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Abstract

This work is concerned with the existence of three positive solutions for semi-
positone boundary value problems of three-point boundary conditions. The analy-
sis is based upon a fixed point theorem on a cone.

AMS Subject Classifications: 34B10, 34B18.
Keywords: Positive solution, semipositone, fixed point theorem.

1 Introduction
Nonlinear boundary value problems (BVPs) for ordinary differential equations (ODEs)
with nonlocal boundary conditions (BCs) have been well studied over the past decades.
The study of nonlocal BCs for ODEs goes back, as far as we know, to Picone [13] and
have been widely investigated during the years by many authors [2, 12, 15].

The research of nonlinear boundary value problems with multi-point boundary con-
ditions at nonresonance case has a significant part in both theory and applications [4,
10, 16]. Moreover, it is known that the research of existence of solutions for non-
linear boundary value problems is not easy for the resonant case. Lately, the multi-
point boundary value problems at resonance for ordinary differential equations have
been investigated in detail and many successful results have been attained, for instance,
see [1, 6, 7, 11]. Nevertheless, to our knowledge, the corresponding results for second-
order with integral boundary conditions, are seldom seen [3,8,9] and very little research
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46 Fulya Yoruk Deren, Nuket Aykut Hamal, Tugba Senlik Cerdik

has been done on semipositone problems for nonlinear integral boundary value prob-
lems at resonance [5].

In [9], Liu and Ouyang established solutions for the nonlinear boundary value prob-
lems with integral boundary conditions z′′(t) + f(t, z(t)) = 0, 0 < t < 1,

z(0) = 0, z(1) = α

∫ η

0

z(s)ds,

where η ∈ (0, 1),
1

2
αη2 = 1 and f ∈ C([0, 1]×R,R). The authors obtained a sufficient

condition for the existence results of solutions.
In [5], Henderson and Kosmatov consider the Neumann boundary value problem at

resonance {
−z′′(t) = f(t, z(t)), 0 < t < 1,
z′(0) = z′(1) = 0,

where β : [0, 1] → R+, α 6= 0 and f(t, z) + α2z + β(z) ≥ 0, for t ∈ [0, 1] and z ≥ 0.
Here positive solutions are obtained by means of the Guo–Krasnosel’skii fixed point
theorem.

Motivated by the papers mentioned above, we study the existence of positive solu-
tions for the following boundary value problem with a sign-changing nonlinearity z′′(t) = f(t, z(t)), t ∈ (0, 1),

z′(0) = 0, z(1) = α

∫ n

0

z(s)ds,
(1.1)

where α > 1, n ∈ (0, 1), αn = 1, the continuous function f : [0, 1] × [0,∞) → R
satisfies the inequality f(t, z) ≥ −β2z −M in [0, 1]× [0,∞), for some constant β 6= 0
and a positive constant M > 0.

When a nontrivial solution exists for the homogeneous boundary value problem, the
corresponding boundary value problem is called at resonance.

Consider  z′′(t) + β2z(t) = F (t, z(t)), t ∈ (0, 1),

z′(0) = 0, z(1) = α

∫ n

0

z(s)ds,
(1.2)

where

F (t, z) = f(t, z) + β2z.

It is easy to see that the BVP (1.1) is equivalent to the BVP (1.2) and the BVP (1.2) is
at nonresonance.

Throughout the paper we will assume that the following conditions hold:



Semipositone Boundary Value Problems at Resonance 47

(H1) β ∈
(
α,
π

2

)
;

(H2) f : [0, 1]× [0,∞)→ R is a continuous function;

(H3) there exists M > 0, satisfying

F (t, z) +M ≥ 0, (t, z) ∈ [0, 1]× [0,∞).

2 Preliminaries
Lemma 2.1. Assume αn = 1. If h ∈ C([0, 1],R), then the BVP z′′(t) + β2z(t) = h(t), t ∈ (0, 1),

z′(0) = 0, z(1) = α

∫ n

0

z(s)ds
(2.1)

has a unique solution

z(t) =

∫ 1

0

G(t, s)h(s)ds.

Here

G(t, s) =


1

β
sin β(t− s), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

+
cos βt

kβ2


α cos β(n− s) + β sin β(1− s)− α, s ≤ n,

β sin β(1− s), n ≤ s,

where k =
α

β
sin βn− cos β.

