′ (Ω)‖curlϕj‖Lp(Ω)

≤ ‖v‖Lp′ (Ω)‖curlϕ‖Lp(Ω).

Therefore, we have

〈curlv,ϕ〉 = lim
j→∞

∫
Ω

v · curlϕjdx =

∫
Ω

v · curlϕdx for all ϕ ∈ H0(curl ,Ω).

Moreover, we have |〈curlv,ϕ〉| ≤ ‖v‖Lp′ (Ω)‖ϕ‖H0(curl ,Ω). Thus we can see that
curlv ∈ H0(curl ,Ω)′. On the other hand, since Xp

N(Ω) ↪→ H0(curl ,Ω), we have
H0(curl ,Ω)′ ↪→ Xp

N(Ω)′, and there exists a constant C > 0 depending only on p and Ω

such that
|〈curlv,ϕ〉| ≤ C‖v‖Lp′ (Ω)‖ϕ‖Xp

N (Ω) for all ϕ ∈ Xp
N(Ω).

Thus curlv ∈ Xp
N(Ω)′, (2.4) holds and ‖curlv‖Xp

N (Ω)′ ≤ C‖v‖Lp′ (Ω) for any v ∈
Lp
′
(Ω).

Corollary 2.6. If v ∈ Xp
N(Ω), then curl [St(x, |curlv|2)curlv] ∈ Xp

N(Ω)′, and there
exists a constant C > 0 depending only on p,Λ and Ω such that

‖curl [St(x|curlv|2)curlv]‖Xp
N (Ω)′ ≤ C‖v‖p−1

Xp
N (Ω)

.

Proof. If v ∈ Xp
N(Ω), then from (2.1b), |St(x, |curlv|2)curlv| ≤ Λ|curlv|p−1. Hence

St(x, |curlv|2)curlv ∈ Lp′(Ω), and

‖St(x, |curlv|2)curlv‖Lp′ (Ω) ≤ Λ

(∫
Ω

|curlv|pdx
)1/p′

≤ Λ‖v‖p−1
Xp
N (Ω)

.

It suffices to apply Lemma 2.5.
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3. A VARIATIONAL INEQUALITY FOR THE MAXWELL-STOKES
PROBLEM

In this section, we consider a variational inequality. Let F : R → [0,∞) be a
continuous function, and let ϕ ∈ L∞(Ω). Define a closed convex subset Kϕ of Xp

N(Ω)

and a closed convex subset K̂ϕ of Vp
N(Ω) by

Kϕ = {v ∈ Xp
N(Ω); |curlv| ≤ F (ϕ) a.e. in Ω}

and
K̂ϕ = {v ∈ Vp

N(Ω); |curlv| ≤ F (ϕ) a.e. in Ω},

respectively. For a given function f ∈ Xp
N(Ω)′, we consider the following variational

inequality: to find (u, π) ∈ K̂ϕ × Lp
′
(Ω) such that∫

Ω

St(x, |curlu|2)curlu · curl (v − u)dx−
∫

Ω

πdiv vdx

≥ 〈f ,v − u〉Xp
N (Ω)′,Xp

N (Ω) for all v ∈ Kϕ. (3.1)

We solve problem (3.1) by the penalty method introduced by Temam [16]. To do so,
we consider the following functional Eε on Kϕ depending on a parameter ε ∈ (0, 1]

defined by

Eε[v] =
1

2

{∫
Ω

S(x, |curlv|2)dx+
1

ε

∫
Ω

S(x, (div v)2)dx

}
− 〈f ,v〉Xp

N (Ω)′,Xp
N (Ω) for v ∈ Kϕ. (3.2)

We derive the following minimization problem: to find uε ∈ Kϕ such that

Eε[uε] = inf
v∈Kϕ

Eε[v]. (3.3)

We call such a uε ∈ Kϕ a minimizer of Eε.

