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Abstract

We present in this note an alternative yet simple approach to the Devaney–
Nitecki horseshoe region for the Hénon maps. Our approach is based on the anti-
integrable limit and the implicit function theorem. We also highlight an application
to the logistic maps.
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1 Introduction
For the celebrated Hénon map [7]

Ha,b : (x, y) 7→ (−a+ y + x2,−bx) (1.1)

of R2, with a, b real parameters, Devaney and Nitecki [6] proved the following explicit
parameter region

b 6= 0 and a >
5 + 2

√
5

4
(1 + |b|)2 (1.2)

for which the set consisting of all nonwandering points forms a hyperbolic horseshoe.
This means that the restriction of Hénon map to its nonwandering set is topologically
conjugate to the two-sided Bernoulli shift with two symbols. Their proof is based on a
technique that is now referred as the “Conley–Moser conditions” (see for example [12]).
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In the enlightening paper [1], the anti-integrable limit for the Hénon map as a→∞
was established. It manifests a vivid picture on how the map is conjugate to the shift
dynamics when it is restricted to the set of all bounded orbits and a is large. By utilizing
the concept of anti-integrable limit of Aubry [2], Sterling and Meiss [16] also obtained
the same parameter region as described in (1.2). In contrast to the geometrical argument
involved in [6], the method used in [16] is more analytical.

The primary objective of this paper is intended to present a new yet simple approach
to obtaining the Devaney–Nitecki parameter region. More precisely, we show that in
the framework of anti-integrable limit, instead of the contraction mapping theorem ar-
gument used by [16], the Devaney–Nitecki region can also be obtained by using the
implicit function theorem argument.

A noteworthy fact is that the Hénon map reduces to a one-dimensional quadratic
map when b = 0. An advantage of our approach is that it can also offer a new and
simple proof of a well-known fact that the restriction of the logistic map

xi+1 = fµ(xi) = µxi(1− xi), µ ≥ 0,

of R to its nonwandering set is topologically conjugate to the one-sided Bernoulli shift
on two symbols when µ > 2 +

√
5.

In the next section, we recall briefly the concept of anti-integrability. In Section 3,
we prove the Devaney–Nitecki locus. In Section 4, we apply our approach to the logistic
map.

We close the Introduction section with two remarks regarding obtaining better esti-
mates of the horseshoe loci for the Hénon and logistic maps by taking advantage of the
complex analysis.

Remark 1.1. When a > 2(1 + |b|)2 and b 6= 0, Devaney and Nitecki [6] proved that the
nonwandering set Ω is contained in a topological horseshoe Λ =

⋂
n∈Z

Hn
a,b(S), where

S is the domain (3.3) defined later in Section 3. They also proved that the Hénon map
restricted to its nonwandering set is topologically semi-conjugate to the two-sided shift
with two symbols. By means of complex analysis techniques, it has been shown that
the semi-conjugacy is in fact a conjugacy and Ω = Λ (see [8, 11, 13]). In particular,
Mummert’s proof [13] is based on the idea of Sterling and Meiss [16] but in the complex
variable setting.

Remark 1.2. It is well-known that the restriction of logistic map to the invariant set
∞⋂
n=0

f−nµ ([0, 1]) is topologically conjugate to the Bernoulli shift with two symbols not

only when µ > 2 +
√

5 but also µ > 4. For approach by complex analysis, we refer the
reader to [15], where the Poincaré metric and the Schwarz lemma are employed. (For
approach by making use of repelling hyperbolicity of the invariant set, see comments
in [5] and the references therein.)
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2 Anti-Integrability
A dynamical systems is, in Aubry’s sense [2], at the anti-integrable limit if it becomes
nondeterministic and reduces to a subshift of finite type. The following definition orig-
inates from [1] and was re-written in [4] to fit the current situation.

