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Abstract
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1. INTRODUCTION

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics and bio-engineering, and other applied sciences
[18, 27]. For some fundamental results in the theory of fractional calculus and fractional
differential equations, we refer the reader to the monographs by Abbas et al. [1, 2, 3],
Samko et al. [25], Kilbas et al. [20] and Zhou [29]. Recently, considerable attention
has been given to the existence of solutions for initial and boundary value problems of
fractional differential equations involving Hilfer fractional derivative, for instance, see
[18, 19, 28].

The idea of measure of weak noncompactness was introduced by De Blasi [14]. The
concept of strong measure of noncompactness, introduced by Banas̀ and Goebel [7],
was further developed and used by several authors, for example, see Akhmerov et al.
[4], Alvàrez [5], Benchohra et al. [12], Guo et al. [17], and the references therein.
In [12, 23], the authors obtained some existence results for fractional and ordinary
differential equations respectively by applying the techniques of the measure of
noncompactness. For some recent works concerning the application of this technique,
see [3, 9, 10], and the references therein.

In [6, 8, 11], the diagonalization method was applied to prove the existence of bounded
solutions for several classes of fractional differential equations on the half line.

In this paper, we investigate the existence of bounded weak solutions for the following
problem involving the Hilfer fractional derivative:


(Dα,β

0 u)(t) = f(t, u(t)); t ∈ R+ := [0,∞),

(I1−γ0 u)(t)|t=0 = φ, u is bounded on R+,

(1)

where α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, φ ∈ E, f : R+ × E → E is a given
continuous function, E is a real (or complex) reflexive Banach space with norm ‖ · ‖E
and dual E∗, such that E is the dual of a weakly compactly generated Banach space
X, I1−γ0 is the left-sided mixed Riemann–Liouville integral of order 1− γ, and Dα,β

0 is
Hilfer fractional derivative operator of order α and type β.

Here we emphasize that the present work initiates the application of the diagonalization
method in the context of Hilfer fractional differential equations under the weak
topology.
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2. PRELIMINARIES

Let In := [0, n], n ∈ N∗ and Cn := C(In) be the Banach space of all continuous
functions v from In into E with the supremum (uniform) norm

‖v‖n := sup
t∈In
‖v(t)‖E.

As usual, AC(In) denotes the space of absolutely continuous functions from In into E.
We denote by AC1(In) the space defined by

AC1(In) := {w : I → E :
d

dt
w(t) ∈ AC(In)}.

By Cγ(In) and C1
γ(In), we denote the weighted spaces of continuous functions defined

by
Cγ(In) = {w : (0, T ]→ E : t1−γw(t) ∈ C(In)},

with the norm
‖w‖Cγ := sup

t∈In
‖t1−γw(t)‖E,

and
C1
γ(In) = {w ∈ C :

dw

dt
∈ Cγ},

with the norm
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ .

In the following we denote ‖w‖Cγ by ‖w‖C . Let (E,w) = (E, σ(E,E∗)) be the Banach
space E with its weak topology.

Definition 2.1. A Banach space X is called weakly compactly generated (WCG, for
short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2. A function h : E → E is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in E to a weakly convergent sequence in E
(i.e., for any (un) in E with un → u in (E,w) then h(un)→ h(u) in (E,w)).

Definition 2.3. [24] The function u : I → E is said to be Pettis integrable on I

if and only if there is an element uJ ∈ E corresponding to each J ⊂ I such that
φ(uJ) =

∫
J
φ(u(s))ds for all φ ∈ E∗, where the integral on the right hand side is

assumed to exist in the sense of Lebesgue, (by definition, uJ =
∫
J
u(s)ds).

Let P (In, E) be the space of all E−valued Pettis integrable functions on In, and
L1(In,R) be the Banach space of Lebesgue integrable functions u : In → R. Define
the class P1(In, E) by

P1(In, E) = {u ∈ P (In, E) : ϕ(u) ∈ L1(In,R); for every ϕ ∈ E∗}.
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The space P1(In, E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ n

0

|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on In.

The following result is due to Pettis (see [[24], Theorem 3.4 and Corollary 3.41]).

Proposition 2.4. [24] If u ∈ P1(In, E) and h is a measurable and essentially bounded
real-valued function, then uh ∈ P1(In, E).

For all that follows, the symbol ”
∫

” denotes the Pettis integral.