Proposition 3.1. Assume that f ∈ Xp
N(Ω)′. Then the minimization problem (3.3) has a

unique minimizer uε ∈ Kϕ, and there exists a constant C > 0 depending only on p, λ
and Ω, but independent of ε ∈ (0, 1] such that

‖uε‖pXp
N (Ω)
≤ C‖f‖p

′

Xp
N (Ω)′

(3.4)

and
‖divuε‖pLp(Ω) ≤ Cε‖f‖p

′

Xp
N (Ω)′

. (3.5)



60 Junichi Aramaki

Proof. It is clear that Eε is proper from (2.2), and that the functional Eε is strictly
convex from Lemma 2.4. Moreover, Eε is lower semi-continuous on Kϕ (cf. [5]). For
any ε ∈ (0, 1] and for any v ∈ Kϕ, it follows from (2.2) and the Young inequality that

Eε[v] ≥ λ

p

{∫
Ω

|curlv|pdx+
1

ε

∫
Ω

|div v|pdx
}
− ‖f‖Xp

N (Ω)′‖v‖Xp
N (Ω)

≥ λ

p
‖v‖pXp

N (Ω)
− C(δ)‖f‖p

′

Xp
N (Ω)′

− δ‖v‖pXp
N (Ω)

for any δ > 0 and some C(δ) > 0. If we choose δ = λ/(2p), then we have

Eε[v] ≥ λ

2p
‖v‖pXp

N (Ω)
− C

( λ
2p

)
‖f‖p

′

Xp
N (Ω)′

.

Hence Eε is coercive on Kϕ. From Ekeland and Témam [8, Chapter II, Proposition
1.2], problem (3.3) has a unique minimizer uε ∈ Kϕ.

For any v ∈ Kϕ and 0 ≤ µ ≤ 1, since (1 − µ)uε + µv = uε + µ(v − uε) ∈ Kϕ, we
have

d

dµ
Eε[uε + µ(v − uε)]

∣∣∣∣
µ=0

≥ 0.

That is to say, the minimizer uε satisfies the following inequality∫
Ω

St(x, |curluε|2)curluε · curl (v − uε)dx

+
1

ε

∫
Ω

St(x, (divuε)
2)(divuε)div (v − uε)dx

≥ 〈f ,v − uε〉Xp
N (Ω)′,Xp

N (Ω) for all v ∈ Kϕ. (3.6)

Taking v = 0 ∈ Kϕ in (3.6) as a test function, we have

λ(‖curluε‖pLp(Ω) + ‖divuε‖pLp(Ω)) ≤ λ
(
‖curluε‖pLp(Ω) +

1

ε
‖divuε‖pLp(Ω)

)
≤ 〈f ,uε〉Xp

N (Ω)′,Xp
N (Ω) ≤ C(δ)‖f‖p

′

Xp
N (Ω)′

+ δ‖uε‖pXp
N (Ω)

for any δ > 0. If we choose δ > 0 so that δ < λ, we have estimate (3.4). Using (3.4),
we also get estimate (3.5).

Thus we showed that the variational problem (3.6) has a solution. We derive the
uniqueness of solution to the problem (3.6).

Lemma 3.2. The variational inequality (3.6) has a unique solution.
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Proof. It suffices to prove the uniqueness. Let u1
ε,u

2
ε ∈ Kϕ be two solutions to (3.6).

Then we have∫
Ω

St(x, |curlu1
ε|2)curlu1

ε · curl (u2
ε − u1

ε)dx

+
1

ε

∫
Ω

St(x, (divu1
ε)

2)(divu1
ε)div (u2

ε − u1
ε)dx

≥ 〈f ,u2
ε − u1

ε〉Xp
N (Ω)′,Xp

N (Ω)

and∫
Ω

St(x, |curlu2
ε|2)curlu2

ε · curl (u1
ε − u2

ε)dx

+
1

ε

∫
Ω

St(x, (divu2
ε)

2)(divu2
ε)div (u1

ε − u2
ε)dx

≥ 〈f ,u1
ε − u2

ε〉Xp
N (Ω)′,Xp

N (Ω).

Hence we have∫
Ω

(
St(x, |curlu1

ε|2)curlu1
ε − St(x, |curlu2

ε|2)curlu2
ε

)
· curl (u1

ε − u2
ε)dx

+
1

ε

∫
Ω

(
St(x, (divu1

ε)
2)(divu1

ε)− St(x, (divu2
ε))(divu2

ε)
)
div (u1

ε − u2
ε)dx ≤ 0.