A family of C1-diffeomorphisms fε of Rn, parametrized by ε,

zi+1 = fε(zi), i ∈ Z, (2.1)

is called anti-integrable when ε→ 0 if

• there exists a family of functions Lε : Rn × Rn → Rn, parametrized by ε, such
that the recurrence relation defined by Lε(zi, zi+1) = 0 is equivalent to (2.1) for
nonzero ε;

• the limit
lim
ε→0

Lε(zi, zi+1) = L0(zi, zi+1)

exists and the solution of L0(zi, zi+1) = 0 can be determined by zi alone;

• the set Σ of solutions {zi}i∈Z of L0(zi, zi+1) = 0 for all i can be characterized
bijectively by a subset of SZ of infinite sequences with S a certain finite set.

The limit ε → 0 is called the anti-integrable limit of fε. We call a sequence {zi}i∈Z
comprising the solutions of L0(zi, zi+1) = 0 for all i an anti-integrable orbit or anti-
integrable solution of the map fε when ε→ 0.

A remarkable significance of the anti-integrable limit is as follows. Endow the set S
with the discrete topology and the set SZ with the product topology. Then, at the anti-
integrable limit, the system is virtually a subshift with #(S) symbols, where #(S) is
the cardinality of the set S.

For maps satisfying some nondegeneracy condition, the theory of anti-integrable
limit says that the embedded symbolic dynamics at the limit persists to perturbations.
Let l∞ := {z| z = {zi}i∈Z, zi ∈ Rn, bounded} endowed with the sup norm be the
Banach space of bounded sequences in Rn. Define a map F : l∞ × R→ l∞ by

F (z, ε) = {Fi(z, ε)}i∈Z

with
Fi(z, ε) = Lε(zi, zi+1), (2.2)

then the theory can be formulated rigorously by several steps (see for example [2,4,10],
an application to high-dimensional Hénon-like maps [14], and a recent survey [3] for
applying to discrete Lagrangian systems).

• A bounded anti-integrable orbit z† is precisely such that F (z†, 0) = 0. Let Σ ⊂
(Rn)Z be the set consisting of all bounded anti-integrable orbits.



36 Yi-Chiuan Chen

• Assume F (z, ε) is C1 in a neighbourhood of (z†, 0). If the linear map

DzF (z†, 0) : l∞ → l∞, (2.3)

which is the partial derivative of F at (z†, 0) with respect to z, is invertible, then
the implicit function theorem implies there exists ε0 and a unique C1-function

z∗(·; z†) : R → l∞,

ε 7→ z∗(ε; z†) = {z∗i (ε; z†)}i∈Z (2.4)

such that F (z∗(ε; z†), ε) = 0 and z∗(0; z†) = z† for 0 ≤ |ε| < ε0.

• Suppose the above assumptions are fulfilled for every z† ∈ Σ and ε0 is indepen-
dent of z†. Let the projection z = (· · · , z−1, z0, z1, · · · ) 7→ z0 ∈ Rn be denoted
by π. The composition of mappings

z†
Φε7−→ z∗(ε; z†)

π7−→ z∗0(ε; z†)

is a continuous bijection with the product topology. (The proof of the continuity
can be found, for example, in [4, 14].)

• Let the set Aε be defined by

Aε :=
⋃
z†∈Σ

π(z∗(ε; z†))

=
⋃
z†∈Σ

z∗0(ε; z†).

Let σ be the left shift in (Rn)Z, σ(z) = z′ = (· · · , z′−1, z
′
0, z
′
1, · · · ), with z′i =

zi+1. Under the assumption σ(Σ) = Σ, the following diagram commutes when
0 < |ε| < ε0.

Σ
σ−→ Σ

π◦Φε

y yπ◦Φε

Aε
fε−→ Aε

Remark 2.1. An anti-integrable orbit z† is called nondegenerate if the differential map
DzF (z†, 0) in (2.3) is invertible. Likewise, the orbit z∗(ε; z†) continued from an anti-
integrable orbit z† is called nondegenerate if DzF (z∗(ε; z†), ε) is invertible. If |ε| < ε0,
then z∗(ε; z†) is a nondegenerate orbit.

The following proposition provides a useful method to estimate a lower bound of ε0.
Its proof is easy (see for example [9]), thus we omit it.