Theorem 2.5. [26] A subset of a reflexive Banach space is weakly compact if and only
if it is closed in the weak topology and bounded in the norm topology.

Theorem 2.6. [21] LetD be a weakly compact subset ofC(In, E). ThenD(t) is weakly
compact subset of E for each t ∈ I .

Now, we give some results and properties of fractional calculus.

Definition 2.7. [2, 20, 25] The left-sided mixed Riemann–Liouville integral of order
r > 0 of a function w ∈ L1(In) is defined by

(Irθw)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1w(s)ds; for a.e. t ∈ In,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

For all r, r1, r2 > 0 and each w ∈ C(In), notice that Ir0w ∈ C(In), and

(Ir10 I
r2
0 w)(t) = (Ir1+r20 w)(t); for a.e. t ∈ In.

Definition 2.8. ([20]) The Riemann–Liouville fractional derivative of order r ∈ (0, 1]

of a function w ∈ L1(In) is defined by

(Dr
0w)(t) =

(
d

dt
I1−r0 w

)
(t)

=
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rw(s)ds; for a.e. t ∈ In.
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Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(In). Then the following integral becomes the
left inverse operator:

(Dr
0I
r
0w)(t) = w(t); for all t ∈ (0, n].

Moreover, if I1−r0 w ∈ C1
1−γ(In), then the following composition is proved in [25]:

(Ir0D
r
0w)(t) = w(t)− (I1−r0 w)(0+)

Γ(r)
tr−1; for all t ∈ (0, n].

Definition 2.9. [20] The Caputo fractional derivative of order r ∈ (0, 1] of a function
w ∈ L1(In) is defined by

(cDr
0w)(t) =

(
I1−r0

d

dt
w

)
(t)

=
1

Γ(1− r)

∫ t

0

(t− s)−r d
ds
w(s)ds; for a.e. t ∈ In.

In [18], Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [19, 28].

Definition 2.10. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈
L1(In), I

(1−α)(1−β)
0 w ∈ AC(In). The Hilfer fractional derivative of order α and type β

of w is defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I
(1−α)(1−β)
0 w

)
(t); for a.e. t ∈ In. (2)

Now we enlist some properties satisfied by the Hilfer fractional derivative ([15, 20]).

Properties. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, and w ∈ L1(In).

1. The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I1−γ0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)

(t); for a.e. t ∈ In.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. For β = 0 and β = 1, the Hilfer fractional derivative (2) respectively reduces to the
Riemann–Liouville derivative and the Caputo derivative:

Dα,0
0 = Dα

0 , and D
α,1
0 = cDα

0 .
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3. If Dβ(1−α)
0 w exists and it is in L1(In), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t); for a.e. t ∈ In.

Furthermore, if w ∈ Cγ(In) and I1−β(1−α)0 w ∈ C1
γ(In), then

(Dα,β
0 Iα0 w)(t) = w(t); for a.e. t ∈ In.

4. If Dγ
0w exists and in L1(In), then

(Iα0D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ0 w(0+)

Γ(γ)
tγ−1; for a.e. t ∈ In.

Lemma 2.11. ([15]) Let h ∈ Cγ(In). Then the linear problem
(Dα,β

0 u)(t) = h(t); t ∈ In,

(I1−γ0 u)(t)|t=0 = φ, γ = α + β − αβ,

has a unique solution u ∈ L1(In, E) given by

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).

In view of the above lemma, we can state the following result for the problem (1).

Lemma 2.12. Let f : In×E → E be such that f(·, u(·)) ∈ Cγ(In) for any u ∈ Cγ(In).

Then problem (1) is equivalent to the problem of the solutions of the integral equation

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 f(·, u(·)))(t), γ = α + β − αβ.

Remark 2.13. Let g ∈ P1([In, E). For every ϕ ∈ E∗, we have

ϕ(Iα0 g)(t) = (Iα0 ϕg)(t); for a.e. t ∈ In.

Definition 2.14. [14] Let ΩE be a bounded subset of a Banach space E and B1

be the unit ball in E. The De Blasi measure of weak noncompactness is the map
β : ΩE → [0,∞) defined by

β(X) = inf{ε > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ εB1 + Ω}.

