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Abstract

In this work, we establish the necessary and sufficient conditions for oscillation
of a class of second order nonlinear neutral differential equations for various ranges
of neutral coefficient.
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1 Introduction
Consider the nonlinear neutral delay differential equations of the form:

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)G(x(σ(t))) + v(t)H(x(η(t))) = 0, (1.1)

where r, q, v, τ , σ, η ∈ C(R+,R+), p ∈ C(R+,R) such that τ(t) ≤ t, σ(t) ≤ t,
η(t) ≤ t with lim

t→∞
τ(t) = ∞ = lim

t→∞
σ(t) = ∞ = lim

t→∞
η(t) and G, H ∈ C(R,R)

satisfying the property yG(y) > 0, uH(u) > 0 for y, u 6= 0. In this work, our objective
is to establish the sufficient conditions for oscillation and nonoscillation of solutions of
(1.1) under the assumption

(A0) R(t) =

∫ t

0

ds

r(s)
< +∞ as t→∞

for various range of p(t).
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Baculikova et al. [4] have studied the linear counterpart of (1.1), that is,

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)x(σ(t)) + v(t)x(η(t)) = 0 (1.2)

when 0 ≤ p(t) ≤ p0 < ∞. The authors have obtained sufficient conditions for oscil-
lation of solutions of (1.2) through some comparison results. Here, an attempt is made
to study (1.1) without comparison results. Indeed, (1.2) is a special case of (1.1). It is
interesting to see that our method provide a better understanding than [4] as long as os-
cillatory behaviour of solutions of (1.1)/(1.2) is concerned for any |p(t)| <∞. Tripathy
et al. [11] have studied (1.1) along with

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)G(x(σ(t))) = 0 (1.3)

and obtained the sufficient conditions for oscillation, nonoscillation and asymptotic be-
havior of solutions of (1.1) and (1.3) provided G, H could be linear or nonlinear. In
another work [12], the authors have established oscillation criteria for (1.1) under the
assumption

R(t) =

∫ t

0

ds

r(s)
→ +∞ as t→∞,

where G and H could be strictly sublinear or superlinear. In this work, we continue to
study (1.1) under the assumption (A0). We note that not only the present work general-
izes the work of [4], but also it generalizes the works of [2, 3].

Neutral differential equations find numerous applications in natural sciences and
technology. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines (see for e.g., [7]). In this paper, we restrict our
attention to study (1.1) which includes a class of nonlinear functional differential equa-
tions of neutral as well as nonneutral type. In this direction we refer the reader to the
monographs [5,6] and some of the works [1,9,10,13,14] and the references cited therein.

Definition 1.1. By a solution of (1.1), we mean a continuously differentiable function
x(t) which is defined for t ≥ T ∗ = min{τ(t0), σ(t0), η(t0)} such that x(t) satisfies
(1.1) for all t ≥ t0. In the sequel, it will always be assumed that the solutions of (1.1)
exist on some half line [t1,∞), t1 ≥ t0. A solution of (1.1) is said to be oscillatory,
if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1.1) is
called oscillatory, if all its solutions are oscillatory.

2 Main Results
This section deals with the necessary and sufficient conditions for oscillation of all so-
lutions of (1.1). Throughout our discussion, we use the notation

z(t) = x(t) + p(t)x(τ(t)). (2.1)
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Lemma 2.1. Assume that (A0) holds. Let x(t) be a positive solution of (1.1) defined on
[t0,∞) such that z(t) > 0 and (r(t)z′(t))′ ≤ 0 for t ≥ t0. If z′(t) < 0 for t ≥ t0, then

z(t) ≥ −R1(t)r(t)z
′(t), R1(t) =

∫ ∞
t

ds

r(s)
.

Proof. For s ≥ t, r(s)z′(s) ≤ r(t)z′(t) implies that z′(s) ≤ r(t)z′(t)

r(s)
which on inte-

gration from t to s, we get∫ s

t

z′(θ)dθ ≤ r(t)z′(t)

∫ s

t

dθ

r(θ)
,

that is,

z(t) + r(t)z′(t)R1(t) ≥ z(s) ≥ 0 as s→∞.

This completes the proof.

Theorem 2.2. Let −1 < −a ≤ p(t) ≤ 0, a > 0, t ∈ R+. Assume that (A0) holds.
(a) If
(A1) G(−u) = −G(u), H(−u) = −H(u), u ∈ R,
(A2) τn(t) = τn−1(τ(t)) and lim

n→∞
τn(t) <∞, t ∈ R+

and
(A3)

∫ ∞
0

ds

r(s)
< +∞

hold, then every unbounded solution of (1.1) oscillates.
(b) If (A3) does not hold and if

(A4)

∫ ∞
T

[q(s)G(CR(σ(s)) + v(s)H(CR(η(s))]ds <∞, T > 0 for every C > 0,

then (1.1) admits a positive bounded solution.

