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Abstract

We use Lyapunov functionals combined with Laplace transform and obtain
boundedness and stability results regarding the solutions of the nonlinear Volterra
integro-differential equation

y'(t) = Alt)y+ fy /Cts s))ds + p(t).
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1 Introduction

In this paper we are interested in the qualitative analysis of solutions for the nonlinear
Volterra integro-differential equation

y(t) = Aty + f(y /cts (s)ds + p(t), ¥(0) =y, (LD)

where A, f(y), p, and h(y) are scalar functions that are continuous. We assume the
solution y(t) of (1.1) to be continuous and never zero. It is clear that y = 0 is not a
solution. In addition C'(¢, s) is a scalar function on R* x R™, where R denotes the
set of all nonnegative real numbers. We are mainly interested in the boundedness of
the solutions of (1.1) and the stability of its zero solution when p(t) = 0 for all ¢ > 0.
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Throughout the paper we make the assumptions that for positive constants A;, A and
M that

1f(w)] < Myl (1.2)
[h(y)] < Aalyl (1.3)

and
Ip(t)] < M forall t > 0. (1.4)

Recently, several authors have studied the behavior of solutions of variant forms of
(1.1). Medina [15-17], Eloe, Islam and Raffoul [6], and Raffoul [18], obtained stability
and boundedness results of the solutions of the homogeneous part of (1.1) by means of
representing the solution in terms of the resolvent matrix. Eloe and Murakami [6] and
Elaydi et al. [5], used the notion of total stability and established results on the asymp-
totic behavior of the zero solution of (1.1). Their work heavily depended on showing
or assuming the summability of the resolvent matrix. However, a major limitation of
this procedure is that the resolvent matrix is an abstract term. When f(y) = y and
|h(y)| < Aa(t) |y, it was shown in [6] and [12], that the zero solution of (1.1) is uni-

formly asymptotically stable provided that / Ao(t) < o0. In this research, we do not
0

[e.9]

assume that Ao (t) < oo. For more results on stability of the zero solution of Volterra

integro differgntial equation we refer the reader to Crisci, Komanovskii and Vecchio [3],
Elaydi [4] and Agarwal, Pang [1] and the references therein. This research is a contin-
uation of the research initiated in [9, 10,12, 18] and related to the work in [6,7,11]. For
recent results on Volterra integro-differential equations, we refer the reader to [8,20-22]
and the references there in.

2 Main Results

In this paper we intend to use Lyapunov functional V'(¢) coupled with Laplace transform
and obtain boundedness results concerning (1.1) and the stability of its zero solution
when p(t) = 0 for all ¢ > 0. At the end of the paper, we furnish two examples as
application to our obtained results. A function x(t) is of exponential order for ¢ > 0 if
there are constants m > 0 and ¢ such that

|z| < me® forallt > 0.

Moreover, if x(t) is a piecewise continuous function defined for t > 0 of exponential
order, then we define the Laplace transform L(x)(s) of x(t) is defined by the integral

+o0
L(z)(s) = /0 e St (t)dt,
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where s is a real number. For our one main results in Theorem 2.4, we assume the
existence of a scalar, continuous and differentiable function ¢(¢) such that

@(t) > 0and ¢'(t) < 0 forall ¢ > 0. (2.1)

and

/ T o(t) < 0. 2.2)
0

In Theorem 2.4, we use Lyapunov functional of convolution type that allows us to apply
Laplace transform to evaluate integral equations that are in convolution form. We begin
with the following lemma which is crucial for proving Theorem 2.4.

Lemma 2.1. Assume (2.1) and (2.2) hold. Let 3(t) be a scalar function that is uniformly
continuous on [0, 00). For positive constant X3, let the scalar continuous function H (t)
be given by

HUO = 500+ s [ ot = )30 23)

and
H(t) = —af(t), a>0, B(0)=L 2.4)

Then .