Lemma 2.2. Suppose that condition (H1) is satisfied. Then
i) For any t, s ∈ [0, 1], G(t, s) ≥ 0.
ii) There exist d ∈ (0, 1] and φ ∈ C([0, 1], [0,∞)) satisfying

dφ(s) ≤ G(t, s) ≤ φ(s), t, s ∈ [0, 1].

Proof. By Lemma 2.1, we show the proof of (i) and (ii).
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i) Using cos βn > cos β for β ∈
(
α,
π

2

)
,

k >
α

β
sin βn− cos βn

and tan βn > βn for βn > 0 with αn = 1, we obtain k > 0. Moreover, it is enough to
show the case when s ∈ [0, n] and s ≤ t. Let

ϕ(s) = α cos β(n− s) + β sin β(1− s)− α, s ∈ [0, n].

Since ϕ′′(t) ≤ 0, by standard calculus, the function ϕ is concave on (0, n). Using the

inequality cos
β

2
≥ sin

β

2
for β ∈

(
α,
π

2

)
, we can derive that

ϕ(0) = α cos βn+ β sin β − α

= β sin β − 2α sin2 βn

2

≥ β sin β − 2α sin2 β

2

> α
(

sin β − 2 sin2 β

2

)
≥ 0.

(2.2)

Because ϕ(n) ≥ 0 holds, together with (2.2) and the concavity of the function ϕ, ϕ(s) ≥
0 for s ∈ [0, n]. Hence, G(t, s) ≥ 0, t, s ∈ [0, 1].

ii) Let
Φ(s) = 1− s, K(t, s) = λΦ(s)−G(t, s).

Upper bounds.
We will prove that for s ≥ t and s ≤ t, K(t, s) ≥ 0, t, s ∈ [0, 1], when λ > 0 is

sufficiently large.
Case 1. If s ≥ t and s ∈ [0, n], then

K(t, s) = λ(1− s)− cos βt

kβ2

(
β sin β(1− s)− 2α sin2 β(n− s)

2

)
≥ λ(1− n)− sin β

kβ
.

If s ∈ [n, 1], then

K(t, s) = λ(1− s)− cos βt

kβ2
β sin β(1− s)

≥ λ(1− s)− sin β(1− s)
kβ

.
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Take λ ≥ λ1 :=
1

(1− n)k
, then K(t, s) ≥ 0 holds for s ≥ t.

Case 2. If s ≤ t and s ∈ [0, n], then

K(t, s) ≥ λ(1− s)− sin β

β
− cos βt

kβ2

(
β sin β(1− s)− 2α sin2 β(n− s)

2

)
≥ λ(1− s)− sin β

β
− cos βt

kβ2
β sin β(1− s)

≥ λ(1− n)− 2 sin β

kβ
,

so, for λ ≥ λ2 :=
2 sin β

(1− n)kβ
, we have K(t, s) ≥ 0 for s ≤ t. If s ∈ [n, 1], then

K(t, s) ≥ λ(1− s)− 1

β
sin β(1− s)− cos βn

kβ
sin β(1− s)

≥ λ(1− s)− (1− s)− cos βn

k
(1− s)

= (1− s)
(
λ− 1− cos βn

k

)
,

so, for λ ≥ λ3 := 1 +
cos βn

k
, we have K(t, s) ≥ 0 for s ≤ t.

Let λ∗ ≥ max{λ1, λ2, λ3}, then K(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1] and we obtain
λ∗Φ(s) ≥ G(t, s). If we choose φ(s) := λ∗Φ(s), then G(t, s) ≤ φ(s), t, s ∈ [0, 1].
Lower bounds.

We will prove that for s ≥ t and s ≤ t, K(t, s) ≥ 0, t, s ∈ [0, 1], when λ > 0 is
sufficiently small.