Proof. (a) On the contrary, let’s assume that x(t) is an unbounded nonoscillatory solu-
tion of (1.1) such that x(t) > 0 for t ≥ t0. Hence, there exists t1 > t0 such that

x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0, x(η(t)) > 0 for t ≥ t1.

Using (2.1), (1.1) becomes

(r(t)z′(t))′ = −q(t)G(x(σ(t))− v(t)H(x(η(t)) ≤ 0, 6≡ 0 for t ≥ t1. (2.2)

Therefore, there exists t2 > t1 such that r(t)z′(t) and z(t) are monotonic on [t2,∞).
Let t3 > t2 be such that z(t) > 0 for t ≥ t3. Indeed, z(t) < 0 for t ≥ t3 is not possible.
Because, in this case x(t) < x(τ(t)) implies that

x(t) ≤ x(τ(t)) ≤ x(τ 2(t)) ≤ x(τ 3(t)) ≤ · · · ≤ x(t3),
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that is, x(t) is bounded. If z(t) > 0, r(t)z′(t) > 0 for t ≥ t3, then r(t)z′(t) is nonin-
creasing on [t3,∞). So there exist a constant C > 0 and t4 > t3 such that r(t)z′(t) ≤ C
for t ≥ t4. Consequently

z(t) ≤ z(t3) + C

∫ t

t3

ds

r(s)

< ∞ as t→∞

due to (A0). On the other hand, x(t) is unbounded implies that there exists an increasing
sequence {σn} such that σn→∞ and x(σn)→∞ as n→∞ and x(σn) = max{x(s) :
t1 ≤ s ≤ σn}. Therefore,

z(σn) = x(σn) + p(σn)x(τ(σn))

≥ x(σn)− ax(τ(σn))

≥ x(σn)− ax(σn)

= (1− a)x(σn)(∵ 1− a > 0)

→ +∞ as n→∞

gives a contradiction. The case r(t)z′(t) < 0, z(t) > 0 for t ≥ t3 is not possible due to
unbounded z(t).

(b) Suppose that (A3) does not hold. For C > 0, let∫ ∞
T

[q(t)G(CR(σ(t))) + v(t)H(CR(η(t)))] dt ≤ C

5
.

Consider

M =

{
x : x ∈ C([t0,∞),R), x(t) = 0, t ∈ [t0, T ],

C

5
R(T, t) ≤ x(t) ≤ CR(T, t), t ≥ T

}
,

where R(T, t) = R(t)−R(T ). Define

Ψx(t) =


0, t ∈ [t0, T ],

−p(t)x(τ(t)) +

∫ t

T

1

r(u)

[
C

5
+

∫ ∞
u

q(s)G(x(σ(s)))ds

+

∫ ∞
u

v(s)H(x(η(s))ds

]
, t ≥ T.

For every x ∈M ,

Ψx(t) ≥
∫ t

T

1

r(u)

[
C

5
+

∫ ∞
u

{q(s)G(x(σ(s))) + v(s)H(x(η(s)))}ds
]
du
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≥ C

5

∫ t

T

du

r(u)
=
C

5
R(T, t)

and x(t) ≤ CR(T, t) implies that

Ψx(t) ≤ −p(t)x(τ(t)) +
2C

5

∫ t

T

du

r(u)

≤ aCR(T, τ(t)) +
2C

5
R(T, t)

≤ aCR(T, t) +
2C

5
R(T, t)

=

(
a+

2

5

)
CR(T, t) ≤ CR(T, t)

implies that Ψx(t) ∈M . Define un : [t0,+∞)→ R by the recursive formula

un(t) = (Ψun−1)(t), n ≥ 1

with the initial condition

u0(t) =

0, t ∈ [t0, T ]
C

5
R(T, t), t ≥ T.

Inductively it is easy to verify that

C

5
R(T, t) ≤ un−1(t) ≤ un(t) ≤ CR(T, t), t ≥ T.

Therefore, lim
n→∞

un(t) exists. By the Lebesgue’s dominated convergence theorem, u ∈
M and Ψu(t) = u(t), where u(t) is a solution of (1.1) on [t0,∞) such that u(t) > 0.
This completes the proof.

Theorem 2.3. Let −1 < −a ≤ p(t) ≤ 0, a > 0, η(t) ≥ σ(t), r(t) ≥ r(σ(t)) and τ(t)
is bijective for t ∈ R+. Assume that (A0)− (A4) hold. Furthermore, assume that

(A5) G,H are superlinear such that
G(u)

uβ
≥ G(v)

vβ
,
H(u)

uβ
≥ H(v)

vβ
, u ≥ v >

0, β > 1,

(A6)

∫ ∞
T

1

r(θ)

∫ θ

T

[q(s) + Lv(s)] dsdθ =∞, L > 0, T > 0

and
(A7)

∫ ∞
0

1

r(t)

