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Abstract

In this work, we establish the necessary and sufficient conditions for oscillation
of a class of second order nonlinear neutral differential equations for various ranges
of neutral coefficient.
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1 Introduction
Consider the nonlinear neutral delay differential equations of the form:

(r(®)(2(t) + p(H)z(r()))") + ¢(1)G(x(o (1)) + v() H(x(n(t))) = 0, (L.1)

where r, ¢, v, 7, 0,7 € C(Ry,Ry),p € C(R,,R) such that 7(t) < t, o(t) < t,
n(t) < t with tlim 7(t) = 00 = tlim o(t) = oo = tlim n(t) and G, H € C(R,R)
—00 —00 —00
satisfying the property yG(y) > 0, uH (u) > 0 for y, u # 0. In this work, our objective
is to establish the sufficient conditions for oscillation and nonoscillation of solutions of
(1.1) under the assumption
t
d
(Ao) R(t):/—s< o0 as t = o
o 7(s)

for various range of p(t).
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Baculikova et al. [4] have studied the linear counterpart of (1.1), that is,

(r(®)(z(t) + p(t)z(r (1)) + q(t)z(o(t)) + v(t)x(n(t)) = 0 (1.2)

when 0 < p(t) < py < oo. The authors have obtained sufficient conditions for oscil-
lation of solutions of (1.2) through some comparison results. Here, an attempt is made
to study (1.1) without comparison results. Indeed, (1.2) is a special case of (1.1). It is
interesting to see that our method provide a better understanding than [4] as long as os-
cillatory behaviour of solutions of (1.1)/(1.2) is concerned for any |p(t)| < co. Tripathy
et al. [11] have studied (1.1) along with

(r(t)(z(t) + p(t)x(7(1))) + a()G(z(a (1)) = 0 (1.3)

and obtained the sufficient conditions for oscillation, nonoscillation and asymptotic be-
havior of solutions of (1.1) and (1.3) provided G, H could be linear or nonlinear. In
another work [12], the authors have established oscillation criteria for (1.1) under the
assumption

b ds

R(t):/ —— — +ooast — oo,
o 7(s)

where G and H could be strictly sublinear or superlinear. In this work, we continue to

study (1.1) under the assumption (Ag). We note that not only the present work general-

izes the work of [4], but also it generalizes the works of [2, 3].

Neutral differential equations find numerous applications in natural sciences and
technology. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines (see for e.g., [7]). In this paper, we restrict our
attention to study (1.1) which includes a class of nonlinear functional differential equa-
tions of neutral as well as nonneutral type. In this direction we refer the reader to the
monographs [5,6] and some of the works [1,9,10,13,14] and the references cited therein.

Definition 1.1. By a solution of (1.1), we mean a continuously differentiable function
x(t) which is defined for ¢ > T* = min{7(ty), o(to), n(to)} such that () satisfies
(1.1) for all ¢ > ty. In the sequel, it will always be assumed that the solutions of (1.1)
exist on some half line [t;,00), t; > to. A solution of (1.1) is said to be oscillatory,
if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1.1) is
called oscillatory, if all its solutions are oscillatory.

2 Main Results

This section deals with the necessary and sufficient conditions for oscillation of all so-
lutions of (1.1). Throughout our discussion, we use the notation

2(t) = x(t) + p(t)x(7(1))- 2.1
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Lemma 2.1. Assume that (Ag) holds. Let x(t) be a positive solution of (1.1) defined on
[to, 00) such that z(t) > 0 and (r(t)z'(t))" < 0 fort > to. If 2'(t) < 0 fort > tg, then
> ds