Case 1. Let ψ(s) = α cos β(n− s) +β sin β(1− s)−α. Note that ψ is concave and
ψ(s) ≥ min{ψ(0), ψ(n)} for s ∈ [0, n] . If s ≥ t and s ∈ [0, n], then

K(t, s) = λ(1− s)− cos βt

kβ2
(α cos β(n− s) + β sin β(1− s)− α)

≤ λ(1− s)− cos β

kβ2
min{α cos βn+ β sin β − α, β sin β(1− n)}

≤ λ− cos β

kβ2
min{α cos βn+ β sin β − α, β sin β(1− n)},

so, for λ ≤ λ4 :=
cos β

kβ2
min{α cos βn+β sin β−α, β sin β(1−n)}, we haveK(t, s) ≤

0 for s ≥ t. If s ∈ [n, 1], then we obtain

K(t, s) = λ(1− s)− cos βt

kβ2
β sin β(1− s)

≤ λ(1− s)− cos β

kβ
sin β(1− s).
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Since

h(x) =


sinx

x
, 0 < x ≤ π

2
,

1, x = 0

is continuous on [0,
π

2
], we can get

k0 := min
x∈[0,π

2
]
h(x) > 0,

K(t, s) ≤ λ(1− s)− cos β

kβ
k0β(1− s)

= (1− s)
(
λ− k0 cos β

k

)
,

so, for λ ≤ λ5 :=
k0 cos β

k
, we deduce that K(t, s) ≤ 0 for s ≥ t.

Case 2. For s ≤ t and s ∈ [0, n],

K(t, s) = λ(1− s)− cos βt

kβ2
(α cos β(n− s) + β sin β(1− s)− α)

≤ λ(1− s)− cos β

kβ2
min{α cos βn+ β sin β − α, β sin β(1− n)}

≤ λ− cos β

kβ2
min{α cos βn+ β sin β − α, β sin β(1− n)},

so, for λ ≤ λ4 :=
cos β

kβ2
min{α cos βn+β sin β−α, β sin β(1−n)}, we haveK(t, s) ≤

0 for s ≤ t. For s ∈ [n, 1],

K(t, s) ≤ λ(1− s)− cos βt

kβ
sin β(1− s)

≤ λ(1− s)− cos β

kβ
k0β(1− s)

= (1− s)
(
λ− k0 cos β

k

)
,

so, for λ ≤ λ5 :=
k0 cos β

k
, we have K(t, s) ≤ 0 for s ≤ t. Choose 0 < λ0 ≤

min{λ4, λ5}. Then K(t, s) ≤ 0 for (t, s) ∈ [0, 1]× [0, 1] and λ0Φ(s) ≥ G(t, s). So,

dφ(s) ≤ G(t, s) ≤ φ(s), t, s ∈ [0, 1],

where d =
λ0
λ∗

. Therefore, the proof is completed.
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Theorem 2.3 (See [14]). Assume that B is a Banach space, K ⊆ B is a cone in B and
set

Kr = {z ∈ K : ‖z‖ < r},
K(ϕ, a, b) = {z ∈ K : a ≤ ϕ(z), ||z|| ≤ b}.

Suppose that the operator T : K → K is completely continuous and ϕ is a nonnegative,
continuous, concave functional on K with ϕ(z) ≤ ||z|| for any z ∈ Kr. If there exist
0 < p < q < d ≤ c < r such that

(i) ‖Tz‖ ≤ c for z ∈ Kc;

(ii) {z ∈ K(ϕ, q, d) : ϕ(z) > q} 6= ∅ and ϕ(Tz) > q for all z ∈ K(ϕ, q, d);

(iii) ||Tz|| < p for all ||z|| ≤ p;

(iv) ϕ(Tz) > q for z ∈ K(ϕ, q, c) with ||Tz|| > d;

(v) ‖Tz‖ ≥ ‖z‖ for z ∈ ∂Kr.

Then T has at least four fixed points z1, z2, z3 and z4 in Kr such that

||z1|| < p, ϕ(z2) > q, p < ||z3|| with ϕ(z3) < q, c < ‖z4‖ ≤ r.

3 Main Result
In this section, by using Theorem 2.3, we obtain the existence of positive solutions for
the BVP (1.1).

Here, we study on C[0, 1] with the norm ‖z‖= sup
t∈[0,1]

|z(t)|, which is a Banach space.

Choose the cone by P =

{
z ∈ C[0, 1] : z(t) ≥ 0, min

0≤t≤1
z(t) ≥ d||z||

}
. Apparently,

P is a cone in C[0, 1].
Let ϕ : P → [0,∞) be a nonnegative continuous concave functional defined by

ϕ(z) = min
t∈[0,1]

z(t), ∀z ∈ P.

It is obvious that ϕ(z) ≤ ||z||, ∀z ∈ P .
We need the following lemma.