∫ ∞
t

[q(s) +Lv(s)dsdt = +∞, L > 0, is a constant hold. Then every

solution of (1.1) either oscillates or converges to zero as t → ∞. If (A7) fails to hold,
then (1.1) admits a positive bounded solution which does not tend to zero as t→∞.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Proceeding as in the proof of
Theorem 2.2, we have (2.2) for t ≥ t1. Hence, there exists t2 > t1 such that r(t)z′(t) is
nonincreasing on [t2,∞). If z(t) < 0 for t ≥ t2, then x(t) is bounded. Consequently,
lim
t→∞

z(t) exists. As a result,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(x(t)− ax(τ(t)))

≥ lim sup
t→∞

x(t) + lim inf
t→∞

(−ax(τ(t)))

= (1− a) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0 (∵ 1 − a > 0) and hence lim
t→∞

x(t) = 0. Let z(t) > 0 for

t ≥ t2. Consider r(t)z′(t) < 0 for t ≥ t2. Therefore, lim
t→∞

z(t) exists. We claim that

x(t) is bounded. If not, there exists an increasing sequence {γn} such that γn→∞ as
n→∞, x(γn)→∞ and x(γn) = max{x(s) : t3 ≤ s ≤ γn}. Therefore

z(γn) = x(γn) + p(γn)x(τ(γn))

≥ (1− a)x(γn)

→ +∞ as→∞

gives a contradiction. To show lim
t→∞

x(t) = 0, it is sufficient to show that lim inf
t→∞

x(t) =

0. If not, there exist a constant α > 0 and t3 > t2 such that x(σ(t)) ≥ α > 0 for t ≥ t3.
Integrating (2.2) from t3 to t(≥ t3), we obtain

[r(s)z′(s)]tt3 +

∫ t

t3

[q(s)G(x(σ(s))) + v(s)H(x(η(s)))] ds ≤ 0,

that is, ∫ t

t3

[q(s)G(α) + v(s)H(α)] ds ≤ −[r(s)z′(s)]tt3

implies that ∫ t

t3

[q(s)G(α) + v(s)H(α)] ds ≤ −r(t)z′(t).

Consequently,

1

r(t)

[
G(α)

∫ t

t3

q(s)ds+H(α)

∫ t

t3

v(s)ds

]
≤ −z′(t).

Integrating the preceding inequality from t4 to t, we get

G(α)

[∫ t

t4

1

r(θ)

∫ θ

t3

q(s)dsdθ +H(α)

∫ t

t4

1

r(θ)

∫ θ

t3

v(s)dsdθ

]
≤ −z(t) + z(t4),
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that is, ∫ ∞
t4

1

r(θ)

∫ θ

t3

[
q(s) + Lv(s)

]
dsdθ <∞, L =

H(α)

G(α)
,

a contradiction to (A6). Therefore, our assertion hold. Hence, there exists {δn}∞n=1 ⊂
[t4,∞) such that δn → ∞ as n → ∞ and lim

n→∞
x(δn) = 0. Let lim

t→∞
z(t) = l, l ∈

(−∞, 0]. For t ≥ t4, we have

z(τ−1(t))− z(t) = x(τ−1(t)) + [p(τ−1(t))− 1]x(t)− p(t)x(τ(t))

implies that

lim
t→∞

[x(τ−1(t)) + {p(τ−1(t))− 1}x(t)− p(t)x(τ(t))] = 0.

Equivalently,

lim
n→∞

[x(τ−1(δn)) + {p(τ−1(δn))− 1}x(δn)− p(δn)x(τ(δn))] = 0

implies that
lim
n→∞

[x(τ−1(δn))− p(δn)x(τ(δn))] = 0.

Using the fact that

x(τ−1(δn))− p(δn)x(τ(δn)) ≥ −p(δn)x(τ(δn)),

then it follows that
lim sup
n→∞

[−p(δn)x(τ(δn))] = 0,

that is, lim
n→∞

[−p(δn)x(τ(δn))] = 0. Ultimately,

l = lim
n→∞

z(δn) = lim
n→∞

[x(δn) + p(δn)x(τ(δn))] = 0.

As a result

0 = lim
t→∞

z(t)

= lim sup
t→∞

(x(t) + p(t)x(τ(t)))

≥ lim sup
t→∞

(x(t)− ax(τ(t)))

≥ lim sup
t→∞

x(t) + lim inf
t→∞

(−ax(τ(t)))

= (1− a) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0 and thus lim
t→∞

x(t) = 0. Suppose that r(t)z′(t) > 0 for

t ≥ t2, that is, lim
t→∞

r(t)z′(t) exists. Since z(t) is nondecreasing, then there exist a
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constant C > 0 and t3 > t2 such that z(σ(t)) ≥ C and z(η(t)) ≥ C for t ≥ t3.
Consequently,

G(z(σ(t))) =
G(z(σ(t)))

zβ(σ(t)
zβ(σ(t))

≥ G(C)

Cβ
zβ(σ(t))

and H(z(η(t))) ≥ H(C)

Cβ
zβ(η(t)) for t ≥ t3. Integrating (2.2) from t(> t3) to (+∞),

we get

[r(s)z′(s)]∞t +

∫ ∞
t

[
q(s)G(x(σ(s))) + v(s)H(x(η(s)))