The De Blasi measure of weak noncompactness satisfies the following properties:
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(a) A ⊂ B ⇒ β(A) ≤ β(B),

(b) β(A) = 0⇔ A is relatively weakly compact,

(c) β(A ∪B) = max{β(A), β(B)},

(d) β(A
ω
) = β(A), (A

ω
denotes the weak closure of A),

(e) β(A+B) ≤ β(A) + β(B),

(f) β(λA) = |λ|β(A),

(g) β(conv(A)) = β(A),

(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn–Banach theorem.

Proposition 2.15. Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there
exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

Let us define a set V of functions v : In → E as follows:

V (t) = {v(t) : v ∈ V }; t ∈ In,

and
V (I) = {v(t) : v ∈ V, t ∈ In}.

Lemma 2.16. [17] Let H ⊂ C be a bounded and equicontinuous subset. Then the
function t→ β(H(t)) is continuous on In, and

βC(H) = max
t∈In

β(H(t)),

and

β

(∫
I

u(s)ds

)
≤
∫
In

β(H(s))ds,

where H(s) = {u(s) : u ∈ H, s ∈ I}, and βC is the De Blasi measure of weak
noncompactness defined on the bounded sets of C(In).

For our purpose we will need the following fixed point theorem:
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Theorem 2.17. [22] Let Q be a nonempty, closed, convex and equicontinuous subset of
a metrizable locally convex vector space C(I, E) such that 0 ∈ Q. Suppose T : Q→ Q

is weakly-sequentially continuous. If

V = conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (3)

for every subset V ⊂ Q, then the operator T has a fixed point.

3. EXISTENCE OF BOUNDED WEAK SOLUTIONS

Let us begin this section by defining a weak solution to the problem (1).

Definition 3.1. A measurable and bounded function u ∈ Cγ is said to be a weak
solution to the problem (1) if it satisfies the condition (I1−γ0 u)(0+) = φ, and the
equation (Dα,β

0 u)(t) = f(t, u(t)) on R+.

The following hypotheses will be used in the sequel.

(H1) For a.e. t ∈ In, the function v → f(t, v) is weakly sequentially continuous.

(H2) For each v ∈ E, the function t→ f(t, v) is Pettis integrable on In.

(H3) There exists pn ∈ C(In, [0,∞)) such that for all ϕ ∈ E∗, we have

|ϕ(f(t, u))| ≤ pn(t), for a.e. t ∈ In, and each u ∈ E.

(H4) For each bounded and measurable set B ⊂ E and for each t ∈ In, we have

β(f(t, B)) ≤ t1−rpn(t)β(B).

Theorem 3.2. Assume that the hypotheses (H1) − (H4) and the following condition
hold:

Ln :=
p∗nn

1−γ+α

Γ(1 + α)
< 1, (4)

where p∗n = sup
t∈In

pn(t). Then the problem (1) has at least one bounded weak solution on

R+.

Proof. We complete the proof in two parts. Fix n ∈ N and consider the problem
(Dα,β

0 u)(t) = f(t, u(t)); t ∈ In,

(I1−γ0 u)(t)|t=0 = φ.

(5)



Bounded Weak Solutions for Hilfer Fractional Differential Equations on the Half Line 43

Part1. We begin by showing that (5) has a solution un ∈ Cγ(In) with ‖un‖Cγ ≤ Rn

for each t ∈ In, where

Rn ≥
p∗nn

1−γ+α

Γ(1 + α)
.

Consider the operator N : Cγ(In)→ Cγ(In) defined by

(Nu)(t) =
φ

Γ(γ)
tγ−1 +

∫ t

0

(t− s)α−1f(s, u(s))

Γ(α)
ds. (6)

By the given hypotheses, for each u ∈ Cγ(In), the function t 7→ (t − s)α−1f(s, u(s)),

for a.e. t ∈ In, is Pettis integrable. Thus, the operator N is well defined.

Consider the set

Qn =
{
u ∈ Cγ(In) : ‖u‖n ≤ Rn and ‖t1−γ2 u(t2)− t1−γ1 u(t1)‖E

≤ p∗nn
1−γ+α

Γ(1 + α)
(t2 − t1)α +

p∗n
Γ(α)

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|ds, t1, t2 ∈ In
}
,

which is obviously closed, convex and equicontinuous. We shall show that the operator
N satisfies all the assumptions of Theorem 2.17. The proof will be given in several
steps.