By Lemma 2.2, we can see that curl (u1
ε − u2

ε) = 0 and div (u1
ε − u2

ε) = 0 in Ω, so
u1
ε = u2

ε.

Here we prepare the following lemma.

Lemma 3.3. For any ψ ∈ Lp(Ω), there exists vψ ∈ Xp
N(Ω) such that curlvψ =

0, div vψ = ψ in Ω, and there exists a constant C > 0 such that

‖vψ‖Xp
N (Ω) ≤ C‖ψ‖Lp(Ω).

Thus vψ ∈ Kϕ.

Proof. For any ψ ∈ Lp(Ω), the following Dirichlet problem{
∆φ = ψ in Ω,

φ = 0 on Γ

has a unique solution φ ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). If we define w = ∇φ in Ω, then

w ∈ W 1,p(Ω) satisfies curlw = 0, divw = ψ in Ω, Since n × ∇ contains only the
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tangential derivatives, n×w = n×∇φ = 0 on Γ. Here let {e1, . . . , eI} be a basis of
Kp
N(Ω) such that 〈n · ei, 1〉Γk

= δjk, and define

vψ = w −
I∑
i=1

〈w · n, 1〉Γi
ei.

Then clearly 〈vψ ·n, 1〉Γk
= 0 for k = 1, . . . , I . Hence vψ ∈ Xp

N(Ω) and vψ ∈ Kϕ.

We are in a position to state one of the main theorems of this paper.

Theorem 3.4. Assume that f ∈ Xp
N(Ω)′. Then the variational inequality (3.1) has a

unique solution (u, π) ∈ K̂ϕ × Lp
′
(Ω), and there exists a constant C > 0 depending

only on p, λ,Λ and Ω such that

‖u‖pVp
N (Ω)

+ ‖π‖p
′

Lp′ (Ω)
≤ C‖f‖p

′

Xp
N (Ω)′

. (3.7)

Proof. Let uε be a unique solution of (3.6). Then from (3.5), we can see that
divuε → 0 strongly in Lp(Ω) as ε→ +0. Define

πε = −1

ε
St(x, (divuε)

2)divuε.

From (3.4), {uε} is bounded in Xp
N(Ω). Passing to a subsequence, we can assume

that uε → u weakly in Xp
N(Ω) for some u ∈ Xp

N(Ω) and strongly in Lp(Ω). Since
divuε → divu in D′(Ω), we have divu = 0 in Ω. Hence u ∈ Vp

N(Ω). Since Kϕ is
weakly closed subset of Xp

N(Ω), we have u ∈ K̂ϕ, and from (3.4),

‖u‖pVp
N (Ω)

= ‖u‖pXp
N (Ω)
≤ lim inf

ε→+0
‖uε‖pXp

N (Ω)
≤ C‖f‖p

′

Xp
N (Ω)′

. (3.8)

We show that {πε}ε∈(0,1] is bounded in Lp
′
(Ω). To show this we note that for any

ψ ∈ Lp(Ω), there exists vψ ∈W 1,p(Ω) as in Lemma 3.3. Taking v = Mvψ (M > 0)

as a test function in (3.6) and using (3.4), we have

M

∫
Ω

πεψdx ≤ C‖f‖p
′

Xp
N (Ω)′

+M‖f‖Xp
N (Ω)′‖vψ‖Xp

N (Ω).

If we divide this inequality by M and letting M →∞, we can see that∫
Ω

πεψdx ≤ C‖f‖Xp
N (Ω)′‖ψ‖Lp(Ω) for all ψ ∈ Lp(Ω).

This implies that∣∣∣∣∫
Ω

πεψdx

∣∣∣∣ ≤ C‖f‖Xp
N (Ω)′‖ψ‖Lp(Ω) for all ψ ∈ Lp(Ω).
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So, it follows that
‖πε‖Lp′ (Ω) ≤ C‖f‖Xp

N (Ω)′ .