2(t) > ~Ry()r(8)2(1), Ralt) = / Tt

IN

which on inte-

Proof. For s > t, r(s)2'(s) < r(t)2'(t) implies that 2’(s)

gration from ¢ to s, we get

/: 2(0)do < r(t)2'(t) /tS %Z),

that is,
2(t) +r(t)2 (t)Ry(t) > 2(s) > 0 as s — oo.
This completes the proof. u

Theorem 2.2. Let —1 < —a < p(t) <0, a > 0, t € R. Assume that (Ay) holds.
(a) If

(A1) G(-u) = =G(u), H(-u) = —H(u), u € R,

(Ag) () =1 (7(t)) and lim 7"(t) < oo, t € R,

and

(As) /OOO%<+OO

hold, then every unbounded solution of (1.1) oscillates.
(b) If (A3) does not hold and if

o0

(Ay) / [q(s)G(CR(o(s)) +v(s)H(CR(n(s))]ds < oo, T >0 for every C > 0,

T
then (1.1) admits a positive bounded solution.

Proof. (a) On the contrary, let’s assume that x(¢) is an unbounded nonoscillatory solu-
tion of (1.1) such that x(¢) > 0 for ¢ > ¢,. Hence, there exists t; > ty such that

z(t) >0, z(7(t)) > 0, x(o(t)) >0, x(n(t)) > 0 fort > t;.
Using (2.1), (1.1) becomes
(r@)2' (1)) = —q()G(z(o(t)) — v(t)H(z(n(t)) <0, £ O fort > t;. (2.2)

Therefore, there exists ¢, > t; such that r(¢)z'(¢) and z(¢) are monotonic on [to, 00).
Let t3 > ¢, be such that z(¢) > 0 for ¢ > t3. Indeed, z(¢) < 0 for ¢ > t3 is not possible.
Because, in this case z(t) < z(7(t)) implies that

z(t) < a(r(t) < a(r*(1) < a(rP(1) < - < a(ty),
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that is, z(¢) is bounded. If z(¢) > 0,7(¢)2'(t) > 0 for ¢t > t3, then r(¢)z'(t) is nonin-
creasing on [t3, 00). So there exist a constant C' > 0 and ¢4 > t3 such that r(¢)2'(¢t) < C
for t > t,. Consequently

due to (Ap). On the other hand, x(¢) is unbounded implies that there exists an increasing
sequence {0, } such that 0,,— oo and z(o,)— o0 as n— oo and z(0,,) = max{z(s) :
t1 < s < 0,}. Therefore,

z(0on) + p(on)z(7(04))
z(oy) — ax(7(0m))

x(o,) — ax(oy,)

= (1-a)z(o,)( 1 —a>0)
+00 as n — 00

z(0n)

vV 1V

4

gives a contradiction. The case r(t)z'(t) < 0,z(¢t) > 0 for t > t3 is not possible due to
unbounded z(t).
(b) Suppose that (Aj3) does not hold. For C' > 0, let

ol

| OGERE ) + o0 HCRO))] di <
Consider
M= {a: 2 € C([to,00),R), 2(t) = 0, t € [ty, T,
R(T,t) < x(t) < CR(T,t),t > T},
where R(T)t) = R(t) — R(T). Define
0, té€lto,T],
batt) = {0+ [ [ aoatteenas

For every x € M,

wt) > [ S [T6Eoe) + o o))
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C [t du C
> — —— = —R(T,t
5 Jr r(u) E)R(7>

and z(t) < CR(T,t) implies that

walt) < —plt)alr(t) + 5 [ o
< aCR(T,T(t))—I—%R(T,t)

2
< aCR(T,t) + ?CR(T, t)

2
= (a + 5) CR(T,t) < CR(T\t)
implies that Vx(¢) € M. Define u, : [to, +00) — R by the recursive formula

up(t) = (Wup_1)(t), n>1

with the initial condition

0, tE€lty,T]
Uug(t) =
ol?) %R(T,t), t>T

Inductively it is easy to verify that
C
gR(T, t) <up(t) <u,(t) <CR(T)t), t > T.