]
ds ≤ 0,

that is, ∫ ∞
t

[
q(s)G(x(σ(s))) + v(s)H(x(η(s)))

]
ds ≤ r(t)z′(t)

and hence

r(t)z′(t) ≥ G(C)

Cβ

∫ ∞
t

q(s)zβ(σ(s))ds+
H(C)

Cβ

∫ ∞
t

v(s)zβ(η(s))ds

≥
[
G(C)

Cβ

∫ ∞
t

q(s)ds

]
zβ(σ(t)) +

[
H(C)

Cβ

∫ ∞
t

v(s)ds

]
zβ(η(t)).

Using σ(t) ≤ t and η(t) ≥ σ(t), the above inequality yields

r(σ(t))z′(σ(t)) ≥
[
G(C)

Cβ

∫ ∞
t

q(s)ds+
H(C)

Cβ

∫ ∞
t

v(s)ds

]
zβ(σ(t))

for t ≥ t2. Hence

z′(σ(t)) ≥ G(C)

Cβ

zβ(σ(t))

r(t)

∫ ∞
t

[
q(s) + Lv(s)

]
ds,

where L =
H(C)

G(C)
> 0. Integrating the preceding inequality from t3 to +∞, we get

G(C)

Cβ

∫ ∞
t3

1

r(t)

∫ ∞
t

[
q(s) + Lv(s)

]
dsdt ≤

∫ ∞
t3

z′(σ(t))

zβ(σ(t))
dt <∞

which is a contradiction to (A7).
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Next, we assume that (A7) fails to hold. Let∫ t

T

1

r(s)

∫ ∞
s

[q(θ) + Lv(θ)]dθds ≤ R(t)

3G(C∗)
, T ≥ T ∗,

where C∗ = max
t≥T
{R(σ(t)), R(η(t))}. Consider

M =

{
x ∈ C([t0,∞),R) : x(t) =

R(t)

3
, t ∈ [t0, T ];

R(t)

3
≤ x(t) ≤ R(t), for t ≥ T

}
and define

Ψx(t) =


Ψ, t ∈ [t0, T ]

−p(t)x(τ(t)) +
R(t)

3
+

∫ t

T

1

r(s)

∫ ∞
s

[
q(θ)G(x(σ(θ)))+

v(θ)H(x(η(θ)))

]
dθds, t ≥ T.

Indeed, for every x ∈M , Ψx(t) ≥ R(t)

3
and

Ψx(t) ≤ aR(t) +
R(t)

3
+

∫ t

T

1

r(s)

∫ ∞
s

[q(θ)G(R(σ(θ))) + v(θ)H(R(η(θ)))]dθds

= aR(t) +
R(t)

3
+G(C∗)

∫ t

T

1

r(s)

∫ ∞
s

[q(θ) + Lv(θ)]dθds

≤ aR(t) +
R(t)

3
+
R(t)

3
=

(
a+

2

3

)
R(t)

≤ R(t)

implies that Ψx ∈ M . Proceeding as in the proof of Theorem 2.2, we obtain that T has
a fixed point u ∈ M , that is u(t) = (Tu)(t). Therefore u(t) is a solution of (1.1). This
completes the proof.

Theorem 2.4. Let −1 < −a ≤ p(t) ≤ 0, a > 0, η(t) ≥ σ(t), r(t) ≥ r(σ(t)) and τ(t)
is bijective for t ∈ R+. Assume that (A0)− (A3), (A6), (A7) and

(A8) G,H are strictly sublinear such that
G(u)

uβ
≥ G(v)

vβ
,
H(u)

uβ
≥ H(v)

vβ
, 0 <

u ≤ v, β < 1
hold. Then every solution of (1.1) either oscillates or converges to zero as t → ∞. If
(A7) fails to hold, then (1.1) admits a positive bounded solution which does not tend to
zero as t→∞.
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Proof. The proof follows from the proof of Theorem 2.3. For the case r(t)z′(t) >
0, z(t) > 0, we integrate (r(t)z′(t))′ ≤ 0 from t2 to t and obtained that z′(t) ≤
r(t2)z

′(t2)

r(t)
=

C

r(t)
for t ≥ t2. Again integrating from t2 to t we find z(t) ≤ z(t2) +

C

∫ t

t2

ds

r(s)
<∞ as t→∞. Hence, there exist C1 > 0 and t3 > t2 such that z(t) ≤ C1

for t ≥ t3. Due to (A8)

G(z(σ(t))) =
G(z(σ(t)))

zβ(σ(t)
zβ(σ(t))

≥ G(C1)

Cβ
1

zβ(σ(t))

and H(z(η(t))) ≥ H(C1)

Cβ
1

zβ(η(t)) for t ≥ t3. The rest of the proof follows from

Theorem 2.3. Thus the proof is complete.