Thus {πε} is bounded in Lp′(Ω). Passing to a subsequence, we can assume that πε → π

weakly in Lp′(Ω) for some π ∈ Lp′(Ω) and

‖π‖p
′

Lp′ (Ω)
≤ lim inf

ε→+0
‖πε‖p

′

Lp′ (Ω)
≤ CΛ‖f‖p

′

Xp
N (Ω)′

. (3.9)

By the monotonicity of St, for any v ∈ Kϕ,∫
Ω

St(x, |curluε|2)curluε · curl (uε − v)dx

≥
∫

Ω

St(x, |curlv|2)curlv · curl (uε − v)dx.

Hence we have∫
Ω

St(x, |curlv|2)curlv · curl (v − uε)dx−
∫

Ω

πεdiv (v − uε)dx

≥ 〈f ,v − uε〉Xp
N (Ω)′,Xp

N (Ω). (3.10)

Since uε → u weakly in Xp
N(Ω), πε → π weakly in Lp′(Ω) and divuε → 0 strongly in

Lp(Ω), letting ε→ +0 in (3.10), we can derive∫
Ω

St(x, |curlv|2)curlv · curl (v − u)dx−
∫

Ω

πdiv vdx

≥ 〈f ,v − u〉Xp
N (Ω)′,Xp

N (Ω) for all v ∈ Kϕ. (3.11)

For any w ∈ Kϕ, taking v = (1 − µ)u + µw = u + µ(w − u), 0 < µ < 1 as a test
function of (3.11), we have∫

Ω

St(x, |curl (u+ µ(w − u))|2)curl (u+ µ(w − u)) · µcurl (w − u)dx

− µ
∫

Ω

πdivwdx ≥ µ〈f ,w − u〉Xp
N (Ω)′,Xp

N (Ω).

If we divide both hand sides by µ, and let µ→ +0, then we have∫
Ω

St(x, |curlu|2)curlu · curl (w − u)dx−
∫

Ω

πdivwdx

≥ 〈f ,w − u〉Xp
N (Ω)′,Xp

N (Ω) for all w ∈ Kϕ. (3.12)

This means that the inequality (3.1) holds.
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Finally, we show the uniqueness of the solution. Let (u1, π1), (u2, π2) ∈ K̂ϕ × Lp
′
(Ω)

be two solution of (3.1). Then since divui = 0 in Ω for i = 1, 2, we have∫
Ω

St(x, |curlui|2)curlui · curl (uj − ui)dx ≥ 〈f ,uj − ui〉Xp
N (Ω)′,Xp

N (Ω) for i 6= j.

Hence∫
Ω

(
St(x, |curlu1|2)curlu1 − St(x, |curlu2|2)curlu2

)
· curl (u1 − u2)dx ≤ 0.

By the monotonicity of St (Lemma 2.2), we have curlu1 = curlu2 in Ω, so u1 = u2.
Let v ∈ Kϕ. From (3.12) with w = v and w = −v, we have∫

Ω

St(x, |curlu1|2)curlu1 · curl (v − u1)dx−
∫

Ω

π1div vdx

≥ 〈f ,v − u1〉Xp
N (Ω)′,Xp

N (Ω)

and∫
Ω

St(x, |curlu1|2)curlu1 · curl (−v − u1)dx+

∫
Ω

π2div vdx

≥ 〈f ,−v − u1〉Xp
N (Ω)′,Xp

N (Ω).

Therefore, we have∫
Ω

(π1 − π2)div vdx ≤ 2〈f ,u1〉Xp
N (Ω)′,Xp

N (Ω)

− 2

∫
Ω

St(x, |curlu1|2)|curlu1|2dx for all v ∈ Kϕ. (3.13)

From (3.12) with w = 0, we see that

c := 〈f ,u1〉Xp
N (Ω)′,Xp

N (Ω) −
∫

Ω

St(x, |curlu1|2)|curlu1|2dx ≥ 0.

For any ψ ∈ C∞0 (Ω), choose vψ as in Lemma 3.3. Then from (3.13), we have∫
Ω

(π1 − π2)div vψdx ≤ 2c.