Therefore, lim w,(t) exists. By the Lebesgue’s dominated convergence theorem, u €
n—oo

M and Vu(t) = u(t), where u(t) is a solution of (1.1) on [tg, c0) such that u(¢) > 0.
This completes the proof. [

Theorem 2.3. Let —1 < —a < p(t) <0, a > 0, n(t) > o(t), r(t) > r(o(t)) and 7(t)
is bijective for t € R . Assume that (Ayg) — (A4) hold. Furthermore, assume that

(As) G, H are superlinear such that G(g) > G(;j), H(;) > H(ﬁv)’ u>v >
0. 5> 1 u v u v
Y Y 0o 1 6
(Ag) / T@)/ lq(s) + Lv(s)]dsdf = oo, L >0, T >0
T T
and

oo 1 o0
(A7) / E/ [q(s) + Lu(s)dsdt = +oo, L > 0, is a constant hold. Then every
o T t

solution of (1.1) either oscillates or converges to zero as t — oo. If (A7) fails to hold,
then (1.1) admits a positive bounded solution which does not tend to zero as t — oo.
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Proof. Let z(t) be a nonoscillatory solution of (1.1). Proceeding as in the proof of
Theorem 2.2, we have (2.2) for ¢ > ¢;. Hence, there exists to > t1 such that r(¢)2'(¢) is
nonincreasing on [ta, 00). If z(¢) < 0 for ¢ > t,, then x(¢) is bounded. Consequently,
tlggo z(t) exists. As a result,

0> lim 2(t) = limsup z(t)
t—o00 t—o0
> limsup(z(t) — ax(7(t)))
t—00
> limsup z(t) + liminf(—az(7(t)))
t—s00 t—00

(1 —a)limsup z(t)

t—o00

implies that liin supz(t) =0 (" 1 —a > 0) and hence tli)m z(t) = 0. Let z(t) > 0 for
—00 o0

t > to. Consider 7(t)2'(t) < 0 for t > t,. Therefore, tlim z(t) exists. We claim that
— 00

x(t) is bounded. If not, there exists an increasing sequence {~, } such that ,— oo as
n — 00, (v,) = oo and z(7,) = max{z(s) : t3 < s < v, }. Therefore

2(vn) = () + ()2 (T(1m))
> (1 - a)x(lyn)
— 400 as — o0

gives a contradiction. To show tlirn x(t) = 0, it is sufficient to show that lim inf x(t) =
—00 —

t—o00
0. If not, there exist a constant o > 0 and ¢35 > ¢, such that z(o(¢)) > a > 0 for t > ts.
Integrating (2.2) from t3 to t(> t3), we obtain

[r(s)2' ()], +/ [a(5)G(2(a(5))) + v(s) H(x(n(s)))] ds < 0,

t3
that is,

/ (4()G(a) + v(s) H(o)] ds < —[r(s)Z(s)],

t3
implies that
t
/ [9(s)G(a) + v(s)H ()] ds < —r(t)'(2).
ts3
Consequently,

< e Zq@m H(a) /t:v<s>ds} < —(0)

Integrating the preceding inequality from ¢4 to £, we get

Gla) [ /ttTle) /t " 4(s)dsdb + H(a) /t t % /:U(s)dsde} < 2(t) + 2(t).

3 4
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that is,

/:0 % /: [q(s) + Lv(s)}dsdﬁ < oo, L= Gla)’

a contradiction to (Ag). Therefore, our assertion hold. Hence, there exists {J, },°; C
[t4,00) such that §, — oo asn — oo and lim z(4,) = 0. Let tlim z(t) = 1,1 €
—00

n—o0
(—00,0]. For t > t,, we have

A1) — 2(t) = 2(r7 (1) + [p(r (1) — La(t) — p(t)x(7 (1))

implies that

lim [2(77(t)) + {p( (1)) — L} (t) — p(t)z(7(t))] = 0.

t—o00

Equivalently,

lim [2(77"(dn)) + {p(77" (0)) — 1}2(0n) — p(8)2(7(dn))] = 0

n—o0

implies that
lim [2(7"(5,)) = p(0)(r(3,))] = 0.

