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Abstract

We find the asymptotic approximation of the invariant curve in Neimark—Sacker
theorem circling the positive equilibrium of a certain planar discrete system con-
sidered in [1].
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1 Introduction

The planar system of difference equations

r
Tntl = x”(1+xn_y"> L on=0,1,2,..., (1.1)
Yn+1 = Yn (an - N)
where the parameters B, A are positive numbers, r > 1 and
1
Bp>Htt (1.2)
r—1

was considered in [1]. System (1.1) is obtained from the planar system of difference
equations

rkxz,
T, —_——— — AZpUn
1T k(- D Ynon=0,1,2,..., (1.3)
Yny1 = anyn - HYn,
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by reducing the number of parameters. System (1.3) can be used as a certain predator—
prey model, see [1]. The authors established the boundedness and persistence of all
solutions of (1.1).

The local asymptotic stability of the following three equilibrium points of (1.1)

EO - (Oa 0)7 El - (T - 170)7

and

o l1+p Br—B—pu—1 o
E,=(z,y) = , =(r,—— —1 1.4
(z.9) ( B Brpu+tl ) @77~V (1.4

was discussed in [1]. The authors in [1] denoted Ej and £ as the boundary equilibria
and F, as the positive one. They proved that F is the saddle point when 0 < 4 < 1 and
the repeller when z > 1, while the equilibrium E is the saddle point when | B — | > 1
and is locally asymptotically stable when |B — p| < 1.

The behaviour of the positive equilibrium £, is described by the following lemmas,
see [1].

Lemma 1.1 (See [1]). Let

rxr
(1+x)?

C = Bij, D= (1.5)

The eigenvalues are both within the unit circle if and only if (C, D) is within the triangle
1

with vertices (0,0), (0,2) and (4,4). If D > 2 + 5(;’, then |\y| < 1 and |\| > 1.

Lemma 1.2 ( [1]). Each of the following holds true for (1.1)

i) If the parameters B, r and p satisfy the inequalities

(

B > +'uandC>O or
r—1

([u(r—1)+ (r—5)]B< (u+5)(u—|—1) and C < 4) or
(B*(r—1)+ (ur —2u—2)B < (u+1)*and C < D) or
(7’—!—3—1—#7“—1)]32—1—(14—;1)[4—1-(1—,u)(2—7’)]B

+(3 = p) (1 + p)? >OandD<2+§

then E, is locally asymptotically stable.
ii) If the parameters B, r and p satisfy
[r+3+pulr = DB+ 1+ p)d+ 1= p)2=r)]B+ 3 —p)(1+p)? <0,

then E, is a saddle point.
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iii) Both eigenvalues of the Jacobian matrix at E, are nonreal of modulus one when

B (p+t+1)>
T D1 — pu(t—1 . 1
N (u(i;)(,t)t(qu)l(L?g—l))q)Lt ,0<t<m1n{4,1+;},
(k+1)(r—1)

Wl =

where either 0 <t < 4, < %, or <t< 1+£,;¢2

In [1, Section 5], the authors focused on the positive equilibrium F, when the two

eigenvalues of the Jacobian matrix are nonreal and located on the unit circle. Under

certain conditions on the parameters, they proved that (1.1) undergoes Neimark—Sacker

bifurcation and the obtained curve is supercritical. More precisely, the following result
has been proved.

Theorem 1.3 (See [1]). Consider (1.1), where

t+1)2 2 Dr—1)+t
. (n+t+1) g Wt2)(u+ 1 )+,O<t<4.

(1 + 1)1 = pt —1))° (n+1)(r=1)

If(p+ 11 —2u)r # (u+4)* and (1 — p®)r # (u + 3)? then Neimark—Sacker
bifurcation occurs and the obtained curve is supercritical.

In [4] and [5], certain rational difference equations with quadratic terms were con-
sidered. The authors computed the direction of the Neimark—Sacker bifurcation and
gave the asymptotic approximation of the invariant curve. Their computational method
is based on the computational algorithm developed in [12]. The advantage of the com-
putational algorithm of [12] lies in the fact that this algorithm computes also the approx-
imate equation of the invariant curve in Neimark—Sacker theorem, [15, Theorem 3.2.3],
which is not provided by Wans algorithm in [14] which is used in [1].

In this note, we use the same approach as in [4] and [5] to find the asymptotic
approximation of the invariant curve circling the positive equilibrium E, of (1.1). Also,
for some numerical values of parameters we give visual evidence that the approximate
equation of the invariant curve is accurate.

2 Preliminaries

In this section, for the sake of completeness we give the basic facts about the Neimark—
Sacker bifurcation.