For large M > 0, since Mvψ ∈ Kϕ, we see that∫
Ω

(π1 − π2)div vψdx ≤
2c

M
.
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Letting M →∞, we have∫
Ω

(π1 − π2)ψdx ≤ 0 for all ψ ∈ C∞0 (Ω).

This implies that ∫
Ω

(π1 − π2)ψdx = 0 for all ψ ∈ C∞0 (Ω).

By the celebrated Du Bois Raymond Lemma, we have π1 = π2 a.e. in Ω. This
completes the proof of Theorem 3.4.

4. CONTINUOUS DEPENDENCE ON THE DATA

In this section, we show the continuous dependence of the solution obtained in section
3 to problem (3.1) on the data. Let f ∈ Xp

N(Ω)′ and ϕ ∈ L∞(Ω). For solution u of
(3.1), we consider the following variational inequality.∫

Ω

St(x, |curlu|2)curlu · curl (v − u)dx ≥ 〈f ,v − u〉Xp
N (Ω)′,Xp

N (Ω)

= 〈f ,v − u〉Vp
N (Ω)′,Vp

N (Ω) (4.1)

for all v ∈ K̂ϕ.

Lemma 4.1. If (u, π) ∈ K̂ϕ × Lp
′
(Ω) is a unique solution of (3.1), then u ∈ K̂ϕ is a

unique solution of (4.1).

Proof. It is clear that u ∈ K̂ϕ is a solution of (4.1), since v ∈ K̂ϕ satisfies div v = 0 in
Ω. Let u, ũ be two solutions of (4.1). Then∫

Ω

St(x, |curlu|2)curlu · curl (ũ− u)dx ≥ 〈f , ũ− u〉Vp
N (Ω)′,Vp

N (Ω)

and ∫
Ω

St(x, |curl ũ|2)curl ũ · curl (u− ũ)dx ≥ 〈f ,u− ũ〉Vp
N (Ω)′,Vp

N (Ω).

Therefore, we have∫
Ω

(
St(x, |curlu|2)curlu− St(x, |curl ũ|2)curl ũ) · curl (u− ũ)dx ≤ 0.

By the monotonicity lemma (Lemma 2.2), we have u = ũ in Vp
N(Ω).

Now, we give the second main theorem of this paper.
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Theorem 4.2. Assume that F : R → [0,∞) is a continuous function satisfying
that there exists a constant ν > 0 such that ν ≤ F (s) for all s ∈ R. Let
fn,f ∈ Xp

N(Ω)′(⊂ Vp
N(Ω)′) and ϕn, ϕ ∈ L∞(Ω), and let (un, πn) ∈ K̂ϕn × Lp

′
(Ω)

and (u, π) ∈ K̂ϕ × Lp
′
(Ω) be unique solutions of (3.1) with ϕ = ϕn and ϕ = ϕ,

respectively. If fn → f in Xp
N(Ω)′ (so in Vp

N(Ω)′) and ϕn → ϕ in L∞(Ω) as n → ∞,
then un → u strongly in Vp

N(Ω) and πn → π weakly in Lp
′
(Ω).

Proof. In order to show that un → u strongly in Vp
N(Ω), we apply the result of Mosco

[12, Theorem A]. Define an operator S : Vp
N(Ω)→ Vp

N(Ω)′ by

〈Su,v〉 =

∫
Ω

St(x, |curlu|2)curlu · curlvdx for u,v ∈ Vp
N(Ω).

By the Hölder inequality, since∣∣∣∣∫
Ω

St(x, |curlu|2)curlu · curlvdx

∣∣∣∣
≤
(∫

Ω

|St(x, |curlu|2)curlu|p′dx
)1/p′ (∫

Ω

|curlv|pdx
)1/p

≤ Λ‖u‖p−1
Vp
N (Ω)
‖v‖Vp

N (Ω), (4.2)

the operator S is well defined. Furthermore, define operators Tn and T from Vp
N(Ω) to

Vp
N(Ω)′ by

Tnu = Su− fn and Tu = Su− f .
We check conditions I, II and III in Theorem A of Mosco [12] in the following lemmas.