n—oo

Using the fact that

then it follows that
lim SUP[_p@n)x(T((Sn))} =0,

n—o0

that is, lim [—p(9,)x(7(,))] = 0. Ultimately,

n—oo

[ = lim 2(5,) = lim [2(0,) + p(d,)z(7(d,))] = 0.

n—oo n—oo

As a result

0 = lim 2(¢)

mg igp@:(t) +p(t)x(7(t)))

limsup(z(t) — ax(7(t)))

t—o00

AV

v

lirtri)izlp x(t) + 1igi£lf(—a$(7(t)))
(1 — a)limsup z(t)

t—o00

implies that lim sup z(t) = 0 and thus tlim z(t) = 0. Suppose that r(¢)z'(t) > 0 for
t—00 —00
t > ty, that is, 1tlim r(t)2'(t) exists. Since z(t) is nondecreasing, then there exist a
—00
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constant C' > 0 and t3 > t5 such that z(o(¢t)) > C and z(n(t)) > C fort > ts.
Consequently,

G(z(a(t) g

GEoW0) = =505 ()
> &)
and H(z(n(t))) > Hég)zﬁ( (t)) for t > ts. Integrating (2.2) from ¢(> t3) to (+00)
we get
r(s)2' ()" + / " @G (o) + vl Hr()]ds < 0
that is,
/t UGG + o Hm)]ds < P
and hence
) 2 5 / cﬁf) | e onds
> [G / ds} . {Héf) /t mv(s)ds] A (n(1)).

Using o(t) <t and (t) > o(t), the above inequality yields

(o) ow) = |5 [ aas+ D [ otsjas) o)

fort > t,. Hence

Po o
Z(o(t)) > %i(—g»/t [q(s)+Lv(s)]ds,

H(C
where L = L > (. Integrating the preceding inequality from ¢35 to 400, we get

G(C)

% /too % /too [q(s) + Lv(s)}dsdt < /too 5;(((;((1;)))) dt < oo

3 3

which is a contradiction to (Ay7).
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Next, we assume that (A7) fails to hold. Let

/ (13 / )+ Lv(0)]dhds < 3(};((2*), T>T",

where C* —max{R( (t)), R(n(t))}. Consider

M = t(), ,R) Ilf(t) = @,t S [tQ,T],
RTt) <z(t) < R(t),fort > T}
and define
U, telty,T]
bt — { ~p0etre) + S [ [T lgocae o)+

=%
—~
)
~
Q
—~
=
—~
—
<
~—
~—
~—
+
<
—~
<>
~—
=
=
—~
—~
<
~—
~—
P
U
<>
U
VA

Ta(t) < aR(tH@*/tL/:O

IA
=
=

implies that Wz € M. Proceeding as in the proof of Theorem 2.2, we obtain that 7" has
a fixed point u € M, that is u(t) = (T'u)(t). Therefore u(t) is a solution of (1.1). This
completes the proof. [

Theorem 2.4. Let —1 < —a < p(t) <0, a > 0, n(t) > o(t), r(t) > r(o(t)) and 7(t)
is bijective for t € R . Assume that (Ay) — (A4s), (Ag), (A7) and
G G H H
(As) G, H are strictly sublinear such that (g) > (;j), (;L) > <;})’
U v u v
u<wv, <1
hold. Then every solution of (1.1) either oscillates or converges to zero ast — oo. If

(A7) fails to hold, then (1.1) admits a positive bounded solution which does not tend to
zero as t — oQ.