Hopf bifurcation is a well-known phenomenon for a system of ordinary differential
equations in two or more dimension, whereby, when some parameter is varied, a pair
of complex conjugate eigenvalues of the Jacobian matrix at a fixed point crosses the
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imaginary axis, so that the fixed point changes its behavior from stable to unstable and
a limit cycle appears.

In the discrete setting, the Neimark—Sacker bifurcation is the discrete analogue of
the Hopf bifurcation. The Neimark—Sacker bifurcation occurs for a discrete system
depending on a parameter, i, with a fixed point whose Jacobian has a pair of complex
conjugate A(h), A(h) which cross the unit transversally at critical value h = hg. See
[2,7,11,13,15].

Consider a general map F'(h,x) that has a fixed point at the origin with complex
eigenvalues A(h) = a(h)+iB(h) and A(h) = a(h)—iB(h) satisfying a(h)*+3(h)* = 1
and S(h) # 0. By putting the linear part of such a map into Jordan Canonical form, we
may assume F' to have the following form near the origin

F(h,z) = ARz + G(h, ),

an= (3 aoy ) oo -(Rnm)- e

Let p and q be eigenvectors of A associated with A satisfying

where

Aq=Aq, pA=Ap, ,pq=1

and
® = (q,9q).
Assume that

1
6 (2 (2)) = lom + 2007+ ) + O(P)

and
Ky = (NI —A) gy
Ky = (I—A)"gn (2.2)
Ko = (XZ[ — A) " oo,
where A = A(hg). Let
z 1 9 = —2 1 9 = —=2
G| > + i(Kzof +2K1166+ K€) ) = 5(9205 + 2g116€ + g02€)
]_ 3 2% —2 -3 4
+ 6(9305 + 3921876 + 391285 + 903§ ) + O([€]7), (2.3)
then X
Cl(h0> = §Re(pq21X)

The invariant curve from the previous computational algorithm can be approximated
by using the following corollary (see [12]).
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Corollary 2.1. Assume a(ho) # 0 and h = ho + n where 1 is a sufficient small pa-
rameter. If T is a fixed point of F then the invariant curve I'(h) from Neimark—Sacker
theorem can be approximated by

Xz _ i %
(x;) ~ T+ 2poRe(qe”) + p* (Re(Kye™) + K1),

[ d
y PO = -, 0 € R.
h=ho a

3 Approximation of the Invariant Curve

where

d
d= —|\h
)

In this section, we approximate the invariant curve circling the positive equilibrium F,
of (1.1). The bifurcation parameter is B and its critical value is equal to Bj.

Theorem 3.1. Consider (1.1) and its positive equilibrium E.,. Assume that . > 0,r >

1
15>t
r —

and for critical value By the following conditions are satisfied

m—+1
r—1"

i) B2(r — 1)+ (ur —2u — 2)By — (u +1)* = 0,

i) By >

) (=p—3)
v) (—p—4)(Bo+p+1) + By(pp+ 1)r # 0.

)+

iii) Bo(p+ 1)r —4(By +p+1)* <0,
(Bo+p+ 1)+ Bo(pe+ 1)r # 0 and
(

Then there is a neighborhood U of the equilibrium point (T, ) and a p > 0 such that for
|B — By| < p, the w-limit set of solution of (1.1) is equilibrium point (Z,y) if B < By
and belongs to a closed invariant C* curve T'\(B) encircling the (Z,7) if B > B.
Furthermore, I'(By) = 0 and invariant curve can be approximated by

po (Bozy cos(f) + Asin(6)) N (B—By)(z+1)T1,

O g
By—B)(z+1)7T ’
Y U+ 2po cos(0) + (Bo )é&: ) 1>

T = Bz (Bozy —3)
(BoZy (BoZ + By — 1) (T (BoZ + By — 1) + 1) — BoZ* + T + By — 2)
T, = (Z+1)y(BoZ (Boxy —3) + (Boz (y (Box — 1) — 3) +4) cos(20))



64 S. Kalabusié, N. Muji¢, E. Pilav

+ (A (=g (Z(Box+By—1)+1)+z +1))sin(26),
Ty = Bo(Z(§(Bozy(BoT + By—1) — 4By (T+1)+3)+4)+ 7+ 4) T cos(26)
+Bozy (7 (BoZ + By — 1) + 1) (Bozy — 3) — (A (2 (Bozy (BoZ + By — 1)
—2By (z+ 1)+ 1) + 1)) sin(20).