First we check Mosco’s condition I.

Lemma 4.3. The above operators Tn and T are monotone hemi-continuous mappings
from Vp

N(Ω) to Vp
N(Ω)′, and {Tn} is uniformly bounded in Vp

N(Ω) and satisfies

G(T ) ⊂ s-Lim G(Tn) in Vp
N(Ω)× Vp

N(Ω)′, (4.3)

where G(T ) and G(Tn) denote the graphs of T and Tn, respectively. Here we say that
{Tn} is uniformly bounded on Vp

N(Ω), if for any bounded subset B of Vp
N(Ω), there

exists a bounded subset B′ of Vp
N(Ω)′ such that TnB ⊂ B′ for each n.

Proof. That the operator S is monotone follows from Lemma 2.2 and S is clearly
hemi-continuous since S is a Carathéodory function. For any v,w ∈ Vp

N(Ω), from
(4.2),

|〈Tnv,w〉Vp
N (Ω)′,Vp

N (Ω)| =
∣∣∫

Ω

St(x, |curlv|2)curlv · curlwdx

−〈fn,w〉Vp
N (Ω)′,Vp

N (Ω)

∣∣
≤ (Λ‖v‖p−1

Vp
N (Ω)

+ ‖fn‖Vp
N (Ω)′)‖w‖Vp

N (Ω).
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Since fn → f in Vp
N(Ω)′, we can assume that there exists a constant C0 > 0 such that

‖fn‖Vp
N (Ω)′ ≤ C0. Hence

‖Tnv‖Vp
N (Ω)′ ≤ Λ‖v‖p−1

Vp
N (Ω)

+ C0.

Thus {Tn} is uniformly bounded in Vp
N(Ω). The inclusion (4.3) means that for every

v ∈ Vp
N(Ω), there exists vn ∈ Vp

N(Ω) such that vn → v strongly in Vp
N(Ω) and

Tnvn → Tv strongly in Vp
N(Ω)′. We show this. For every v ∈ Vp

N(Ω), let vn = v. For
any w ∈ Vp

N(Ω),

|〈Tnvn − Tv,w〉Vp
N (Ω)′,Vp

N (Ω)|
= |〈Svn − Sv,w〉Vp

N (Ω)′,Vp
N (Ω) − 〈fn − f ,w〉Vp

N (Ω)′,Vp
N (Ω)|

= |〈fn − f ,w〉Vp
N (Ω)′,Vp

N (Ω)|
≤ ‖fn − f‖Vp

N (Ω)′‖w‖Vp
N (Ω).

Thus it follows from the hypothesis of the Theorem that

‖Tnvn − Tv‖Vp
N (Ω)′ ≤ ‖fn − f‖Vp

N (Ω) → 0 as n→∞.

This completes the proof of Lemma 4.3.

Next we check Mosco’s condition II.

Lemma 4.4. If ϕn → ϕ in L∞(Ω), then

K̂ϕ = Lim K̂ϕn in the sense of Mosco.

This means that if vn ∈ K̂ϕn and vn → v weakly in Vp
N(Ω), then v ∈ K̂ϕ, and for

given v ∈ K̂ϕ, there exists vn ∈ K̂ϕn such that vn → v strongly in Vp
N(Ω).

Proof. Let vn ∈ K̂ϕn and vn → v weakly in Vp
N(Ω). Then curlvn → curlv weakly in

Lp(Ω) from Lemma 2.5. For any measurable subset ω ⊂ Ω,∫
ω

|curlv|pdx ≤ lim inf
n→∞

∫
ω

|curlvn|pdx ≤ lim inf
n→∞

∫
ω

F (ϕn)pdx =

∫
ω

F (ϕ)pdx.

This implies that |curlv| ≤ F (ϕ) a.e. in Ω, so v ∈ K̂ϕ.