A Proof of Devaney–Nitecki Region 37

Proposition 2.2. Assume z† is a nondegenerate anti-integrable solution of F (z, 0) = 0,
and ε0 the maximal value such that the unique continuation z∗(ε; z†) is valid when 0 ≤
ε < ε0. If ε′ is a positive real number and satisfies

‖DzF (z∗(ε′; z†), ε′)−DzF (z†, 0)‖ < 1

‖DzF (z†, 0)−1‖
,

then one can conclude that 0 < ε′ < ε0.

3 Proof of the Devaney–Nitecki Region for the Hénon
Family

To start with, we need a bounded domain with which the bounded orbits of the Hénon
map are confined. The following result is first proved in [6].

Proposition 3.1. Suppose b 6= 0 and let {(xi, yi)}i∈Z be a bounded orbit of the Hénon
map (1.1), then

• sup
i∈Z
|xi| ≤ R if a > 0,

• R∗ < inf
i∈Z
|xi| if a > 2(1 + |b|)2,

where

R =
1 + |b|+

√
(1 + |b|)2 + 4a

2

and R∗ satisfies
R2
∗ = a− (1 + |b|)R. (3.1)

Proof. Our proof for the upper bound is adapted from [13]. Let M = sup
i∈Z
|xi|, then

for any δ > 0 there exists t ∈ Z such that |xt| > M − δ and so M ≥ |xt+1| ≥
−a − |b|M + (M − δ)2. Consequently, M2 − (1 + |b|)M − a ≤ 0, which implies
sup
i∈Z
|xi| ≤ R.

For the lower bound, because (xi, yi) must belong to the intersectionH−1
a,b([−R,R]×

[−|b|R, |b|R])∩Ha,b([−R,R]× [−|b|R, |b|R]) for every i ∈ Z, we infer that |xi| > R∗,
where R∗ satisfies Ha,b(−R∗, |b|R) = (−R, bR∗). (See also Figure 3.1(a) of this paper
and Figure 4 of [6].) And, the last equality gives rise to (3.1).

Remark 3.2. Note that R∗ > 0 if a > 2(1 + |b|)2 and R∗ = 0 if a = 2(1 + |b|)2.

It is convenient to consider the Hénon map in the following form

Ha,b(x, y) = (
√
a(1− x2) + by,−x). (3.2)
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It is easy to see that the two maps (1.1) and (3.2) are equivalent by the transformation
(x, y) 7→ (−

√
ax,−

√
aby). We emphasize that they are equivalent only if both a and

b are nonzero and of finite value. Figure 3.1(a) depicts the image and pre-image of
domain

S = {(x, y)| − r ≤ x ≤ r, − r ≤ y ≤ r} (3.3)

for an area-preserving Hénon map of the form (3.2) for a = 10 and depicts the position
of the point r∗, where

r∗ =
R∗√
a

=

√
1− (1 + |b|)

2a

√
(1 + |b|)2 + 4a− (1 + |b|)2

2a

and

r =
R√
a

=

√
1 +

(1 + |b|)
2a

√
(1 + |b|)2 + 4a+

(1 + |b|)2

2a

=
1

2
√
a

{
(1 + |b|) +

√
(1 + |b|)2 + 4a

}
.

In the figure, the image of the horizontal line segment (red colour) connecting the two
points (−r,−r) and (r,−r) is the red parabola, while the image of the line segment
(blue colour) connecting (−r, r) and (r, r) is the blue parabola. The pre-image of
the vertical line segment (green colour) connecting (−r,−r) and (−r, r) is the green
parabola, while the pre-image of the line segment (black colour) connecting (r,−r) and
(r, r) is the black parabola.

Rescale the parameter by letting

ε = 1/
√
a,

then {(xi, yi)}i∈Z is an orbit of Ha,b if and only if {xi}i∈Z satisfies xi = −yi+1 and the
following recurrence relation

ε(xi+1 + bxi−1) + x2
i − 1 = 0

for each integer i. Let x = {xi}i∈Z be an element of the Banach space l∞ of bounded
sequences in R. Define F(x, ε) = {Fi(x, ε)}i∈Z by

Fi(x, ε) = ε(xi+1 + bxi−1) + x2
i − 1, (3.4)

then {(xi, yi)}i∈Z is a bounded orbit of Ha,b if and only if F(x, ε) = 0.
The following result provides an alternative proof of the Devaney–Nitecki locus.