80+ [ Dt =) +a}als)ds = 1 2.5)
B(t) > 0 on [0, 00), (2.6)
B(t) € L'0,00), 2.7)

and
B(t) —0 as t— oo. (2.8)

Proof. An integration of (2.4) from 0 to ¢ gives

H(t)=H(0) — a/ot B(s)ds. (2.9)

From (2.3) and (2.4), we obtain H(0) = 5(0) = 1. Comparing (2.3) and (2.9) we arrive
at

BE) + As / o(t — $)8(s)ds = H(0) - a / B(s)ds.

Using the fact that H(0) = $(0) = 1 the above equation gives,

80+ [ (aplt —s) + @)s(s)ds = 1.
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which proves (2.5).
Next we prove (2.6). Differentiate (2.5) with respect to ¢ and get

t
B(1) + (ap(0) + a)B(t) = - / N (t — 5)B(s)ds,
0
which has the solution
t u
B(t) = B(0)e-Psp0+alt _ \, / / (1 — 5)B(s)dse=CoeO+a)e=) g,
0 0

Suppose [ takes on negative values and since 5(0) = 1 and it is uniformly continuous,
it must cross the ¢-axis at some time ¢. Let t* be such time. Thatis 5(t) > 0, 0 <t < ¢
and 5(t*) = 0. Then in the double integral term, we have 5(s) > 0, since 0 < s < t*.
Thus, by letting ¢t = t* we have

B(t*) = (0)ePspOFa)t )‘3/ / (u — 5)B(s)dse”PspOF)E=w) gy >

since ¢'(u — s) < 0 we get S(t*) > 0, which is a contradiction. This proves that
B(t) > 0 for all t > 0. Expression (2.9) implies that

a/otﬁ(s)ds:H(O)—H(t) < H(0) =1

Since 3(t) > 0 for all ¢ > 0, we have that H is monotonically decreasing by condition

(2.9). Therefore .
| Bty <

/ B(s ds<—

which proves (2.7). The proof of (2.8) follows from [2], since S is uniformly continuous
and B(t) € L'[0, 00). O

for every .

Q|+

Now as ¢t — oo,

We are ready to state and prove our first theorem.
Theorem 2.2. Assume the hypothesis of Lemma 2.1 along with (1.2)—(1.4). Suppose
X|C(t,s)]+ X3/ (t—s) <0 for0<s<t<ooforteR, (2.10)

and
A(t) + M + A30(0) < —ay, (2.11)

M
where « is a positive constant. Then all solutions of (1.1) are bounded by V (0) + —.
o

Moreover, tlg;r)lo ly(t)| = -
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Proof. Define the Lyapunov functional V' by

V=4 [ ol Sl >0 212
Note that p i " @
204\1/2 _ Y _ Y
0 = G0 =y = L

By differentiating V(t), we obtain

/

t
V) =yl O]+ [ F=slu(allds, o>
0

Then, substituting (1.1) in V'(¢) we have

Vi(t) = é—l{A(t)y(t) +fy) + /O C(t = s)h(y(s))ds +p(t)}

t
SapO)ly] +2a [t = 9lyls)lds.
0
which simplifies to

Vi = abl+ L s+ L[ ettt + Lt

Fap(0)[y] + Mg / (& — 9)ly(s))ds

0

AWMyl + 1) + / (2, 9)|[h(y(s))lds + |p
FAsp(O)]y] + Ag / St — )|y(s)ds.
0
Using (1.2)—(1.4), we have
V(t) < A@)ly] + Ayl + 2 / C(t, )] y(s)|ds + M
Fsp(0)[y] + s / &t — )|y(s)|ds.
0

After some algebra, we arrive at the simplified expression,

vty < {IA®) + i+ dap(0)] byl +
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t
{ [ Dalcto)+ 2/t = s)luto)lds} + 1. @13
0
Using (2.10) and (2.11) we arrive at
V'(t) < —aly| + M, M >0 (2.14)

Taking the Laplace transform in (2.5)
t t
L(B)+ L (/ Azt — s)ﬁ(s)ds) + L (/ aﬁ(s)ds) = L(1),
0 0

= L(B)+ ML(p#B) +aL(l«f) = -

= L(B) + ML(@)L(8) + aL(1)L(B) = -.