Next, put λn = ‖F (ϕn) − F (ϕ)‖L∞(Ω), then λn → 0 as n → ∞. For given v ∈ K̂ϕ,
define vn = v/µn with µn = 1 + λn/ν. Then we have

|curlvn| =
1

µn
|curlv| ≤ 1

µn
F (ϕ) ≤ F (ϕn)
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since

µn = 1 +
‖F (ϕn)− F (ϕ)‖L∞(Ω)

ν
≥ 1 +

F (ϕ)− F (ϕn)

F (ϕn)
=

F (ϕ)

F (ϕn)
.

Thus vn ∈ K̂ϕn and

‖vn − v‖pVp
N (Ω)

=

∫
Ω

|curl (vn − v)|pdx =
(
1− 1

µn

) ∫
Ω

|curlv|pdx→ 0

as n→∞. This completes the proof of Lemma 4.4.

Finally we check Mosco’s condition III.

Lemma 4.5. For any w ∈ K̂ϕ, there exists a continuous strictly increasing function
β : [0,∞]→ [0,∞] with β(0) = 0 such that

β(‖v −w‖Vp
N (Ω)) ≤ lim inf

n→∞
〈Tnv − Tw,v −w〉Vp

N (Ω)′,Vp
N (Ω)

for all v ∈ Vp
N(Ω) uniformly as v varies in a bounded set.

Proof. It follows from Lemma 2.2 that

〈Tnv − Tw,v −w〉Vp
N (Ω)′,Vp

N (Ω)

= 〈Sv − Sw,v −w〉Vp
N (Ω)′,Vp

N (Ω) − 〈fn − f ,v −w〉Vp
N (Ω)′,Vp

N (Ω)

≥


c
∫

Ω
|curl (v −w)|pdx− ‖fn − f‖Vp

N (Ω)′‖v −w‖Vp
N (Ω) if p ≥ 2,

c
∫

Ω
(|curlv|+ |curlw|)p−2|curl (v −w)|2dx
−‖fn − f‖Vp

N (Ω)′‖v −w‖Vp
N (Ω) if 1 < p < 2.

When p ≥ 2, using the Young inequality, for some constant C > 0 we have

c

∫
Ω

|curl (v −w)|pdx− ‖fn − f‖Vp
N (Ω)′‖v −w‖Vp

N (Ω)

≥ c

2
‖v −w‖pVp

N (Ω)
− C‖fn − f‖

p′

Vp
N (Ω)′

.

When 1 < p < 2, we recall the reverse Hölder inequality (cf. Sobolev [15, p. 8]). Let
0 < s < 1 and s′ = s/(s − 1). If F ∈ Ls(Ω), FG ∈ L1(Ω) and

∫
Ω
|G(s)|s′dx < ∞,

then (∫
Ω

|F (s)|sdx
)1/s

≤
∫

Ω

|F (x)G(x)|dx
(∫

Ω

|G(x)|s′dx
)−1/s′

,
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and we apply it, with s = p/2 (so s′ = p/(p − 2)), F = |curl (v − w)|2, G =

(|curlv|+ |curlw|)p−2, in Ω̂ = {x ∈ Ω; |curlv(x)|+ |curlw(x)| 6= 0}. So,(∫
Ω̂

(|curl (v −w)|2)p/2dx

)2/p

≤
∫

Ω̂

|curl (v−w)|2(|curlv|+|curlw|)p−2dx

(∫
Ω̂

(|curlv|+ |curlw|)pdx
)(2−p)/2

,

and so,∫
Ω̂

|curl (v −w)|2(|curlv|+ |curlw|)p−2dx

≥
(∫

Ω̂

(|curl (v −w)|2)p/2dx

)2/p(∫
Ω̂

(|curlv|+ |curlw|)pdx
)(p−2)/2

.

Since v varies in a bounded set in Vp
N(Ω), we can assume that

∫
Ω
|curlv|pdx ≤ C1, so

there exists a constant c2 > 0 depending only on p and w such that∫
Ω̂

|curl (v −w)|2(|curlv|+ |curlw|)p−2dx ≥ c2‖v −w‖2
Vp
N (Ω).