(Notice that the inequality (3.5) below is equivalent to inequality (1.2).)
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Figure 3.1: (a) The image and pre-image of the domain S for the orientation-preserving
Hénon map Ha,1 with a = 10. Notice that the intersection of the image and pre-image
consists of four disjoint sets. (b) The graph of 5x(1− x) and corresponding xL and xR.

Theorem 3.3. Let F : l∞ × R→ l∞ be defined as (3.4). Providing

b 6= 0 and ε <
2√

5 + 2
√

5(1 + |b|)
, (3.5)

there corresponds a uniqueC1-family of points x∗(ε;x†) = {x∗i (ε;x†)}i∈Z parametrized
by ε in l∞ for any anti-integrable orbit x† such that x∗(0;x†) = x† andF(x∗(ε;x†), ε) =
0.

Proof. Certainly F is a C1-map. Its partial derivative at (x, ε) with respect to x is a
linear map which in matrix form is

DxF(x, ε) =


. . . . . . . . .

ε 2x−1 εb
ε 2x0 εb

ε 2x1 εb
. . . . . . . . .

 .

It is easy to see that F(x, 0) = 0 if and only if x ∈ {±1}Z. Consequently, DxF(x†, 0)
is invertible because it is a diagonal matrix with entries ±2. We then have

‖DxF(x†, 0)−1‖ =
1

2
.
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We also have

DxF(x∗(ε;x†), ε)−DxF(x†, 0) =

. . . . . . . . .
ε 2x∗−1 − 2x†−1 εb

ε 2x∗0 − 2x†0 εb

ε 2x∗1 − 2x†1 εb
. . . . . . . . .

 ,

a tri-diagonal matrix. (In the above equation, we have used x∗i = x∗i (ε;x
†) for all i ∈ Z

for simplicity sake.) Thus,

‖DxF(x∗(ε;x†), ε)−DxF(x†, 0)‖ = ε+ 2 sup
i∈Z
|x∗i (ε;x†)− x

†
i |+ ε|b|.

According to Proposition 3.1, the fact that x∗(ε;x†) is a bounded orbit implies that

x∗i (ε;x
†) ∈ [−r,−r∗) ∪ (r∗, r]

for all i ∈ Z. Because x∗i (ε;x
†) is a continuation of x†i ∈ {±1}, we have

|x∗i (ε;x†)− x
†
i | ≤ 1− r∗ ∀i ∈ Z.

(It is not difficult to verify that r − 1 < 1− r∗.) Then, the inequality

r∗ >
ε

2
(1 + |b|) (3.6)

guarantees the following condition

‖DxF(x∗(ε;x†), ε)−DxF(x†, 0)‖ < 1

‖DxF(x†, 0)−1‖
.

As a consequence, we conclude from (3.6) and Proposition 2.2 that ε < ε0 if ε <

2

(√
5 + 2

√
5(1 + |b|)

)−1

.

Remark 3.4. F(x, ε) defined in (3.4) is a function from the Banach space of bounded
sequences in R to R byFi(x, ε) = ε(xi+1+bxi−1)+x2

i−1. If we set zi = (xi,−xi−1) =
(xi, yi), then can define a function Fi(z, ε) from the Banach space of bounded sequences
z = {zi}i∈Z in R2 to R2 by Fi(z, ε) =

(
ε(xi+1 − byi) + x2

i − 1, yi+1 + xi
)
. It is easy

to see that for all integer i we have Fi(x, ε) = 0 if and only if Fi(z, ε) = 0. Let Lε :
R2×R2 → R2 be defined by Lε(zi, zi+1) =