Step 1. N maps Qn into itself.
Let u ∈ Qn, t ∈ In and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such that
‖t1−γ(Nu)(t)‖E = |ϕ(t1−γ(Nu)(t))|. Thus

‖t1−γ(Nu)(t)‖E =

∣∣∣∣ϕ( φ

Γ(γ)
+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds

)∣∣∣∣ .
Then

‖t1−γ(Nu)(t)‖E ≤ t1−γ

Γ(α)

∫ t

0

(t− s)α−1|ϕ(f(s, u(s)))|ds

≤ p∗nn
1−γ

Γ(α)

∫ t

0

(t− s)α−1ds

≤ p∗nn
1−γ+α

Γ(1 + α)

≤ Rn.

Next, let t1, t2 ∈ I such that t1 < t2 and let u ∈ Qn, with

t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1) 6= 0.
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Then there exists ϕ ∈ E∗ such that

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E = |ϕ(t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1))|,

and ‖ϕ‖ = 1. In consequence,

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E = |ϕ(t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1))|

≤
∣∣∣∣ϕ(t1−γ2

∫ t2

0

(t2 − s)α−1
f(s, u(s))

Γ(α)
ds− t1−γ1

∫ t1

0

(t1 − s)α−1
f(s, u(s))

Γ(α)
ds

)∣∣∣∣ .
and

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E ≤ t1−γ2

∫ t2

t1

(t2 − s)α−1
|ϕ(f(s, u(s)))|

Γ(α)
ds

+

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|
|ϕ(f(s, u(s)))|

Γ(α)
ds

≤ t1−γ2

∫ t2

t1

(t2 − s)α−1
pn(s)

Γ(α)
ds

+

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|
pn(s)

Γ(α)
ds.

Thus, we get

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E

≤ p∗nn
1−γ+α

Γ(1 + α)
(t2 − t1)α +

p∗n
Γ(α)

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|ds.

Hence N(Qn) ⊂ Qn.

Step 2. N is weakly-sequentially continuous.
Let (um) be a sequence in Qn and let (um(t)) → u(t) in (E,ω) for each t ∈ In.

Fix t ∈ In, since f satisfies the assumption (H1), we have that f(t, um(t)) converges
weakly to f(t, u(t)).Hence it follows by the Lebesgue dominated convergence theorem
for Pettis integral (see [16]) that (Num)(t) converges weakly to (Nu)(t) in (E,ω), for
each t ∈ In. Thus, N(um) → N(u). Hence, N : Qn → Qn is weakly-sequentially
continuous.

Step 3. The implication (3) holds.
Let V be a subset of Qn such that V = conv(N(V ) ∪ {0}). Obviously

V (t) ⊂ conv(NV )(t)) ∪ {0}), t ∈ In.

Further, as V is bounded and equicontinuous, by Lemma 3 in [13] the function
t → v(t) = β(V (t)) is continuous on In. From (H3), (H4), Lemma 2.16 and the
properties of the measure β, for any t ∈ In, we have

t1−γv(t) ≤ β(t1−γ(NV )(t) ∪ {0})
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≤ β(t1−γ(NV )(t))

≤ T 1−γ

Γ(α)

∫ t

0

|t− s|α−1pn(s)β(V (s))ds

≤ n1−γ

Γ(α)

∫ t

0

|t− s|α−1s1−γpn(s)v(s)ds

≤ p∗nn
1−γ+α

Γ(1 + α)
‖v‖C .

Thus
‖v‖C ≤ Ln‖v‖C .

From (4), we get ‖v‖C = 0, that is, v(t) = β(V (t)) = 0, for each t ∈ In and hence V
is weakly relatively compact in Cγ(In) by Theorem 2 in [21]. Applying now Theorem
2.17, we conclude that N has a fixed point un ∈ Cγ(In) which is a weak solution to the
problem (5) on In with ‖un‖Cγ ≤ Rn for each t ∈ In.

Part 2. For k ∈ N, we use the following diagonalization process:wk(t) = unk(t); t ∈ [0, nk],

wk(t) = unk(nk); t ∈ [nk,∞).

Here (nk)k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . nk < . . . ↑ ∞.

Let S = {wk}∞k=1. Notice that

|wnk(t)| ≤ Rn : for t ∈ [0, n1], k ∈ N.

For k ∈ N and t ∈ [0, n1], we have

wnk(t) =
φ

Γ(γ)
tγ−1 +

∫ n1

0

(t− s)α−1f(s, wnk(s))

Γ(α)
ds.