Thus we have

c

∫
Ω

(|curlv|+ |curlw|)p−2|curl (v −w)|2dx− ‖fn − f‖Vp
N (Ω)′‖v −w‖Vp

N (Ω)

≥ c

2
‖v −w‖2

Vp
N (Ω) − C‖fn − f‖

2
Vp
N (Ω)′ .

Therefore, we can derive

lim inf
n→∞

〈Tnv − Tw,v −w〉Vp
N (Ω)′,Vp

N (Ω) ≥

{
c
2
‖v −w‖pVp

N (Ω)
if p ≥ 2,

c
2
‖v −w‖2

Vp
N (Ω)

if 1 < p < 2.

If we put β(s) = c
2
sp∨2, where p∨2 = max{p, 2}, the conclusion holds. This completes

the proof of Lemma 4.5.

We continue the proof of Theorem 4.2. From Lemma 4.3, 4.4 and 4.5, the hypotheses
of [12, Theorem A] hold, and we can conclude that un → u strongly in Vp

N(Ω).

Finally, we show that πn → π weakly in Lp′(Ω).

Lemma 4.6. If vj → v strongly in Vp
N(Ω) as j →∞, then

St(x, |curlvj|2)curlvj → St(x, |curlv|2)curlv

strongly in Lp
′
(Ω) as j →∞.
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Proof. From Lemma 2.3, we have

|St(x, |curlvj|2)curlvj − St(x, |curlv|2)curlv|p′

≤

{
C1|curlvj − curlv|p if 1 < p < 2,

C1(|curlvj|+ |curlv|)(p−2)p′|curlvj − curlv|p′ if p ≥ 2.

When 1 < p < 2, the conclusion is clear. When p ≥ 2, using Hölder inequality, we
have∫

Ω

|St(x, |curlvj|2)curlvj → St(x, |curlv|2)curlv|p′dx

≤
(∫

Ω

(|curlvj|+ |curlv|)pdx
)(p−p′)/p(∫

Ω

|curlvj − curlv|pdx
)p′/p

→ 0

as j →∞. Here we used the fact∫
Ω

|curlvj|pdx ≤ C

for some constant independent of j since vj → v strongly in Vp
N(Ω). This completes

the proof of Lemma 4.6.

We continue the proof of Theorem 4.2. For any ψ ∈ Lp(Ω), choose vψ ∈W 1,p(Ω) as
in Lemma 3.3. We note that vψ ∈ Kϕn ∩ Kϕ. If we choose −vψ as a test function of
(3.1), then we have∫

Ω

St(x, |curlun|2)curlun · curl (−vψ − un)dx+

∫
Ω

πndiv vψdx

≥ 〈f ,−vψ − un〉Xp
N (Ω)′,Xp

N (Ω).

Adding this inequality and (3.1) with v = vψ, we have∫
Ω

St(x, |curlun|2)curlun · curl (−vψ − un)dx

+

∫
Ω

St(x, |curlu|2)curlu · curl (vψ − u)dx+

∫
Ω

(πn − π)div vψdx

≥ −〈f ,un〉Xp
N (Ω)′,Xp

N (Ω) − 〈f ,u〉Xp
N (Ω)′,Xp

N (Ω).

Taking the lower limit of this inequality and using Lemma 4.6,

lim inf
n→∞

∫
Ω

(πn − π)div vψdx

≥ −2〈f ,u〉Xp
N (Ω)′,Xp

N (Ω) − 2

∫
Ω

St(x, |curlu|2)|curlu|2dx = −2c1
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where c1 ≥ 0. For any M > 0, since Mvψ ∈ Kϕ and −Mvψ ∈ Kϕ, we have

−2c1

M
≤ lim inf

n→∞

∫
Ω

(πn − π)div vψdx ≤ lim sup
n→∞

∫
Ω

(πn − π)div vψdx ≤
2c1

M
.

Letting M →∞ and using div vψ = ψ in Ω, we have

lim
n→∞

∫
Ω

(πn − π)ψdx = 0 for all ψ ∈ Lp(Ω). (4.4)

Since ‖πn‖Lp′ (Ω) ≤ C‖fn‖Xp
N (Ω)′ ≤ C1, where C1 is a constant independent of n since

fn → f in Xp
N(Ω)′. This completes the proof of Theorem 4.2.
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