Lemma 3.1. Let v be a unique positive solution for the following boundary value prob-
lem  z′′(t) + β2z(t) = 1, t ∈ (0, 1),

z′(0) = 0, z(1) =

∫ n

0

z(s)ds.
(3.1)
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Then

v(t) ≤ dL, t ∈ [0, 1],

in which L =
K

d
, K =

∫ 1

0

φ(s)ds.

Proof. Using the Green’ s function, we get

v(t) =

∫ 1

0

G(t, s)ds

≤
∫ 1

0

φ(s)ds ≤ dL.

The proof is complete.

For the readers convenience, let us set

∆ = min
{ 1

ML
, 1
}
.

Our main result is as follows:

Theorem 3.2. Suppose that (H1)–(H3) are satisfied. Moreover there exist nonnegative

constants a, b, c, N with 1 < a < a+ d < b < d2c < c,
1

λd
< N <

c

b
satisfying

(i) f(t, z) + β2z +M <
a

K
for t ∈ [0, 1] and z ∈ [0, a];

(ii) f(t, z) + β2z +M ≥ b

K
N for t ∈ [0, 1] and z ∈

[
b− d, b

d2

]
;

(iii) f(t, z) + β2z +M ≤ c

K
for t ∈ [0, 1] and z ∈ [0, c];

(iv) lim inf
z→∞

min
t∈[0,1]

f(t, z)

z
=∞.

Then the BVP (1.1) has at least three positive solutions if λ ∈ (0,∆].

Proof. Assume that x(t) = λMv(t), in which v is a unique solution of the BVP (3.1).
Lemma 3.1 implies that x(t) = λMv(t) ≤ λMLd ≤ d for t ∈ [0, 1]. Now, we prove
that the following boundary value problem z′′(t) + β2z(t) = F̃ (t, z(t)− x(t)), t ∈ (0, 1),

z′(0) = 0, z(1) =

∫ n

0

z(s)ds
(3.2)



Semipositone Boundary Value Problems at Resonance 53

has a positive solution, where

F̃ (t, u) =

{
F (t, u) +M, u ≥ 0

F (t, 0) +M, u ≤ 0.

Denote the operator A : E → E by

Az(t) = λ

∫ 1

0

G(t, s)F̃ (s, z(s)− x(s))ds.

We shall prove that A has a fixed point in our cone P . Notice that Az(t) is continuous
on [0, 1], for any z ∈ P , and since G(t, s) ≥ 0, φ(s) ≥ 0 holds. Then, by Lemma 2.2
we have

||Az|| ≤ λ

∫ 1

0

φ(s)F̃ (s, z(s)− x(s))ds. (3.3)

Thus for any z ∈ P , we can deduce from (3.3) and Lemma 2.2 that

min
0≤t≤1

Az(t) = min
0≤t≤1

{∫ 1

0

λG(t, s)F̃ (s, z(s)− x(s))ds
}

≥ d

∫ 1

0

λφ(s)F̃ (s, z(s)− x(s))ds

≥ d||Az||.

So, A(P ) ⊂ P . Then from the definition of A, one can see easily that the operator A is
completely continuous, and each fixed point of A in P is a solution of BVP (3.2).

Firstly, we shall show that A : Pc → Pc.
Let z ∈ Pc, then ||z|| ≤ c. If max {z(t)− x(t), 0} = z∗(t) then we get F̃ (t, z∗(t)) =

f(t, z∗(t)) + β2z∗(t) + M ≥ 0. We can derive from (iii) that F̃ (t, z∗(t)) ≤ c

K
for

t ∈ [0, 1]. So, it follows from (iii) that

Az(t) =

∫ 1

0

λG(t, s)F̃ (s, z(s)− x(s))ds

≤λ
∫ 1

0

φ(s)F̃ (s, z(s)− x(s))ds

≤λ c
K

∫ 1

0

φ(s)ds

≤c.

Then, ||Az|| ≤ c for z ∈ Pc. So, condition (i) of Theorem 2.3 is satisfied. Similarly,
using the above process, we can derive that A : Pa → Pa.
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To verify (ii) of Theorem 2.3, let z(t) =
b

d2
, then z ∈ P

(
ϕ, b,

b

d2

)
, ϕ(z) =

b

d2
> b.