Proof. In order to apply Corollary 2.1 we shift the positive equilibrium F, to the origin
by taking the substitution

U, = Tp— T,
Up = UYp— .
Now, (1.1) has the (u,v) form
= (@) (= j :
Unpl = WU\ T 1 YT )T =012, 3.0
Uny1 = (Y+va) (BT +u,) —p) =y

The corresponding map F' associated to (3.1) is given by

B

(G +0)(B(@+u)—p) -y

The Jacobian matrix of the map F'z is given by

Ty = | wrzrng 0 T
B(v+7) B(u+z)—m

The Jacobian matrix of the map Fj at the shifted equilibrium (0, 0) is given by

r _ _
_ 2 Yy -
Jr,(0,0) = (z+1) : (3.2)
By Bx —
By using (1.4) and (1.5), we can rewrite (3.2) as
1-D -z
JFB (070) = ( Bﬂ 1 ) . (33)

Thus, we have

p ()= U 7)) Gisn) o9
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where
By — “PEED—v@ ) =) (1) +r)
AN T4+u+l
+u2(—§+D—v—1)—f(f§+f—|—gj—r+1)
T+u+1

fo(B,u,v) = Buwv.

For B = B,, we obtain

o 1+pu Bor—By—pu—1
E = = , . 3.5
According to Lemma 1.1, for bifurcation to occur we need
_ rT -
Boxy = At7)? and 0 < Byzy < 4.
This implies ~
r r
By=——and0 < < 4, 3.6
O g1+ 2)? (1+z)? (36)
and
Bi(r = 1)+ (ur —2u—=2)Bo+ (3 —p) — (L + p)* = 0,
Bo(p+1)r —4(By + p+1)? < 0.
For B = By, the Jacobian in (3.3) becomes
_ (1—Byzy -7
JFBO (070) - ( Bo@ 1 ) :
The eigenvalues of Jp, (0,0) are A(By) and M(By), where
2 — By + i/ (4 — ByZy)BoTy
A(By) = 00T Mé 079) BTy
Now, (1.4) and (1.2) imply
(4 — BoZy) BoTy
_ A DBr=B-p-H(p+5)(B+p+l)-Bu+lr)

(B+p+1)2

The eigenvectors corresponding to A(By) are q(By) and q(By), where

—By&j + ir/(4 — Boiy)) BoZy
a(Bo) = 093y+l\/( - 0TY) 0$y71 ‘
QBOy
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Set A = /(4 — Byzij) Byzy. It is easy to see that [\(B,)| = 1 and

X(By) = % (2= Bozy)® +1i(2 = Byy) A — 2),
N (By) = % ((2 = Bozy) (Bozy” — 4Bozy + 1) + i (BoZy — 3) (Bozy — 1) A)
M(By) = % ((Bozy — 4) Bozy (Bozy — 2)*

—i (BoZy® — 4BoZy + 2) (BoTy — 2) A + 2) .
One can see that \¥ # 1 for k = 1,2, 3, 4. If
Bory #2 and Byry # 3,
then
(=p=3)(Bo+pu+1)+Bo(p+1)r #0 and  (—p—4)(Bo+p+1)+Bo(u+1)r # 0.
Furthermore, we get

Ty ry

B=B a 2\/39’0’— T 4] -2
0 ?/ ($+1)2 B—Bq

d(By) = ~=|A(B)

From the above considerations, we conclude that all conditions of Corollary 2.1 are
satisfied. Let us now approximate the invariant curve. Substituting B = By into (3.4),

we get
F(u>:JFB (U>+G(u>’
v o\ v v
where -,
u)  [(Gi(u,v
“ (”) a (Gz(% U)) '
and
w(BoT (Z+1)g—v(@+1)— 28+ 1) (F+1) +7
Gr(up) = “Bor@+D) (93+u)+1( )(G+1)+7)
+“2(—(—Bof§+??+v+1))—f(fg+f+g_r+1)
TH+u+1

Ga(u,v) = DByuw.

Hence, (3.1) is equivalent to
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Let us define the basis of R? by ® = (q, q) where q = q(By). Then, we can represent
(u,v) as

—Byzy (z+2)+i(z2—2) A

U <z —

(v) =® (;) =(az+ ) = 2By )
zZ+Z

from which, we have

Bog (B(]Fg.fg + F1> —+ (Z — 2) T

¢(s(0) - | S hat=3mRE |

2y
where

I' = —iAz(y(z2+2-2)+(z+2)" -2)
—2T(z—2)(J+zZ+z+1)+iA(G+2+2+1)

I = z2@@H((2-2)2+(x-2)2+2)+2°+ (2 +2)7°
+(z—6)22 — 224+ 2(2(24+2) —2)+2) -y (Z+2—2)
—zZ4+2-1)(zZ4+2+2)+iAz—-2) T (z(z4+2-2)—-3)—1),

I'y = —2(z((z2—-2)z2+(2—2)2+2)—-32—-324+4)+2+2—2.