Remark 2.5. In Theorem 2.3, the argument used to make l = 0 is true when |p(t)| <∞
such that p(t) 6≡ 1.

Theorem 2.6. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1, η(t) ≥ σ(t), r(t) ≥ r(σ(t)) and
τ(t) is bijective for t ∈ R+, where a1, a2 > 0 such that 3a2 > a1. Assume that (A0),
(A1), (A3) and (A6)− (A8) hold. Then every bounded solution of (1.1) either oscillates
or tends to zero as t → ∞. If G and H are Lipschitzian on the intervals of the form
[c, d], 0 < c < d < ∞ and (A7) fails to hold, then (1.1) admits a positive bounded
solution which does not tend to zero as t→∞.

Proof. Let x(t) be a bounded nonoscillatory solution of (1.1). Proceeding as in Theorem
2.2, it follows that z(t), r(t)z′(t) are monotonic on [t2,∞). Since x(t) is bounded, we
have z(t) is bounded due to (2.1) and hence lim

t→∞
z(t) exists. The case z(t) > 0 is similar

to Theorem 2.4. In case z(t) < 0 for t ≥ t2, let r(t)z′(t) > 0. Using Remark 2.5 we
conclude that L = 0. As a result

0 = lim
t→∞

z(t) = lim inf
t→∞

(x(t) + p(t)x(τ(t)))

≤ lim inf
t→∞

(x(t)− a2x(τ(t)))

≤ lim sup
t→∞

x(t) + lim inf
t→∞

(−a2x(τ(t)))

= (1− a2) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0 [∵ 1−a2 < 0]. Hence, lim
t→∞

x(t) = 0. Consider r(t)z′(t) <

0. From (2.2), we have (r(t)z′(t))′ ≤ 0. Using the same type of argument as in Theorem
2.4, we can find C2 > 0 and t3 > t2 such that z(τ−1(σ(t))) < −C2 and z(τ−1(η(t))) <
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−C2 for t ≥ t3. Hence, z(t) ≥ −a1x(τ(t)) implies that x(t) ≥ −a−11 z(τ−1(t)), that is,
x(σ(t)) ≥ −a−11 z(τ−1(σ(t))) ≥ −a−11 C2 and z(η(t)) ≥ −a−11 C2 for t ≥ t3. Conse-
quently, (1.1) reduces to

(r(t)z′(t))′ +G(−a−11 C2)q(t) +H(−a−11 C2)v(t) ≤ 0

for t ≥ t3. Twice integration of the last inequality from t3 to t we obtain a contradiction
to (A6).

For the necessary part, it is possible to find T ≥ T ∗ such that∫ ∞
T

1

r(s)

∫ ∞
s

[q(t) + Lv(t)]dtds <
a2 − 1

3K
,

where K = max

{
K1,

K2

L
, G(1)

}
, K1 and K2 are Lipschitz constants of G and H

on [a, 1] respectively, where a =
(a2 − 1)(3a2 − a1)

3a1a2
.

Let X = BC([t0,∞),R) be the space of real valued continuous functions defined
on [t0,∞). Indeed, X is a Banach space with the supremum norm defined by

‖ x ‖= sup{|x(t)| : t ≥ t0}.

Define
S = {u ∈ X : a ≤ u(t) ≤ 1, t ≥ t0}

and we note that S is a closed convex subspace of X . Let Ψ : S → S be such that

Ψx(t) =



Ψx(T ), t ∈ [t0, T ]

−x(τ−1(t))

p(τ−1(t))
− a2 − 1

p(τ−1(t))

+
1

p(τ−1(t))

∫ τ−1(t)

T

1

r(s)

[∫ ∞
s

q(θ)G(x(σ(θ)))dθ

+

∫ ∞
s

v(θ)H(x(η(θ)))dθ

]
ds, t ≥ T.

For every x ∈ S,

Ψx(t) ≤ −x(τ−1(t))

p(τ−1(t))
− a2 − 1

p(τ−1(t))
≤ 1

a2
+
a2 − 1

a2
= 1

and

Ψx(t) ≥ − a2 − 1

p(τ−1(t))
+

1

p(τ−1(t))

∫ τ−1(t)

T

1

r(s)

[∫ ∞
s

q(θ)G(x(σ(θ)))dθ

+

∫ ∞
s

v(θ)H(x(η(θ)))dθ

]
ds
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≥ −a2 − 1

a1
+

G(1)

p(τ−1(t))

∫ τ−1(t)

T

1

r(s)

[∫ ∞
s

q(θ)dθ +
H(1)

G(1)

∫ ∞
s

v(θ)dθ

]
ds

≥ −a2 − 1

a1
− G(1)

a2

∫ ∞
T

1

r(s)

[∫ ∞
s

q(θ)dθ + L

∫ ∞
s

v(θ)dθ

]
ds

≥ −a2 − 1

a1
− a2 − 1

3a2
= a

implies that Ψx ∈ S. Now for x1, x2 ∈ S, we have

|Ψx1(t)−Ψx2(t)| ≤
1

|p(τ−1(t))|
|x1(τ−1(t))− x2(τ−1(t))|

+
K1

|p(τ−1(t))|

∫ τ−1(t)

