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Abstract

We would like to consider an application of generalized Laplace transform in
partial differential equations(PDEs) by using the n-th partial derivatives. The tool
of this research is the induction, and the proposed idea gives an easy solution to
engineering problems by freely selecting the integer α in the definition.
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1. Introduction

The purpose of this research is to consider an application of generalized Laplace
transform, G-transform, in PDEs. The G-transform is not new one but a generalized
Laplace transform, and we recognize that the basis of this transform is Laplace
transform. Nevertheless, this transform is quite plausible due to various applicability.
Many theories about integral transforms such as Sumudu, Fourier, Elzaki, double
Laplace, and natural transform[1-2] have covered applications in PDEs.
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While these existing researches on integral transforms have not dealt with the theory
in an integrated way, this research is meaningful because it is dealt with the integrated
way. Normally, Laplace-typed integral transforms have the form of∫ ∞

0

k(s, t)f(t)dt,

and Laplace transform has the kernel k(s, t) = e−st. Since the exponential function e−st

has a nice property converging to 0 when t approaches∞, we normally use the kernel
with this exponential function in transform theories. Since Laplace transform can be
rewritten as ∫ ∞

0

e−
t
uf(t)dt

by s = 1/u, the general form of generalized Laplace transform has the form of

uα
∫ ∞
0

e−
t
uf(t)dt

as a natural extension[4, 9]. In this comprehensive form, the integer value can be
suitably selected in various problems. The value α = 0 corresponds to Laplace
transform[6], and it has a strong point in the transforms of derivatives, whereas α = −2
has a strong point in the transforms of integrals[7]. Sumudu transform[10] has a value
of α = −1 and Elzaki one[3, 5] has a value of α = 1 in the above form. The alternate
form of integral transforms is

uβ
∫ ∞
0

e−tf(ut)dt.

If β = 1, it corresponds to Laplace transform, if β = 0, Sumudu one, and if β = 2,
Elzaki one.

In this article, we would like to propose an application of generalized Laplace transform
to PDEs, and the obtained results are as the following;

(1) G[
∂nf(x, t)

∂xn
] =

dnF (x, u)

dxn
.

(2) G[
∂nf(x, t)

∂tn
] =

F (x, u)

un
− uα

n∑
k=1

1

un−k
∂k−1f(x, 0)

∂tk−1
,

where u = G(f) = F (u) and ∂0/∂ = 1.

Concomitantly, related examples are considered.
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2. An application of generalized Laplace transform in PDEs

We would like to prove the next equalities by induction, and these equalities are well
applied to several PDEs.

Theorem 1. If a function f is an integrable, then the following equality holds;

(1) G[
∂nf(x, t)

∂xn
] =

dnF (x, u)

dxn
.

(2) G[
∂nf(x, t)

∂tn
] =

F (x, u)

un
− uα

n∑
k=1

1

un−k
∂k−1f(x, 0)

∂tk−1
,

where u = G(f) = F (u) and ∂0/∂ = 1.

Proof. (1) Let us consider the case of n = 1.

G[
∂f(x, t)

∂x
] = uα

∫ ∞
0

e−
t
u · ∂f

∂x
dt

=
∂

∂x
(uα

∫ ∞
0

e−
t
uf(t)dt) =

∂

∂x
F (x, u) =

d

dx
F (x, u).

Next, let us assume that

G[
∂nf(x, t)

∂xn
] =

dnF (x, u)

dxn

is valid for some n, and we show that

G[
∂n+1f(x, t)

∂xn+1
] =

dn+1F (x, u)

dxn+1
;

G[
∂n+1f(x, t)

∂xn+1
] = uα

∫ ∞
0

e−
t
u · ∂

n+1f

∂xn+1
dt

=
∂

∂x
[uα

∫ ∞
0

e−
t
u · ∂

nf

∂xn
· dt] = ∂

∂x
· d

nF (x, u)

dxn
=
dn+1F

dxn+1

for ∂0/∂ = 1.

(2) First let us consider the case of n = 1.

G[
∂f(x, t)

∂t
] = uα

∫ ∞
0

e−
t
u · ∂f

∂t
· dt

= uα[[e−
t
uf(x, t)]∞0 +

1

u

∫ ∞
0

e−
t
uf(x, t) dt] = −uαf(x, 0) + 1

u
F (x, u).