Thus, for k ∈ N and t, x ∈ [0, n1], we have

|t1−γwnk(t)− x1−γwnk(x)| ≤
∫ n1

0

n1−γ
1 |(t− s)α−1 − (x− s)α−1|f(s, wnk(s))

Γ(α)
ds.

Hence

|t1−γwnk(t)− t1−γwnk(x)| ≤ p∗1n
1−γ
1

Γ(α)

∫ n1

0

|(t− s)α−1 − (x− s)α−1|ds.

So the Arzelà–Ascoli theorem guarantees that there is a subsequence P ∗1 of N and a
function z1 ∈ C([0, n1],R) with wnk → z1 as k →∞ in C([0, n1],R) through P ∗1 . Let
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P1 = P ∗1 − {1}.
Notice that

|wnk(t)| ≤ Rn : for t ∈ [0, n2], k ∈ N.

Also, for k ∈ N and t, x ∈ [0, n2], we have

|t1−γwnk(t)− t1−γwnk(x)| ≤ p∗2n
1−γ
2

Γ(α)

∫ n2

0

|(t− s)α−1 − (x− s)α−1|ds.

The Arzelà–Ascoli Theorem guarantees that there is a subsequence P ∗2 of N1 and a
function z2 ∈ C([0, n2], E) withwnk → z2 as k →∞ inC([0, n2], E) through P ∗2 .Note
that z1 = z2 on [0, n1] since P ∗2 ⊂ P1. Let P2 = P ∗2 − {2}. For m = 3, 4, . . . , proceed
inductively to obtain a subsequence P ∗m of Pm−1 and a function zm ∈ C([0, nm], E)

with wnk → zm as k →∞ in C([0, nm], E) through P ∗m. Let Pm = P ∗m − {m}.
Fix t ∈ (0,∞) and let m ∈ N with t ≤ nm and define u(t) = zm(t). Then
u ∈ C((0,∞), E) and |u(t)| ≤ Rn for t ∈ [0,∞).

Again, fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then, for n ∈ Pm, we have

unk(t) =
φ

Γ(γ)
tγ−1 +

∫ nm

0

(t− s)α−1f(s, unk(s))

Γ(α)
ds.

Taking nk →∞ through Pm, we obtain

zm(t) =
φ

Γ(γ)
tγ−1 +

∫ nm

0

(t− s)α−1f(s, zm(s))

Γ(α)
ds.

We can repeat this method for each t ∈ [0, nm] and for each m ∈ N. Thus

(Dα,β
0 u)(t) = f(t, u(t)); for t ∈ [0, nm],

for each m ∈ N. Hence the constructed function u is a solution to the problem (1).

4. AN EXAMPLE

Let

l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
m=1

|um| <∞

}
be the Banach space with the norm

‖u‖l1 =
∞∑
m=1

|um|.

Consider the following problem of Hilfer fractional differential equation(D
1
2
, 1
2

0 um)(t) = fm(t, u(t)); t ∈ R+,

(I
1
4
0 u)(t)|t=0 = (2−1, 2−2, . . . , 2−m, . . .), u is bounded on R+,

(7)
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where

fm(t, u(t)) =
cn(2−n + um(t))

et+4(1 + ‖u(t)‖l1)
; u ∈ l1,

for each t ∈ [0, n]; n ∈ N∗, with

u = (u1, u2, . . . , um, . . .), and cn :=
e4

8 n
3
4

Γ

(
1

2

)
.

Set
f = (f1, f2, . . . , fm, . . .),

α = β = 1
2
, then γ = 3

4
.

For each u ∈ l1 and t ∈ R+, we have

‖f(t, u(t))‖l1 ≤
cn
et+4

.

Hence, the hypothesis (H3) is satisfied with p∗n = cne
−4. Also the condition (4) holds

true as
p∗nn

1−γ+α

Γ(1 + α)
=
n3/4e−4

Γ(3/2)
cn =

n3/4e−4

Γ(3/2)

(e4Γ(1/2)

8 n
3
4

)
=

1

4
< 1.

A simple computation shows that all conditions of Theorem 3.2 are satisfied. Hence it
follows by the conclusion of Theorem 3.2 that the problem (7) has at least one bounded
weak solution on R+.
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