T

1

r(s)

∫ θ

s

|x1(σ(θ))− x2(σ(θ))|q(θ)dθds

+
K2

|p(τ−1(t))|

∫ τ−1(t)

T

1

r(s)

∫ ∞
s

|x1(η(θ))− x2(η(θ))|v(θ)dθds

≤ 1

a2
‖ x1 − x2 ‖ +

a2 − 1

3a2
‖ x1 − x2 ‖

= γ ‖ x1 − x2 ‖

implies that
‖ Ψx1 −Ψx2 ‖≤ γ ‖ x1 − x2 ‖,

where γ =
1

a2

(
1 +

a2 − 1

3

)
< 1. Therefore, Ψ is a contraction. Hence by Banach’s

fixed point theorem Ψ has a unique fixed point x ∈ S. It is easy to see that lim
t→∞

x(t) 6= 0.
This completes the proof.

Theorem 2.7. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1, η(t) ≥ σ(t), r(t) ≥ r(σ(t)) and
τ(t) is bijective for t ∈ R+, where a1, a2 > 0 such that 3a2 > a1. Assume that (A0),
(A1), (A3) and (A5)− (A7) hold. Then every bounded solution of (1.1) either oscillates
or tends to zero as t → ∞. If G and H are Lipschitzian on the intervals of the form
[c, d], 0 < c < d < ∞ and (A7) fails to hold, then (1.1) admits a positive bounded
solution which does not tend to zero as t→∞.

Proof. The proof follows from the proof of Theorem 2.6 except the cases, z(t) >
0, r(t)z′(t) > 0 and z(t) > 0, r(t)z′(t) < 0. Since x(t) is bounded, we have these
two cases follow from the proof of Theorem 2.3 and Remark 2.5. Proceeding as in
Theorem 2.6, we find that lim

t→∞
x(t) = 0. This completes the proof.

Theorem 2.8. Let 0 ≤ p(t) ≤ a < 1, r(t) ≥ r(σ(t)), η(t) ≥ σ(t) and τ(t) is bijective,
for t ∈ R+. Assume that (A0), (A1) and (A5)− (A7) hold. Then every solution of (1.1)
either oscillates or tends to zero as t→∞. IfG andH are Lipschitzian on the intervals
of the form [c, d], 0 < c < d < ∞ and (A7) fails to hold, then (1.1) admits a positive
bounded solution which does not tend to zero as t→∞.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Then proceeding as in Theorem
2.2, we have two cases viz. z(t) > 0, r(t)z′(t) < 0 and z(t) > 0, r(t)z′(t) > 0 for
t ∈ [t2,∞). For the former case z(t) is bounded and hence lim

t→∞
z(t) exists. Since

z(t) ≥ x(t), we have x(t) is bounded. Now, we claim that lim inf
t→∞

x(t) = 0. If not, there

exist a constant α > 0 and t3 > t2 such that x(σ(t)) ≥ α > 0 for t ≥ t3. Integrating
(2.2) from t3 to t(≥ t3) and then using the same type of argument as in Theorem 2.3 we
obtain a contradiction to (A6). So, our claim holds. Consequently, Remark 2.5 implies
that lim

t→∞
z(t) = 0. Ultimately, 0 = lim

t→∞
z(t) ≥ lim

t→∞
x(t). Consider the latter case. Then

there exist a constant C > 0 and t3 > t2 such that z(σ(t)) ≥ C and z(η(t)) ≥ C for
t ≥ t3. Therefore,

G(z(σ(t))) =
G(z(σ(t)))

zβ(σ(t)
zβ(σ(t))

≥ G(C)

Cβ
zβ(σ(t))

and H(z(η(t))) ≥ H(C)

Cβ
zβ(η(t)) for t ≥ t3. Since

z(t)− p(t)z(τ(t)) = x(t) + p(t)x(τ(t))− p(t)x(τ(t))

− p(t)p(τ(t))p(τ(τ(t)))

= x(t)− p(t)p(τ(t))p(τ(τ(t)))

≤ x(t),

we have x(t) ≥ (1− a)z(t) and hence (1.1) becomes

(r(t)z′(t))′ + q(t)G((1− a)z(σ(t))) + v(t)H((1− a)z(η(t))) ≤ 0.

With the preceding inequality, we proceed as in Theorem 2.3 to obtain a contradiction
to (A7). The necessary part can similarly be dealt with Theorem 2.3. This completes
the proof.

Theorem 2.9. Let 0 ≤ p(t) ≤ a < 1, r(t) ≥ r(σ(t)), η(t) ≥ σ(t) and τ(t) is bijective,
for t ∈ R+. Assume that (A0), (A1) and (A6)− (A8) hold. Then every solution of (1.1)
either oscillates or tends to zero as t→∞. IfG andH are Lipschitzian on the intervals
of the form [c, d], 0 < c < d < ∞ and (A7) fails to hold, then (1.1) admits a positive
bounded solution which does not tend to zero as t→∞.