This is the same as the value from statement (2). Next, let us suppose that n = m is
valid for some m. Thus,

G[
∂mf(x, t)

∂tm
] =

F (x, u)

um
− uα

m∑
k=1

1

um−k
∂k−1f(x, 0)

∂tk−1
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=
F (x, u)

um
− uα[f(x, 0)

um−1
+

1

um−2
∂f(x, 0)

∂t
+ · · ·+ 1

u

∂m−2f(x, 0)

∂tm−2

+
∂m−1f(x, 0)

∂tm−1
] (∗)

holds for ∂0/∂ = 1. Let us show that

G[
∂m+1f(x, t)

∂tm+1
] =

F (x, u)

um+1
− uα[f(x, 0)

um
+

1

um−1
∂f(x, 0)

∂t

+ · · ·+ 1

u

∂m−1f(x, 0)

∂tm−1
+
∂mf(x, 0)

∂tm
]; (∗∗)

By the idea of n = 1, we have

G[
∂m+1f(x, t)

∂tm+1
] =

∂

∂t
G[
∂mf(x, t)

∂tm
] =

1

u
· (∗)− uα∂

mf(x, 0)

∂tm

=
F (x, u)

um+1
− uα[f(x, 0)

um
+

1

um−1
∂f(x, 0)

∂t

+ · · ·+ 1

u

∂m−1f(x, 0)

∂tm−1
]− uα∂

mf(x, 0)

∂tm

= (∗∗).

Hence, the theorem is valid in an arbitrary natural number k.

Of course, the statement (2) can be rewritten as

G[
∂nf(x, t)

∂tn
] =

F (x, u)

un
− uα

n∑
k=1

f (k−1)(x, 0)

un−k

for f (n) is the n-th derivative of f . Hence, we can use the following equalities in various
application;

G[
∂f(x, t)

∂t
] =

1

u
G(f)− f(x, 0)uα.

G[
∂2f(x, t)

∂t2
] =

1

u2
G(f)− 1

u
f(x, 0)uα − f ′(x, 0)uα

=
1

u2
G(f)− uα[ 1

u
f(x, 0) + f ′(x, 0) ].

G[
∂nf(x, t)

∂tn
] =

1

un
G(f)− 1

un−1
f(x, 0)uα − 1

un−2
f (1)(x, 0)uα − · · ·

−1

u
f (n−2)(x, 0)uα − f (n−1)(x, 0)uα

=
1

un
G(f)− uα[ 1

un−1
f(x, 0) +

1

un−2
f (1)(x, 0) + · · ·

+
1

u
f (n−2)(x, 0) + f (n−1)(x, 0) ]

for F (u) = G(f).
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Lemma 2. (Lagrange’s method[8]) Lagrange’s method states that a particular solution
yp of y′′ + p(x)y′ + q(x)y = r(x) on open interval I is

yp(x) = −y1
∫
y2r

W
dx+ y2

∫
y1r

W
dx

where y1, y2 form a basis of solutions of the corresponding homogeneous equation
y′′ + p(x)y′ + q(x)y = 0 on I , and W is the Wronskian of y1, y2.

Corollary 3. A solution of wtt = c2G(wxx) subject to the conditions w(0, t) = 0,
w(L, t) = 0, w(x, 0) = f(x), and wt(x, 0) = g(x) can be represented by w(x, t) =

G−1[F (x, u)], where

F (x, u) = A(u)(ex/cu − e−x/cu)− uα+1

c2u2 − 1

∫
[f(x) + ug(x)] dx.

Proof. Taking G-transform on both sides, we have

1

u2
F − uα[ 1

u
w(x, 0) + w′(x, 0)] = c2

d2F

dx2

for F (x, u) = G((w(x, t)). Organizing this equality, we have

d2F

dx2
− 1

c2u2
F = −u

α

c2
[
1

u
f(x) + g(x)]. (∗ ∗ ∗)

Note that a solution of the homogeneous equation

d2F

dx2
− 1

c2u2
F = 0

is
Fh = A(u)ex/cu +B(u)e−x/cu.