0<
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Proof. The proof follows from the proof of Theorem 2.3. For the case r(¢)z'(t) >
0,z(t) > 0, we integrate (r(t)z'(¢))" < 0 from ¢, to ¢ and obtained that 2'(t) <
T(tQ)Z/(tQ) .
rit) ()
t

ds .
C’/ —— < oo as t — oo. Hence, there exist C; > 0 and t3 > t, such that z(t) < C}
to

for t > t,. Again integrating from ¢, to t we find z(t) < z(t2) +

r(s)

for t > t5. Due to (Ag)

G(z(a(t)) =

v

B

H(C

and H(z(n(t))) > é 1)zﬁ(n(t)) for ¢ > t3. The rest of the proof follows from
1

Theorem 2.3. Thus the proof is complete. 0

Remark 2.5. In Theorem 2.3, the argument used to make [ = 0 is true when |p(t)| < oo
such that p(t) # 1.

Theorem 2.6. Let —0o < —ay < p(t) < —ag < —1, n(t) > o(t), r(t) > r(o(t)) and
7(t) is bijective for t € R, where ay, az > 0 such that 3ay > ay. Assume that (Ay),
(A1), (A3) and (Ag) — (As) hold. Then every bounded solution of (1.1) either oscillates
or tends to zero as t — oo. If G and H are Lipschitzian on the intervals of the form
[c,d], 0 < ¢ < d < oo and (A7) fails to hold, then (1.1) admits a positive bounded
solution which does not tend to zero as t — oo.

Proof. Let z(t) be a bounded nonoscillatory solution of (1.1). Proceeding as in Theorem

2.2, it follows that z(t), 7(t)z'(t) are monotonic on [ty, o0). Since z(t) is bounded, we

have z(t) is bounded due to (2.1) and hence tlim z(t) exists. The case z(t) > 0 is similar
— 00

to Theorem 2.4. In case z(t) < 0 for t > to, let r(¢)2'(¢t) > 0. Using Remark 2.5 we
conclude that L = 0. As a result

0= lim 2(t) = liminf(e(t) + p(t)x(7(t)))
< 1ig£f(m(t) — axz(7(1)))

< limsupz(t) + litm inf(—agz(7(t)))
S0

t—o0

(1 — ag) limsup x(¢)

t—o00
implies that hm sup x(t) = 0[." 1—as < 0]. Hence, tlggo z(t) = 0. Consider r(t)2'(t) <

0. From (2. 2) we have (r(t)2'(t))" < 0. Using the same type of argument as in Theorem
2.4, we can find Cy > 0 and t5 > ¢, such that (7' (0 (t))) < —Cy and z(7'(n(t))) <
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—C, for t > t3. Hence, z(t) > —a;x(7(t)) implies that z(t) > —aj ' 2(77'(¢)), that is,
w(o(t)) > —a;'z(r7Ho(t))) > —a;'Cy and z(n(t)) > —a;'Cy for t > t3. Conse-
quently, (1.1) reduces to

(r(t)2' (1)) + G(—a;y ' Ca)g(t) + H(—ay' Ca)u(t) < 0

for ¢t > t3. Twice integration of the last inequality from ¢3 to £ we obtain a contradiction
to (AG)
For the necessary part, it is possible to find 7" > 7™ such that

/00 L) /:o[q(t) + Lo(t)]dtds < aQBI_(l,

r (s

K,

where K = maX{Kl, T G(l)}, K and K, are Lipschitz constants of G and H

(CLQ — ].)(3@2 - al)
3@1&2 '
Let X = BC([tg,>0),R) be the space of real valued continuous functions defined
on [tg, 00). Indeed, X is a Banach space with the supremum norm defined by

on [a, 1] respectively, where a =

I [|= sup{le@)] - ¢ = to}.