Proof. The proof follows from the proof of Theorem 2.8. Due to (A8), we use the same
type of argument as in Theorem 2.4 for the case z(t) > 0, r(t)z′(t) > 0. Hence the
details are omitted. Thus the proof is completed.

Theorem 2.10. Let 1 ≤ p(t) ≤ a < ∞ for t ∈ R+ and G(a) ≥ H(a). Assume that
(A0), (A1) and (A3) hold. Furthermore, assume that there exist λ, µ > 0 such that
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(A9) G(u) + G(s) ≥ λG(u + s), H(u) + H(s) ≥ µH(u + s) for u, s ∈
R+, (see e.g., [9])
(A10) G(us) ≤ G(u)G(s), H(us) ≤ H(u)H(s), u, s ∈ R+,
(A11) τoσ = σoτ, τoη = ηoτ for all t ∈ R+,

(A12)

∫ ∞
T

1

r(t)

[∫ t

T

Q(s)G(CR1(σ(s)) +
µ

λ

∫ t

T

V (s)H(CR1(η(s))

]
dsdt =∞;

T > 0, C > 0,
and

(A13)

∫ ∞
T

[Q(t) + L1V (t)]dt =∞; T > 0, L1 =
µH(C)

λG(C)
> 0, C > 0

hold, where Q(t) = min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))}. Then every solu-
tion of (1.1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Proceeding as in Theorem 2.3, we
have two cases viz. r(t)z′(t) < 0 and r(t)z′(t) > 0 for t ∈ [t2,∞). If r(t)z′(t) < 0
for t ∈ [t2,∞), then z(t) is bounded and lim

t→∞
z(t) exists. Using Lemma 2.1, we have

z(t) ≥ −R1(t)r(t)z
′(t) for t ≥ t2. From (1.1), it is easy to see that

0 = (r(t)z′(t))′ + q(t)G(x(σ(t))) + v(t)H(x(η(t)))

+G(a)
[
r(τ(t))z′(τ(t)))′ + q(τ(t)))G(x(σ(τ(t))) + v(τ(t)))H(x(η(τ(t)))

]
in which we use (A9), (A10) and (A11) to obtain

0 ≥ (r(t)z′(t))′ +G(a)(r(τ(t))z′(τ(t)))′ + λQ(t)G(z(σ(t))) + v(t)H(x(η(t)))

+G(a)v(τ(t))H(x(η(τ(t)))

≥ (r(t)z′(t))′ +G(a)(r(τ(t))z′(τ(t)))′ + λQ(t)G(z(σ(t)))

+ v(t)H(x(η(t))) +H(a)v(τ(t))H(x(η(τ(t))),

that is,

(r(t)z′(t))′+G(a)(r(τ(t))z′(τ(t)))′+λQ(t)G(z(σ(t)))+µV (t)H(z(η(t))) ≤ 0, (2.3)

where z(t) ≤ x(σ(t)) + ax(σ(τ(t))) for t ≥ t3 > t2. Using the fact that r(t)z′(t) is
nonincreasing, we can find a constant C > 0 such that r(t)z′(t) ≤ −C and z(t) ≥
CR1(t) (due to Lemma 2.1) for t ≥ t3 and hence (2.3) further implies that

(r(t)z′(t))′ +G(a)(r(τ(t))z′(τ(t)))′+λQ(t)G(CR1(σ(s)))

+ µV (t)H(CR1(η(s))) ≤ 0.

Integrating the preceding inequality form t3 to t(> t3), we obtain

λ

∫ t

t3

Q(s)G(CR1(σ(s)))ds+µ

∫ t

t3

V (s)H(CR1(η(s)))ds
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≤ −r(t)z′(t)−G(a)(r(τ(t))z′(τ(t))

≤ −(1 +G(a))r(t))z′(t)).

1

(1 +G(a))

1

r(t)

[
λ

∫ t

t3

Q(s)G(CR1(σ(s))ds+ µ

∫ t

t3

V (s)H(CR1(η(s))ds

]
≤ −z′(t).

(2.4)
Integrating (2.4) from t(> t3) to +∞, we obtain a contradiction to (A12).

Let r(t)z′(t) > 0 for t ≥ t2. Then there exist a constant C > 0 and t3 > t2 such that
z(t) ≥ C for t ≥ t3. Now, (2.3) yields that

G(a)(r(τ(t))z′(τ(t)))′ + λQ(t)G(C) + µV (t)H(C) ≤ −(r(s)z′(s))′ds.

Integrating the above inequality from t3 to +∞, we obtain a contradiction to (A13). This
completes the proof.

Theorem 2.11. Let 1 < a1 ≤ p(t) ≤ a2 < ∞ for t ∈ R+ such that a21 ≥ a2. Assume
that (A0) holds and (A7) fails to hold. Furthermore, assume that G and H are Lips-
chitzian on the intervals of the form [c, d], 0 < c < d <∞. Then (1.1) admits a positive
bounded solution.

