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Abstract

In this paper we study the existence of integrable solutions for fractional order
implicit differential equations with the Caputo-Hadamard fractional derivative of
order α ∈ (1, 2]. Our results are based on Schauder’s fixed point theorem and the
Banach fixed point theorem.
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1. INTRODUCTION

In this paper we are concerned with the existence of integrable solutions of boundary
values problem for the implicit fractional order differential equation,

H
c D

αy(t) = f(t, y(t), Hc D
αy(t)), for a.e. t ∈ J = [1, T ], 1 < α ≤ 2, (1)

y(1) = y1, y(T ) = yT , (2)

where H
c D

α is the Caputo-Hadamard fractional derivative, and f : [1, T ]×R×R→ R
is a given function. Fractional order differential equations are generalizations of
classical integer order differential equations. Fractional differential equations can
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describe many phenomena in various fields of applied sciences and engineering
such as acoustics, control, signal processing, porous media, electrochemistry,
viscoelasticity, rheology, polymer physics, proteins, electromagnetics, optics, medicine,
economics, astrophysics, chemical engineering, chaotic dynamics, statistical physics,
thermodynamics, biosciences, bioengineering, etc. See for example the monographs of
Kilbas et al. [18], Podlubny [20], and the papers of Agarwal et al. [5], Momani et al.
[19], Benhamida et al. [6, 7], Guerraiche et al. [14, 15], and the references therein.

Recently, considerable attention has been given to the existence of solutions of
boundary value problems for implicit fractional differential equations. See for example
the papers of Benchohra et al [8, 9, 10] and references therein.

The Hadamard fractional derivative was introduced by Hadamard in 1892 [16]; this
derivative differs from Caputo’s derivative in two ways: the first is that its kernel
contains a logarithmic function of arbitrary exponent, and the second is that the
Hadamard derivative of a constant does not equal to 0.

The Caputo-Hadamard fractional derivative given by Jarad et al. [13] is a modified
Hadamard fractional derivative, but unlike the Hadamard fractional derivative, the
Caputo-Hadamard fractional derivative of a constant is 0, and this was inherited from
the Caputo derivative. Recently, many researchers studied different fractional problems
involving the Caputo Hadamrd derivative; see, for example, the papers of Shammack
[21] and Y. Adjabi et al. [4].

To our knowledge, the literature on integrable solutions for fractional differential
equations is very limited. El-Sayed and Hashem [11] studied the existence of integrable
and continuous solutions for quadratic integral equations. El-Sayed and Abd El Salam
considered Lp-solutions for a weighted Cauchy problem for differential equations
involving the Riemann-Liouville fractional derivative.

In this paper we shall present two existence results for the problem (1)-(2). The first
result relies on Schauder’s fixed point theorem, while the second one is based up on the
Banach contraction principle. Finally, we present an illustrative example.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts that will be
used in the remainder of this paper.

Let C(J,R) be the Banach space of all continuous functions from J into R with the
supremum norm and let L1(J,R) be the Banach space of Lebesgue integrable functions
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y : J → R with the norm

‖y‖L1 =

∫
J

|y(t)|dt.

Let us recall some definitions and properties of Hadamard fractional integration and

differentiation. Let δ = t
d

dt
, and set

ACn
δ (J,R) = {y : J −→ R, δn−1y(t) ∈ AC(J,R)}.

Definition 2.1. [18] The Hadamard fractional integral of order r > 0 for a function
h ∈ L1([1,+∞),R) is defined as

HIrh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds,

provided the integral exists.

Example 2.2. Let q > 0. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [1,+∞).

Definition 2.3. [18] The Hadamard fractional derivative of order r > 0 applied to the
function h ∈ ACn

δ ([1,+∞),R) is defined as

(HDq
1h)(t) = δn(HIn−r1 h)(t),

where n− 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Definition 2.4. [13] For a given function h ∈ ACn
δ ([a, b],R), such that 0 < a < b, the

Caputo–Hadamard fractional derivative of order r > 0 is defined as follows:

H
c D

ry(t) =H Dr

[
y(s)−

n−1∑
k=0

δky(a)

k!

(
log

s

a

)k]
(t),

where Re(α) ≥ 0 and n = [Re(α)] + 1.

Lemma 2.5. [13] Let y ∈ ACn
δ ([a, b],R) or Cn

δ ([a, b],R) and α ∈ C. Then

HIr(HcDry)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k
.

Proposition 2.6. [21] Let α,β > 0 Then we have
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(1) Iα : L1(J,R)→ L1(J,R), and if f ∈ L1(J,R), then

IαIβf(t) = IβIαf(t) = Iα+βf(t)

(2) if f ∈ Lp(J,R) ,1 < p <∞ , then ‖ Iαf(t) ‖Lp≤ (log T )α

Γ(α + 1)
‖ f(t) ‖Lp .

(3) The fractional order integral operator Iα is linear.