Define
S={ueX:a<u(t) <1, t>t}

and we note that S is a closed convex subspace of X. Let ¥ : .S — S be such that

z(t7(t)) as — 1
p(r71(1)) TZ{QT‘l(t))

Uz (t) = 1 ® 1 o0
. / = / 9(0)G (o (0)))db

—i—/oov(H)H(x(n(H)))dH ds, t > T.

and

ay — 1 1 T o0
Yalt) = ‘p<f—1<t>>+p<f—1<t>>/T ﬂ[/ 1(6)CG(a(o(0)))df

[T o))
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aza:1+p<7 (11()t) /Tl(t)ﬁ {/:oq(e)dGJr%/:ov(Q)d@} ds
> “2_1 G<1 - [/ 9)d0+L/:Ov(9)d9] ds

Cl2—1 CL2—1

aq 3as

v

v

implies that Ux € S. Now for x1, 25 € S, we have

Wz (t) = o ()] < eyl _1(t))—x2(7-_1(t))|
TG |/ / [21(0(6)) — z2(o (6))la(6)ddds
+ ‘p S / s (9(6)) — (r(6)) o(6) s

IN

— o ||

—Hﬂfl
a

3(12

= vl 21— a2 |

implies that
| Wy — Wy [|[< v || 21 — 22 ||,

1
where v = — ( < 1. Therefore, ¥ is a contraction. Hence by Banach’s
az

fixed point theorem ¥ has a unique fixed point z € S. Itis easy to see that tlim z(t) # 0.
—00
This completes the proof. 0

Theorem 2.7. Let —o0 < —ay < p(t) < —as < —1, n(t) > o(t), r(t) > r(o(t)) and
7(t) is bijective for t € R, where ay, as > 0 such that 3ay > ay. Assume that (Ay),
(A1), (A3) and (As) — (A7) hold. Then every bounded solution of (1.1) either oscillates
or tends to zero as t — oo. If G and H are Lipschitzian on the intervals of the form
[e,d], 0 < ¢ < d < oo and (A7) fails to hold, then (1.1) admits a positive bounded
solution which does not tend to zero as t — oc.

Proof. The proof follows from the proof of Theorem 2.6 except the cases, z(t) >
0,7(t)z'(t) > 0 and z(t) > 0,r(t)2'(¢t) < 0. Since z(t) is bounded, we have these
two cases follow from the proof of Theorem 2.3 and Remark 2.5. Proceeding as in
Theorem 2.6, we find that tlggo x(t) = 0. This completes the proof. O

Theorem 2.8. Let 0 < p(t) < a < 1, r(t) > r(o(t)), n(t) > o(t) and 7(t) is bijective,
fort € Ry. Assume that (Ay), (A1) and (As) — (Ay) hold. Then every solution of (1.1)
either oscillates or tends to zero ast — oo. If G and H are Lipschitzian on the intervals
of the form [c,d], 0 < ¢ < d < oo and (A7) fails to hold, then (1.1) admits a positive
bounded solution which does not tend to zero as t — oc.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Then proceeding as in Theorem
2.2, we have two cases viz. z(t) > 0,r(t)z'(t) < 0 and z(t) > 0,7(¢)2'(t) > 0 for

t € [ty,00). For the former case z(t) is bounded and hence tlim z(t) exists. Since
—00

z(t) > x(t), we have x(t) is bounded. Now, we claim that li{n inf z(t) = 0. If not, there
— 00
exist a constant & > 0 and ¢35 > t, such that z(o(t)) > a > 0 for t > t;. Integrating
(2.2) from ¢3 to t(> t3) and then using the same type of argument as in Theorem 2.3 we
obtain a contradiction to (Ag). So, our claim holds. Consequently, Remark 2.5 implies
that tlim z(t) = 0. Ultimately, 0 = thm z(t) > 1tlim x(t). Consider the latter case. Then
—00 —00 —00

there exist a constant C' > 0 and t3 > ¢ such that z(c(t)) > C and z(n(t)) > C for
t > ts3. Therefore,

Geto)) = “EI o)
e 0)

27 (n(t)) for t > t3. Since

(t) +p(t)x(7(t)) — p(t)z(7(t))
(t)p(r())p(7(

(t) = p(t)p(r(t))p(r(7(t)))
(t),

I
—~
=
|
=
=
A
3
—~
=
IAN I
8 8 B8 8
3
—~
=

we have z(t) > (1 — a)z(t) and hence (1.1) becomes

(r(®)2'(1))" + ¢()G((1 = a)z(a () + v(O) H((1 = a)z(n(t))) < 0.