Proof. If possible, let there exist T ≥ T ∗ such that∫ ∞
T

1

r(t)

[∫ ∞
t

q(s)ds+ L

∫ ∞
t

v(s)ds

]
dt <

a1 − 1

3K
,

where K = max

{
K1,

K2

L
, G(d)

}
, K1 is the Lipschitz constant of G and K2 is the

Lipschitz constant of H on [c, d] with

c =
3µ(a21 − a2)− a2(a1 − 1)

3a21a2
, d =

a1 − 1 + 3µ

3a1
, µ >

a2(a1 − 1)

3(a21 − a2)
> 0.

Let X = BC([t0,∞), R) be the space of real valued continuous functions on [t0, ∞).
Indeed, X is a Banach space with respect to the sup norm defined by

‖ x ‖= sup{|x(t)| : t ≥ t0}.

Define

S = {u ∈ X : c ≤ u(t) ≤ d, t ≥ t0}.

We may note that S is a closed convex subspace of X . Let Ψ : S → S be such that

Ψx(t) =



Ψx(T ), t ∈ [T0, T ]

−x(τ−1(t))

p(τ−1(t))
+

µ

p(τ−1(t))

+
1

p(τ−1(t))

∫ τ−1(t))

T

1

r(s)

[∫ ∞
s

q(θ)G(x(σ(θ)))dθ

+

∫ ∞
s

v(θ)H(x(η(θ)))dθ

]
ds, t ≥ T.
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For every x ∈ S,

Ψx(t) ≤ µ

p(τ−1(t))
+

1

p(τ−1(t))

∫ τ−1(t))

T

G(d)

r(s)

[∫ ∞
s

q(θ)dθ +
H(d)

G(d)

∫ ∞
s

v(θ)dθ

]
ds

≤ µ

p(τ−1(t))
+

1

a1

∫ ∞
T

G(d)

r(s)

[∫ ∞
s

q(θ)dθ + L

∫ ∞
s

v(θ)dθ

]
ds

≤ µ

a1
+
G(d)

a1

∫ ∞
T

1

r(s)

[∫ ∞
s

q(θ)dθ + L

∫ ∞
s

v(θ)dθ

]
ds

≤ 1

a1

[
a1 − 1

3
+ µ

]
= b

and

Ψx(t) ≥ −x(τ−1(t))

p(τ−1(t))
+

µ

p(τ−1(t))

> − d

a1
+
µ

a2
= c

implies that Ψx ∈ S. Again for x1, x2 ∈ S

|Ψx1(t)−Ψx2(t)| ≤
1

|p(τ−1(t))|
|x1(τ−1(t))− x2(τ−1(t))|

+
K1

|p(τ−1(t))|

∫ τ−1(t))

T

1

r(s)

∫ ∞
s

q(θ)|x1(σ(θ))− x2(σ(θ))|dθds

+
K2

|p(τ−1(t))|

∫ τ−1(t))

T

1

r(s)

∫ ∞
s

v(θ)|x1(η(θ))− x2(η(θ))|dθds

≤ 1

a1
‖ x1 − x2 ‖ +

K1

a1
‖ x1 − x2 ‖

∫ ∞
T

1

r(s)

∫ ∞
s

q(θ)dθds

+
K2

a1
‖ x1 − x2 ‖

∫ ∞
T

1

r(s)

∫ ∞
s

v(θ)dθds

≤ 1

a1

(
1 +

a1 − 1

3

)
‖ x1 − x2 ‖

implies that

‖ Ψx1 −Ψx2 ‖≤
(

1

a1
+
a1 − 1

3a1

)
‖ x1 − x2 ‖ .

Since
(

1

a1
+
a1 − 1

3a1

)
< 1, then Ψ : S → S is a contraction. By Banach’s fixed point
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theorem, Ψ has a unique fixed point on [c, d]. It is easy to verify that

x(t) =



Ψx(T ), t ∈ [t0, T ]

−x(τ−1(t))

p(τ−1(t))
+

µ

p(τ−1(t))
+

1

p(τ−1(t))
×∫ τ−1(t))

T

1

r(s)

[∫ ∞
s

q(θ)G(x(σ(θ)))dθ

+

∫ ∞
s

v(θ)H(x(σ(θ)))dθ

]
ds, t ≥ T

is a positive bounded solution of (1.1) on [c, d]. Hence, the proof is complete.

Example 2.12. Consider the differential equations

(et(x(t) + e3πx(t− 3π))′)′ + e3t+2πG(x(t− 2π)) + e3t+3πH(x(t− 3π)) = 0, (2.5)

where t ≥ 2π, G(x) = H(x) = x. All conditions of Theorem 2.10 are satisfied for
(2.5). Hence, every solution of (2.5) oscillates. In particular, x(t) = et sin t is one of
such solution of (2.5).
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