(4) The fractional order integral operator Iα maps L1(J,R) into itself.

(5) When α = n, Iα0 is the n-fold integration.

Theorem 2.7. (Kolmogorov compactness criterion [21] ). Let Ω ⊆ Lp(J,R), 1 ≤ p ≤
+∞.. If

(i) Ω is bounded in Lp(J,R) and

(i) un → u as h→ 0, uniformly with respect to u ∈ Ω, then Ω is relatively compact
in Lp(J,R), where

uh(t) =
1

h

∫ t+h

t

u(s)ds.

Let us now recall a couple of fixed point theorems of which will be making use.

Theorem 2.8. [22](Schauder fixed point theorem) Let E be a Banach space and Q be
a convex subset of E and T : Q→ Q be a compact and continuous map. Then T has at
least one fixed point in Q.

Theorem 2.9. [12](Banach fixed point theorem) Let C be a non-empty closed subset of
a Banach space X . Then any contraction mapping T of C into itself has a unique fixed
point.

3. MAIN RESULTS

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 3.1. A function y ∈ L1([1, T ],R) is said to be a solution of (1)-(2) if there
exists a function x(t) ∈ L1([1, T ],R) with x(t) = f(t, y(t), x(t)) for a.e. t ∈ [1, T ]

such that Hc D
αy(t) = x(t) and the function y satisfies conditions (2).

For the existence of solutions for the problem (1)-(2), we need the following auxiliary
lemma.
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Lemma 3.2. For 1 < α ≤ 2, the solution of the BVP (1)-(2) can be expressed by the
integral equation

y(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t),

(3)

where x ∈ L1([1, T ],R) is the solution of the functional integral equation

x(t) = f
(
t,

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s

+ y1 +

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t)

)
,

(4)

if and only if y is a solution of the fractional boundary value problem

H
c D

αy(t) = x(t) for a.e. t ∈ [1, T ], (5)

y(1) = y1, y(T ) = yT . (6)

Proof. Let Hc D
αy(t) = x(s) in equation (1). Then

x(t) = f(t, y(t), x(t)). (7)

Applying the Caputo-Hadamard fractional integral of order r to both sides of (5), and
by using Lemma 2.5, we find that y satisfies (6). Then Lemma 2.5 implies that

y(t) = c1 + c2 log(t) +HIαx(t). (8)

The boundary conditions (6) imply that

c1 = y1

and

y(T ) =
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

h(s)
ds

s
+ y1 + c2(log T ).

Hence

c2 =

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

(log T )
.
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Finally, we obtain the solution (3).
Conversely, it is clear that if y satisfies equation (3), then equations (5)-(6) hold.

�

Let us introduce a list of assumptions.

(H1) f : J ×R2 → R is measurable in t ∈ J , for any (u1, u2) ∈ R2, and is continuous
in (u1, u2) ∈ R2, for almost all t ∈ J.

(H2) There exist a positive function a(t) ∈ L1([1, T ],R) and constants bi > 0, i = 1, 2,

such that : |f(t, u1, u2)| ≤ a(t) + b1|u1|+ b2|u2|.

Our first result is based on the Schauder fixed point theorem

Theorem 3.3. Assume the assumptions (H1) and (H2) are satisfied. If(
2b1

(log T )α

Γ(α + 1)
+ b2

)
< 1, (9)

then the problem (1)-(2) has at least one solution on J .

Proof. Transform the problem (1)-(2 into a fixed point problem. Consider the operator

H : L1(J,R)→: L1(J,R)

defined by

(Hx)(t) ; = f
(
t,

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t)

)
.

(10)

The operator H is well defined. Indeed, for each x ∈ L1([1, T ],R), from assumptions
(H1) and (H2), for

r =
‖a‖L1 + 2b1|T − 1|(|yT |+ |y1|)

1−
(

2b1
(log T )α

Γ(α + 1)
+ b2

) ,



Implicit Fractional Order Differential Equations 23

we have

‖Hx‖L1 =

∫ T

1

|(Hx)(t)|dt

=

∫ T

1

|f(t,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s

+ y1 +

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t))|dt

≤
∫ T

1

|a(t)|dt

+ b1

∫ T

1

| 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s

+ y1 +

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t)|dt

+ b2

∫ T

1

|x(t)|dt

≤ ‖a‖L1 + 2b1|T − 1|(|yT |+ |y1|) + 2b1
(log T )α

Γ(α + 1)
‖x‖L1 + b2‖x‖L1

≤ ‖a‖L1 + 2b1|T − 1|(|yT |+ |y1|) +

(
2b1

(log T )α

Γ(α + 1)
+ b2

)
r

≤ r.
(11)

Consider now the set, with r as above,

Br = {x ∈ L1(J,R) : ‖x‖L1 < r}.