With the preceding inequality, we proceed as in Theorem 2.3 to obtain a contradiction
to (A7). The necessary part can similarly be dealt with Theorem 2.3. This completes
the proof. 0

Theorem 2.9. Let 0 < p(t) < a < 1, 7(t) > r(o(t)), n(t) > o(t) and 7(t) is bijective,
fort € Ry. Assume that (Ay), (A1) and (Ag) — (As) hold. Then every solution of (1.1)
either oscillates or tends to zero ast — oo. If G and H are Lipschitzian on the intervals
of the form [c,d], 0 < ¢ < d < oo and (A7) fails to hold, then (1.1) admits a positive
bounded solution which does not tend to zero as t — oc.

Proof. The proof follows from the proof of Theorem 2.8. Due to (Ag), we use the same
type of argument as in Theorem 2.4 for the case z(t) > 0,7(¢)z'(t) > 0. Hence the
details are omitted. Thus the proof is completed. O

Theorem 2.10. Let 1 < p(t) < a < oo fort € R, and G(a) > H(a). Assume that
(Ao), (A1) and (As) hold. Furthermore, assume that there exist A, jn > 0 such that
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(Ag) G(u) + G(s) > MNG(u +s), H(u) + H(s) > pH(u+s) for u, s €

_l’_
1 (see e.g.,[9])
E ; Glus) < G(u)G(s), H(us) < H(u)H(s), u,s € Ry,
1

TOO = 00T, 7017 not forall t € ]R+
o] t
(As2) l Q(s)G(CRy (o / V(s)H(CRy(n(s))|dsdt =
T
T >0, C > O

and
(Ai3) / Q(t) + LiV(t)dt =o00; T >0, Ly = pH(C)

hold, thre Q(t) = min{q(t),q(7(t))}, V(t) = min{v(t),v(7(t))}. Then every solu-
tion of (1.1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Proceeding as in Theorem 2.3, we

have two cases viz. 7(t)z'(t) < 0 and r(¢)2'(¢t) > 0 for t € [ta,00). If r(t)2'(t) < 0

for t € [ta,00), then z(t) is bounded and tlim z(t) exists. Using Lemma 2.1, we have
—00

2(t) > —Ry(t)r(t)2'(t) for t > to. From (1.1), it is easy to see that

0—( (t)Z’(t)) +Q(t)G( (o(2))) + o) H (z(n(1)))
() [r(r(£)Z'(r(1))" + a(r(1)) G (x(o(r(1)) + v(r () H (z(n(r(1)))]

that is,
(r)2' (1)) +G(a)(r(7()2'(7(1)) +AQ()G(2(0 (1)) +uV () H(2(n(t))) < 0, (2.3)

where z(t) < x(o(t)) + ax(o(7(t))) for t > t3 > to. Using the fact that r(¢)2'(t) is
nonincreasing, we can find a constant C' > 0 such that 7(¢)2'(t) < —C and 2(t) >
CR;(t) (due to Lemma 2.1) for ¢t > t3 and hence (2.3) further implies that

(r(1)2'(1))" + G(a) (r(r(1) 2 (7(1))) +AQH) G(C R (0 (5)))
+uV () H(CR:(n(s))) < 0.

Integrating the preceding inequality form ¢3 to ¢(> t3), we obtain

/ O(5)G(C R (o(5))) s /ttv<s>H<CRl<n<s>>>ds
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—r(t)Z'(t) = G(a)(r(7(1))Z(7(1))
—(1+G(a))r(1)#(1)).