Thus,
{
z ∈ P

(
ϕ, b,

b

d2

)
: ϕ(z) > b

}
6= ∅. Furthermore, z ∈ P

(
ϕ, b,

b

d2

)
implies that

b ≤ z(t) ≤ b

d2
for t ∈ [0, 1] and b − d ≤ z(t) − x(t) ≤ z(t) ≤ b

d2
for t ∈ [0, 1]. (ii)

implies that F (t, z(t)− x(t)) +M ≥ b

K
N for t ∈ [0, 1]. Then

ϕ(Az) = min
t∈[0,1]

λ

∫ 1

0

G(t, s)F̃ (s, z(s)− x(s))ds

≥dλ
∫ 1

0

φ(s)F̃ (s, z(s)− x(s))ds

=dλ

∫ 1

0

φ(s)(F (s, z(s)− x(s)) +M)ds

≥dλ b
K
N

∫ 1

0

φ(s)ds = dλNb > b,

i.e.,

ϕ(Az) > b, ∀z ∈ P
(
ϕ, b,

b

d2

)
.

On the other hand, if z ∈ P (ϕ, b, c) with ||Az|| ≥ b

d2
, then we get

ϕ(Az) = min
t∈[0,1]

Az(t) ≥ d||Az|| ≥ b

d
> b.

Finally, we will show that condition (v) of Theorem 2.3 holds. Choose a number γ > 0

satisfying
(γ + β2)λd2K

2
≥ 1. The hypotheses (iv) implies that there is ρ > 0 such

that 1− λML

ρ
≥ 1

2
and

f(s, u(s)) +M ≥ γu(s), u(s) ≥ dρ

2
. (3.4)

Set R = max

{
b

d2
, ρ

}
and PR = {z ∈ K : ‖z‖ < R}. Let z ∈ ∂PR. Then

x(t) = λMv(t) ≤ λMdL ≤ λML
z(t)

R
≤ λML

ρ
z(t), t ∈ [0, 1].

Because

z(t)− x(t) ≥ ρ− λML

ρ
z(t) ≥ z(t)

2
≥ d‖z‖

2
=
dR

2
≥ dρ

2
, t ∈ [0, 1]
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together with (3.4), we have

F̃ (s, z(s)− x(s)) = f(s, z(s)− x(s)) + β2(z(s)− x(s)) +M

≥ (γ + β2)(z(s)− x(s))

≥ (γ + β2)
dR

2
.

Thus, we can obtain

Az(t) ≥ dλ

∫ 1

0

φ(s)F̃ (s, z(s)− x(s))ds

≥
(γ + β2)λd2

∫ 1

0
φ(s)ds

2
R

≥ R.

Then, ||Az|| ≥ ||z|| for z ∈ ∂PR. Since all conditions of Theorem 2.3 are satisfied,
F̃ has at least four solutions z1, z2, z3 and z4 with ||z1|| < a, ϕ(z2) > b, ||z3|| > a,
ϕ(z2) < b, c < ‖z4|| ≤ R. Besides,

z2(t) ≥ d||z2|| ≥ dϕ(z2) > db > d > x(t), t ∈ [0, 1],

z3(t) ≥ d||z3|| ≥ da > d > x(t), t ∈ [0, 1],

and

z4(t) ≥ d||z4|| ≥ dc > d > x(t), t ∈ [0, 1].

Hence z∗2 = z2 − x, z∗3 = z3 − x, z∗4 = z4 − x are positive solutions of the BVP (1.1).
Now we prove that z∗2 , z∗3 , and z∗4 are in fact the positive solutions of our problem

(1.1). To see this we have for t ∈ [0, 1], z2 represents a fixed point of the operator F̃ .
Then

z2(t) = F̃ z2(t) =

∫ 1

0

λG(t, s)F̃ (s, z2(s)− x(s))ds

=

∫ 1

0

λG(t, s)[F (s, z2(s)− x(s)) +M ]ds

=

∫ 1

0

λG(t, s)F (s, z2(s)− x(s))ds+ λM

∫ 1

0

G(t, s)ds

=

∫ 1

0

λG(t, s)F (s, z2(s)− x(s))ds+ λMv(t)

=

∫ 1

0

λG(t, s)F (s, z2(s)− x(s))ds+ x(t).
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This implies that

z2(t)− x(t) =

∫ 1

0

λG(t, s)F (s, z2(s)− x(s))ds

and

z∗2 =

∫ 1

0

λG(t, s)F (s, z∗2)ds.

Consequently, z∗2 is a positive solution of BVP (1.1). Similarly, we can show that z∗3 and
z∗4 are positive solutions of the BVP (1.1). The proof is completed.
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