S

Solving for L(j3) gives
1

(1+ AsL(p) + at)s

Due to (2.14) there is a nonnegative function 7 : [0, 00) — [0, 00) such that

L(p) = (2.15)

V'(t) == —aly| + M — n(t).

Since 7 is a linear combination of functions of exponential order, 7, is also of exponen-
tial order and so we can take the Laplace transform and have

SLV) = V(0) = ~aL(lyl) + = — L(n),

We get

L(V) = |V(0) — aL(ly]) + % L) %

Using (2.12), we have
L(V) = L(ly[) + AsL(@) L([y|)-
Setting L(V') = L(V') and solving for L(|y|), we get

V(0)+ % — L(n)
(14 X3L(p) + 2)s

s

L(lyl) =

or

Using (2.15)
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Then, we obtain

Using the fact that

we obtain from (2.16) that

L(lyl) = L(B)V(0) + L(M * 3) — L(n * ).

Since

/ F(s)glt = s)ds = fx g

where f(t) and g(t) are piecewise continuous functions on [0, c0), we get

o = W) + L ([ Mpas) 2 ( [ e = sts1as)

Taking the inverse Laplace transform in (2.18), we get

< sV | ' (s)ds — / ot = 8)3(s)ds

or

ly| < BE)V(0) + M/Otﬁ(s)ds.

By (2.5) we have 5(t) < 1, for all ¢ > 0. This implies along with (2.19) that

()] < V(0) +M/OOO B(s)ds
< V(O)+%

M
= |yo| + —
(6%
Also, using (2.8) along with (2.19) we have that
. M
lim [y(0)] = .
This completes the proof.

Now we offer an example as an application.

25

(2.16)

(2.17)

(2.18)

(2.19)
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Example 2.3. Let p(t) = cos(t) and
1

fly) = E sin(y), h(y) = sin(y), and C(t, s) = e~ 479,

Then we have, | (y)| < <. [b(y)] < 1, 1C(1, )] = "+, and [p| <1
Let ¢(t) = e "3 | A(t) = —1, and define the Lyapunov functional V by

V() = [y()] + s / o(t — 5)|y(s)|ds.

1
Then we have \; = 6 A =1, and A3 = 1. Since ¢/(t) = —e ) = ¢/(t) <0,
we get

Xalc(t,s)| + Asp/ (t — s) = e 479 — = (43=9) < 0 for 0 < s < t < oc.

Moreover, condition (2.11) is satisfied for A(¢)+ A\ +X2p(0) < —a where a = 0.8885.
Thus, by Theorem 2.4, all solutions of

V) = =)+ 35 sin(u(0) + [ sin(y(s))ds + cos(t). 50) = o

are bounded and satisfy

1 1
d I -
0sses And Jim ()] = 55gss

In the next theorem we will study stability and boundedness of all solutions of (1.1)
where p(t) = 0. Hence, we consider the nonlinear Volterra integro-differential equation

[yl < lyo| +

y'(t) =At)y + f(y / C(t,s) ))ds, y(0) = yo, (2.20)

where, f(0) = h(0) = 0.
Theorem 2.4. Assume (1.2) and (1.3). Also, Assume A(t) < 0 and

t
|A(8)]—)\1—)\2/ |C(u, s)|du >0 for0<s<t< 0. (2.21)

Then the zero solution of (2.22) is stable. If in addition, there is at, > 0 and an o > 0
with

t
|A(s)] — A\ — /\2/ |C(u, s)|du > «
forty < s <t < oo, where Ay and )\ are positive, and if both

|A(s)| and / |C(u, s)|du

are bounded, then the zero solution of (2.22) is asymptotically stable.
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Proof. We begin by integrating (2.20) from O to ¢ to get the Lyapunov functionals H.
Thus,

/Oty’(s)ds:/OtA(s)y(s)ds—i—/Otf( ds+// (u, s)h(y(s))dsdu.