[ /Q G(CR( ())ds+u/t V(s)H(CRy(n(s))ds| < —2(t).
’ (2.4)

<
<

(1+G

Integrating (2.4) from ¢(> t3) to 400, we obtain a contradiction to (Aj2).
Let r(t)z'(t) > 0 for t > t,. Then there exist a constant C' > 0 and ¢3 > t, such that
z(t) > C fort > t3. Now, (2.3) yields that

G(a)(r(r(1)2'(7(1)))" + AQHG(C) + pV () H(C) < —(r(s)2'(s))'ds.

Integrating the above inequality from ¢3 to +oc, we obtain a contradiction to (A;3). This
completes the proof. U

Theorem 2.11. Let 1 < a; < p(t) < ay < oo fort € Ry such that a? > ay. Assume
that (Ap) holds and (A7) fails to hold. Furthermore, assume that G and H are Lips-
chitzian on the intervals of the form [c,d], 0 < ¢ < d < oo. Then (1.1) admits a positive
bounded solution.

Proof. 1f possible, let there exist 7' > T such that

/TOO% [/tOOQ(S)ds%—L/tOOU(S)dS} dt < 3[_(1’

K
L
Lipschitz constant of H on [c, d] with

where K = maX{Kl, , G(d)}, K is the Lipschitz constant of G and K is the

_ u(ai — az) — as(ar — 1) g = 1+ 3p az(a; — 1)

—— > 0.
3atay 3a; 3(a? — az)

Let X = BC([to,0), R) be the space of real valued continuous functions on [ty, 00).
Indeed, X is a Banach space with respect to the sup norm defined by

| @ [|= sup{|=(#)] - ¢ = to}.
Define
S={ue X :c<u(t) <d, t >t}
We may note that S is a closed convex subspace of X. Let ¥ : S — S be such that

(Va(T), te [Ty, T]
(7~ ()) »
Wa(t) _p (771(t)) + ( L(t))
T = ) 1 -
t) /T r(s) { / q(0)G(x(a(6)))do
+/ v(0)H (z(n(0) d@}dst>T
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For every x € S,

[ 1 ) Gd) [ e H(d) [~
Uz(t) < + (s) [/S q(@)d@—i-@/s v(G)d@] ds

< L+i/w G(dT) [/:oq(e)dﬁ—l—L/:ov(@)dG]ds

p(r7H(t) a1 Jp 7(s)
gaﬁ+@/ %/ q(e)de+L/ v(@)d&}ds
1 |ag—1
mleai
and
e
Y 2 e o)
d p
> —a—1+a—2:c

implies that Uz € S. Again for x1, o € S

1
1))

T’l(t)) 00
m / % / 4(0)1(0(6)) — wa(0(6))|d0ds

(W (1) — Waa(t)] < TH(t) — 27 (1))

K2 T’l(t)) 1 0o
+ o / = / 0(9)\16;(77(9)) —:’z(n(@))ldes
R e ErA ey O

oo 1 oo
+ —|yx1—x2||/ / 0)dds
1 a; —
< — (1 —
< (14 )nml o |

implies that

1 a; — 1
r|m—wx2|r§(—+1 )Hxl—sz-
aq 3ay

1 -1
Since (— + a13 ) < 1,then ¥ : S — S is a contraction. By Banach’s fixed point
ai ax
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theorem, W has a unique fixed point on [c, d]. It is easy to verify that

Cal) . .
. (10" @) )
T — T t 1 0

[ ﬁ[/ 2(0)C(x(0(0)))d0

+
N
8
<
G

)H(x(a(@)))d@} ds,t >T

is a positive bounded solution of (1.1) on [c, d]. Hence, the proof is complete. 0
Example 2.12. Consider the differential equations
(e'(x(t) + & x(t — 37m))) + 3G (2 (t — 27)) + 33" H(2(t — 31)) =0, (2.5)

where t > 27, G(x) = H(x) = z. All conditions of Theorem 2.10 are satisfied for
(2.5). Hence, every solution of (2.5) oscillates. In particular, z(t) = e'sint is one of
such solution of (2.5).
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