Clearly Br is nonempty, bounded, convex and closed. Now, we will show that
HBr ⊂ Br. From (13) and (11), we get

‖Hx‖L1 ≤ ‖a‖L1 + 2b1|T − 1|(|yT |+ |y1|) + 2b1
(log T )α

Γ(α + 1)
‖x‖L1 + b2‖x‖L1 ≤ r.

Then HBr ⊂ Br. Assumption (H1) implies that H is continuous.

Now, we will show that H is compact; that is, HBr is relatively compact. Clearly
HBr is bounded in L1([1, T ],R) ); in particular, Condition (i) of the Kolmogorov
compactness criterion is satisfied. It remains to show (Hx)h → (Hx) as h → 0 in
L1([1, T ],R) for each x ∈ Br.
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Let x ∈ Br, then we have

‖(Hx)h − (Hx)‖L1 =

∫ T

1

|(Hx)h − (Hx)|dt =

∫ T

1

|1
h

∫ t+h

t

(Hx)(s)ds− (Hx)(t)|dt

≤
∫ T

1

(
1

h

∫ t+h

t

|(Hx)(s)− (Hx)(t)|ds)dt

≤
∫ T

1

1

h

∫ t+h

t

|f(s,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(s))

− f(t,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t))|dsdt.

(12)

Since x ∈ Br ⊂ L1([1, T ],R) and assumption (H2) that implies f ∈ L1([1, T ],R), we
have

1

h

∫ t+h

t

∣∣∣f(s,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s

+y1

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(s))

−f(t,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s

+y1 +

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t))

∣∣∣ds→ 0,

as h→ 0.

Hence
(Hx)h → (Hx) uniformly as h→ 0.

Then by the Kolmogorov compactness criterion, H(Br) is relatively compact. As a
consequence of Schauder’s fixed point theorem the BVP(1)-(2) has at least one solution
in Br. �
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The following result is based on the Banach contraction principle

Theorem 3.4. Assume that the (H1) and the following condition hold.
(H3) There exist constants k1 > 0 and k2 > 0 such that,

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1|x1 − x2|+ k2|y1 − y2|, x1, x2, y1, y2 ∈ R,

and (
2k1

(log T )α

Γ(α + 1)
+ k2

)
< 1. (13)

Then the problem (1)-(2) has a unique solution y ∈ L1(J,R).

Proof. We shall use the Banach contraction principle to prove that H , defined by (10),
has a fixed point. Let x,y ∈ L1(J,R) and t ∈ J . Then we have,

|(Hx)− (Hy)| =
∣∣∣f(t,

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

x(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

x(s)
ds

s

log(T )
log(t), x(t))

− f(t,
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

y(s)
ds

s
+ y1

+

yT − y1 −
1

Γ(α)

∫ T

1

(
log

T

s

)α−1

y(s)
ds

s

log(T )
log(t), y(t))

∣∣∣
≤ 2k1

(log T )α

Γ(α + 1)

∫ T

1

|x(s)− y(s)|ds+ k2|x(t)− y(t)|.

Thus

‖(Hx)− (Hy)‖L1 ≤ 2k1
(log T )α

Γ(α + 1)
‖x− y‖L1 + k2‖x− y‖L1

≤
(

2k1
(log T )α

Γ(α + 1)
+ k2

)
‖x− y‖L1 .

Consequently by (13), H is a contraction. As a consequence of the Banach contraction
principle, we deduce that H has a unique fixed point which is a solution of the problem
(1)-(2). �
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4. AN EXAMPLE

Consider the boundary value problem,

H
c D

3
2y(t) =

1

4et+5(1 + |y(t)|+ |Hc D
3
2y(t)|)

, for a.e. t ∈ J = [1, e], 1 < α ≤ 2,

(14)

y(1) = 0, y(e) = 1. (15)

Set

f(t, u, v) =
1

4et+5(1 + |u|+ |v|)
, t ∈ J × [0,∞)× [0,∞).

Let u1, u2, v1, v2ıR and t ∈ J . Then we have

|f(t, u1, v1)− f(t, u2, v2)| =
∣∣∣ 1

4et+5

(
1

(1 + u1 + v1)
− 1

(1 + u2 + v2)

) ∣∣∣
≤

∣∣∣ 1

4et+5

(
|u1 − u2|+ |v1 − v2|

(1 + u1 + v1)(1 + u2 + v2)

) ∣∣∣
≤ 1

4et+5
(|u1 − u2|+ |v1 − v2|)

≤ 1

4e5
|u1 − u2|+

1

4e5
|v1 − v2|.

Hence the condition (H3) holds with k1 = k2 = 1
4e5

. We shall check that condition (13)
is satisfied with T = e. Indeed

2k1
(log T )α

Γ(α + 1)
+ k1 =

1

2e5Γ(α + 1)
+

1

4e5
< 1.

Then by Theorem 3.4 the problem (14)-(15) has a unique integrable solution on [1, e].
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