Thus, we obtain

I's
w = e (o(2)) - [Eg
02 © z=0 —Box + ZT
Iy
0? ( z
gn = —G | (_>> = | 2B (z+1)y?
0207 Z) ). 0 _Byx
0? z .
Jo2 = 828§G (‘I) (Z)) . = Jo2,
and
I's
- — —
Ky — B+ 1 (B =9

BoZ (T 4+ 1)y (Boxy — 3) (BoZy (BoTy — 1A — 4) 4+ 2iA + 2)
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K02 = K_Q()a

I3 = A*(G(Box+ Bo—1)— 1)+ 2iByAy (% (Boy — 1) — 1)
—i—Boxy( (Bo(Box y—:v(Boy+y+3)+2)+4)+4)
I, = A*(1 -5 (Byz+ By—1))
+Bozy (7 (Bo (Z (=) (BoZ + By — 1) + 72 + 2) — 4) — 4)
I's = (Z4+1)7(Box(§(Boz — 1) —3)+4)
+iA(Z(g(Box+By—1)—1)+gy—1)
(@

e = 2BoZ(Z(J(1 = Bo(Z(Bo(z+1)y—4)+y—4)) —4)+3y—4)
+2iA (Bozy (Boz (z+ 1)+ 1) + (-2 — 1) (2Byz + 1)) .
Also,
o3 z 1 _ 1
go1 = %G <(I) (z + §K2022 + KHZZ —+ §K0222) i =
Boi’g (B Eg (B[).TyAl.ﬁI? + AQ) + Ag) + iL'A7
_ | 2B2(Bozg — 3) 7 (7 + 1) 52 (=i (BoZj — 2) A + BoTg? — 4By7j + 2)
02y (Bozy (2B B EQA4m + Ajs) + Ag) + 2By Ag ’
By (Bozy — 3)Z (Z + 1) 5% (—i (Byzy — 2) A + ByZy? — 4Byzy + 2)

where
A = =724 By(—4iA(z(z—3)y+5T—2)—7)+ 7 (—47 (85 + 13) + 91y + 56)

+4. (77 + TiA + 27))
Ay = iAZ(4By ((z (62 —19) —=5)y+5(x—3)(T+ 1)) +9)
+4Byz (7 (197 — 48) — 15) § — 22 (60By (2 + 1) + & — 70) — 2
Ay = —iAZ(By(z(36x —127) — 28)y — 8By (z + 1) (2z + 5) + 36)
+2By2 (23 —19(z —2)T)y+4(T+ 1) (Z(Bo (T2 +11) +2) + 2)

Ay = iIAN(Z(Y+5)—y+5)+8zy+ 13z — 9y + 13
As; = 1+4+72(-2iByA(62y+ 5T — Ty +5)+2By (27— 192) y + 1)
Ag = —4+7T(—4+ By (2iA 97y — 47 — 15y — 4) + 192y — 147 — 55y — 14))
A7 = 4iByA(z+1) (Bozy' (2 —1)—z —3y—1)
+4Byy (Bozy* ( —3)7 — 1) — 4 (2 + 1))
+BoZy* (9 — 4By (Z + 1) (Bozy (z — 1) — 72 +9))
Ag = —Boxy' (iA@+1)+25+72—5+7) + Bozy’ (T + 1)
+HIAZ+Ty+1)+4(x+1) 7.
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We can easily find the vector

ZBOg 21
P = - y T, R
V/BoZy (4 — Bozy)  iBoZy + \/BoTy (4 — Bozy) — 4i
so pA = A\p and pq = 1. This gives
1 _
a(By) = §Re(p921)\) =

Z (Bo (=29 (Box + By — 1) (# (Bo# + Bo = 1) + 1) +7° — 1) — & +2)
2(z+1)°

By using (1.2), (1.4) and (3.6) we obtain

a(BO>:_:B(:By+x J +9)
2(z+1)" y?

since 7y + 7° — y* + 9y > (r — 1)*> > 0. Now, we have

d
Po = _E(B — B(]> =
- (B—By)(z+1)°y
Bofg(Boff—i—Bo—l)(f(Boii‘—FBg—1)—|—1)_B0j2+f+30_2'
The rest of the proof follows from Corollary 2.1. ]
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