Next, let us find a particular solution of (***) by the method of variation of parameters.
Since the Wronskian of ex/cu and e−x/cu is W = −2/cu, a particular solution of (***)
can be represented as

Fp = −ex/cu
∫
e−x/cu ·

−uα

c2
[ 1
u
f(x) + g(x)]

−2/cu
dx

+e−x/cu
∫
ex/cu ·

−uα

c2
[ 1
u
f(x) + g(x)]

−2/cu
dx

= − u

2c
uαex/cu

∫
e−x/cu(

1

u
f(x) + g(x)) dx
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+
u

2c
uαe−x/cu

∫
ex/cu(

1

u
f(x) + g(x)) dx.

From F (0, u) = G(w(0, t)) = G(0) = 0, we have B(u) = −A(u). Hence,

F (x, u) = A(u)(ex/cu − e−x/cu)

−uα u
2c

[ex/cu
∫
e−x/cu(

1

u
f(x) + g(x)) dx

−e−x/cu
∫
ex/cu(

1

u
f(x) + g(x)) dx].

Let us put

I1 = ex/cu
∫
e−x/cu(

1

u
f(x) + g(x)) dx

and
I2 = e−x/cu

∫
ex/cu(

1

u
f(x) + g(x)) dx.

By the integration by parts, we have

I1 = cuex/cu
∫
e−x/cu(

1

u
f(x) + g(x)) dx−

∫
cu(

1

u
f(x) + g(x)) dx

= cuI1 − c
∫
(f(x) + ug(x)) dx,

and so
(cu− 1)I1 = c

∫
(f(x) + ug(x)) dx.

Thus
I1 =

c

cu− 1

∫
[f(x) + ug(x)] dx.

Similarly, we have

I2 =
c

cu+ 1

∫
[f(x) + ug(x)] dx.

Therefore, we have

F (x, u) = A(u)(ex/cu − e−x/cu)− uα u
2c

(I1 − I2).

Since
I1 − I2 = c(

1

cu− 1
− 1

cu+ 1
)

∫
[f(x) + ug(x)] dx

=
2c

c2u2 − 1

∫
[f(x) + ug(x)] dx,

we have

F (x, u) = A(u)(ex/cu − e−x/cu)− uα+1

c2u2 − 1

∫
[f(x) + ug(x)] dx.

Taking the inverse transform, we obtain the solution w(x, t).
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Let us see a familiar example. Note that the motion of the string depends on its initial
deflection f(x) and initial velocity g(x).

Example 1. Let us consider an elastic string which is fastened at the ends x = 0 and
x = π, and assume that its initial deflection w(x, 0) and initial velocity wt(x, 0) are
both 0. Then the equation has the form of

wtt = c2wxx

subject to w(x, 0) = 0, wt(x, 0) = 0, and

lim
x→∞

w(x, t) = 0,

and let us assume that the left end of the string is moved in a single sine wave
w(0, t) = f(t) = sin 2t if 0 ≤ t ≤ π, and otherwise w(0, t) = 0.

Solution. Taking G-transform on both sides, we have

F

u2
= c2

d2F

dx2

because of initial conditions. Organizing the equality, we have

F ′′ − 1

c2u2
F = 0.

Hence,
F (x, u) = A(u)ex/cu +B(u)e−x/cu.

Since F (0, u) = G(w(0, t)) = G(f(t)) = F (u) and

lim
x→∞

F (x, u) = lim
x→∞

G(w(x, t)) = G( lim
x→∞

w(x, t)) = G(0) = 0,

F (x, u) = B(u)e−x/cu = F (u)e−x/cu

because of A(u) = 0. Since

G[f(t− a)h(t− a)] = e−a/uF (u)

for h(t− a) is Heaviside function,

w(x, t) = w(t− x

c
)h(t− x

c
) = sin 2(t− x

c
)

if x/c ≤ t ≤ x/c+ π.
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Table 1: Table of Laplace-typed integral transform Gα [4]
f(t) Gα(f)

1 1 uα+1

1 t uα+2

3 tn n! · un+α+1

4 eat uα+1

1−au
5 sin at auα+2

1+u2a2

6 cos at uα+1

1+u2a2

7 sinh at auα+2

1−u2a2

8 cosh at uα+1

1−u2a2

9 eat cos bt
uα( 1

u
−a)

( 1
u
−a)2+b2

10 eat sin bt buα

( 1
u
−a)2+b2
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