Then, we obtain

o0 =00)+ [ s + [ stupas+ [ [ Cwhiyls)dsa. @2

Interchanging the order of the integration we arrive at

t u
/ / C(u, s)h( dsdu-/ / (u, s)h(y(s))duds. (2.23)
o Jo

Substituting (2.23) in (2.22) , we get

y(t) :y(O)Jr/OtA(s)y(s)sdJr/otf( ds+/ / (u, s)h(y(s))duds,

which is a solution of (2.20) on [0, c0). Define the Lyapunov functional H (¢, y(-)) by

1G0) = bl + [ (146012 = [ Vsl ol @20

t
It is clear that H (¢) given by (2.24) is positive since |A(s)| — A; — Ao / le(u, s)|du >0

for 0 < s <t < oo. Let y(t) = y(t,to,y) be a solution of (2.20) osn[to, o], then by
deriving H (t,y(-)) we get

H'(t,y(-) = é—|y’ + {IAI S Ag/t IC(u,t)ldU}ly(t)l

e[ (1401 r 2 [ 10 o) o) s

Doing some algebra and using (2.20) , we get
i) = (A<t>y<t> + 1)+ [ e, s><h<y<s>>ds)

Al = Al + | (0= MlC(t, 9)ly(s)]) ds

Also, after some algebra

t

H(t,y() = A@)@H%f@(ﬂ)ﬂ% Ot s)hly()ds
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t
=LAl = Ayl = / C(t, 9)lly(s)lds
0

<l + 2w+ 2 [l
ANl = Aly(®)] - A / 1C(t, 9)]|(y(s))|ds
< AWy + Myl + A / C(t, ) [y(s)]ds

t
HAW sl = Naly] = %a [ 1€ 5)u()]ds =
0
Hence, H (t, y(-)) is decreasing. Now, we prove that the zero solution of (2.20) is stable.

So for given € > 0 and ¢y > 0, let ¢ : [0,t9] — R be an initial continuous function
with [¢| < 0 and 6 > 0 to be determined. Since

lyl < H(t,y(-))

and the fact that H (t) is decreasing we have that

()] < H(t,y(-)) < H(to, ¢(-))-

This translates into

<o+ [ flai-n s [ 09 o)1

<5+5/{ ) = M — )\2/:0|C(u,s)|du}ds
5{ /0 {| ()|—/\1—/\2/:0|O(u,s)|du}ds}

1
{1+f [ 8)| = A1 — Azf;wc(u,s)uu}ds}

if 0 = d(e, ty)is small enough. Therefore, the zero solution of (2.20) is stable.
If 5 > 0 and o > 0O exists with

< € where § =

to
|A(s)| — A\ — )\2/ |C(u, s)|du > aforty < s <t < oo,
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then
o+ [ alyolids < lol+ [ {1461 =2 [ i 9l Il
< bl [ 1A= x - [0Sl nGsas
= H(t,y(-)) < H(ty,¢(-)) < N where N > 0.
Therefore,

t N
/ ly(s)|ds < — = R where R > 0,
to «

and hence y € L'[0,00). We also have y/(¢) bounded so y(t) — 0 ast — oo. This
completes the proof. 0

Example 2.5. Let all the functions be given as in Examplel.

1
As before we have that \; = 6 Ao = 1. Let A(t) = —1 and define the Lyapunov
functional H (¢,y(-)) by

) = o)+ [ (146 =2 =% [ 10 9ida) (o)ds,

Then,
t 1 ¢
|A(s)| — A1 — )\2/ |C(u, s)|du =1 — o / o—(uta=3) 1,

15

_ 1_6+@—(t+4—5)—e_4 where 0 < s <t < o0
15

> — — ¢4 =0.09191 :

> - = 09191 >0

Hence, condition (2.21) is satisfied, so the zero solution of (2.20) is stable.

t t
/ |C(u, s)|du = / e” Ay = —em (179 et < o7t
t
and so, A(t) and / |C'(u, s)|du are bounded. Hence, condition

t
|A(s)|—>\1—)\2/ |C'(u, 8)|du > afor0 <ty <s<t<oo

of Theorem 2.4 is satisfied for o = 0.9191, so the zero solution of (2.20) is asymptoti-
cally stable.
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