(
ε(xi+1 − byi) + x2

i − 1, yi+1 + xi
)
. In this

situation, Fi is in the form of (2.2). The limit lim
ε→0

Lε(zi, zi+1) =
(
x2
i − 1, yi+1 + xi

)
=

L0(zi, zi+1). Apparently, the solution of L0(zi, zi+1) = 0 is determined by zi alone. The
reason that we employ the function Fi(x, ε) rather than Fi(z, ε) in this section is that the
calculation of taking derivative DxFi(x, ε) is less complicated than that of DzFi(z, ε).
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4 Estimating Shift Locus for the Logistic Maps
We proceed to investigate the family of logistic maps x 7→ µx(1− x). The logistic map
is anti-integrable at the limit µ→∞ [5]. To see this, let

ε = 1/µ,

and rewrite the logistic map as another map F (·, ε) in the space l∞ := {x| x =
{x0, x1, x2, . . .}, xi ∈ R, bounded} of bounded sequences with the sup norm:

F : l∞ × R → l∞,

(x, ε) 7→ F (x, ε) = {F0(x, ε), F1(x, ε), . . .}

with Fi(x, ε) = −εxi+1 + xi(1− xi). It is readily to see that x is a bounded orbit of the
logistic map if and only if it solves F (x, ε) = 0. Let Σ denote the space of sequences
of 0’s and 1’s, Σ = {a| a = {ai}∞i=0, ai = 0 or 1}. As a consequence,

F (x†, 0) = 0 ⇐⇒ x† ∈ Σ.

Theorem 4.1. Providing ε < 1/(2 +
√

5), there corresponds a unique C1-family of
points x∗(ε;x†) = {x∗i (ε;x†)}i∈N in l∞ parametrized by ε for any anti-integrable orbit
x† such that x∗(0;x†) = x† and F (x∗(ε;x†), ε) = 0.

Proof. The proof follows the same line as that of Theorem 3.3. Obviously, F is a C1-
map with its partial derivative with respect to x a linear map, which can be realized in
matrix form as

DxF (x, ε) =


1− 2x0 −ε 0 · · ·

0 1− 2x1 −ε · · ·
0 0 1− 2x2 · · ·
...

...
... . . .

 .

Accordingly, DxF (x†, 0) is invertible because it is a diagonal matrix with entries ±1.
We have

‖DxF (x†, 0)−1‖ = 1.

Then, as claimed in (2.4), there is ε0 and a unique C1-function x∗(·;x†) : R→ l∞ such
that F (x∗(ε;x†), ε) = 0 provided 0 ≤ ε < ε0. We have

DxF (x∗(ε;x†), ε)−DxF (x†, 0) =
−2x∗0 + 2x†0 −ε 0 · · ·

0 −2x∗1 + 2x†1 −ε · · ·
0 0 −2x∗2 + 2x†2 · · ·
...

...
... . . .

 .
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(In the above equation, we have used x∗i = x∗i (ε;x
†) for all i ∈ N for simplicity sake.)

Evidently,
x∗i (ε;x

†) ∈ [0, xL] ∪ [xR, 1]

for all i ∈ N, where (see Figure 3.1(b))

xL =
1−
√

1− 4ε

2
and xR =

1 +
√

1− 4ε

2
.

And, because x∗i (ε;x
†) is a continuation of x†i ∈ {0, 1}, we obtain

‖DxF (x∗(ε;x†), ε)−DxF (x†, 0)‖ = 2 sup
i∈N
|x∗i − x

†
i |+ ε

= 2xL + ε

= 1−
√

1− 4ε+ ε.

In the light of Proposition 2.2, we infer that ε0 < −2 +
√

5 (or equivalently µ >
2 +
√

5).

Remark 4.2. Theorem 4.1 was already presented in [5]. There, the proof of the invert-
ibility of DxF (x∗(ε;x†), ε) relies on the expanding property that the absolute value of
the derivative of the logistic map fµ on f−1

µ ([0, 1]) is strictly greater than one when
µ > 2 +

√
5. By taking advantage of Proposition 2.2, the present proof here does not

require the knowledge of the expanding property.
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