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1 Introduction
Fractional differential and integral equations have recently been applied in various areas
of engineering, mathematics, physics and bio-engineering and other applied sciences
[28,37]. For some fundamental results in the theory of fractional calculus and fractional
differential equations we refer the reader to the monographs of Abbas et al. [5,6], Kilbas
et al. [30] and Zhou [40].

The measure of weak noncompactness is introduced by De Blasi [24]. The strong
measure of noncompactness was developed first by Banas̀ and Goebel [14] and subse-
quently developed and used in many papers; see for example, Akhmerov et al. [10],
Alvàrez [12], Benchohra et al. [21], Guo et al. [26], and the references therein. In
[21,34] the authors considered some existence results by applying the techniques of the
measure of noncompactness. Recently, several researchers obtained other results by ap-
plication of the technique of measure of weak noncompactness; see [6, 18, 19], and the
references therein.

Impulsive differential equations have become more important in recent years in
some mathematical models of real phenomena, especially in biological or medical do-
mains, in control theory, see for example the monographs of Abbas et al. [5], Benchohra
et al. [20], Bainov and Simeonov [13], Graef et al. [25], Perestyuk et al. [35], and sev-
eral papers have been published, see the papers of Abbas et al. [2–4], Agarwal et al. [8],
Benchohra and Berhoun [16], and the references therein.

Implicit functional differential equations have been considered by many authors [7,
15,32,39]. Recently, considerable attention has been given to the existence of solutions
of fractional differential equations with Hadamard fractional derivative; see [1,9,11,17,
22, 38].

In this paper, our intention is to extend the results to implicit impulsive differential
equations of Hadamard fractional derivative. We discuss the existence of weak solutions
for the implicit impulsive Hadamard fractional differential equation of the form

(HDr
tk
u)(t) = f(t, u(t), (HDr

tk
u)(t)); t ∈ Jk, k = 0, . . . ,m,

(ln t)r−1

Γ(r)
(HI1−rtk

u)(t+k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,

(HI1−r1 u)(t)|t=1 = φ,

(1.1)

where T > 1, φ ∈ E, J0 = [1, t1], Jk := (tk, tk+1]; k = 1, . . . ,m, 1 = t0 < t1 <
· · · < tm < tm+1 = T, f : Jk × E × E → E; ; k = 1, . . . ,m, Lk : E → E; k =
1, . . . ,m are given continuous functions, E is a real (or complex) Banach space with
norm ‖·‖E and dualE∗, such thatE is the dual of a weakly compactly generated Banach
space X, ln = loge,

HIrtk is the left-sided mixed Hadamard integral of order r ∈ (0, 1],

and HDr
tk

is the Hadamard fractional derivative of order r.
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Our goal in this paper is to give existence results for implicit impulsive Hadamard
fractional differential equations.

2 Preliminaries
Let C be the Banach space of all continuous functions v from J := [1, T ] into E with
the supremum (uniform) norm

‖v‖∞ := sup
t∈J
‖v(t)‖E.

As usual, AC(J) denotes the space of absolutely continuous functions from J into E.
By Cr,ln(J), we denote the weighted space of continuous functions defined by

Cr,ln(J) = {w(t) : (ln t)rw(t) ∈ C, ‖w‖Cr,ln
:= sup

t∈J
‖(ln t)rw(t)‖E}.

Let (E,w) = (E, σ(E,E∗)) be the Banach space E with its weak topology. Consider
the Banach space

PC =
{
u : J → E : u ∈ C(Jk); k = 0, . . . ,m, and there exist u(t−k )

and (HI1−rtk
u)(t+k ); k = 1, . . . ,m, with u(t−k ) = u(tk)

}
,

with the norm
‖u‖C = sup

t∈J
‖u(t)‖E.

Also, we can define the weighted space of PC by

PCr,ln(I) = {w(t) : (ln t)rw(t) ∈ PC, ‖w‖PCr,ln
:= sup

t∈J
‖(ln t)rw(t)‖E}.

In the following we denote ‖w‖PCr,ln
by ‖w‖PC .

Definition 2.1. A Banach space X is called weakly compactly generated (WCG, in
short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2. A function h : E → E is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in E to a weakly convergent sequence in E
(i.e., for any (un) in E with un → u in (E,w) then h(un)→ h(u) in (E,w)).

Definition 2.3 (See [36]). The function u : I → E is said to be Pettis integrable on
J if and only if there is an element uj ∈ E corresponding to each j ⊂ J such that

φ(uj) =

∫
j

φ(u(s))ds for all φ ∈ E∗, where the integral on the right hand side is

assumed to exist in the sense of Lebesgue, (by definition, uj =

∫
j

u(s)ds).
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Let P (J,E) be the space of all E–valued Pettis integrable functions on J , and
L1(J,E), be the Banach space of measurable functions u : J → E which are Bochner
integrable. Define the class P1(J,E) by

P1(J,E) = {u ∈ P (J,E) : ϕ(u) ∈ L1(J,R); for every ϕ ∈ E∗}.

The space P1(J,E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ T

1

|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on J .
The following result is due to Pettis (see [36, Theorem 3.4 and Corollary 3.41]).

Proposition 2.4 (See [36]). If u ∈ P1(J,E) and h is a measurable and essentially
bounded E–valued function, then uh ∈ P1(J,E).

For all what follows, the sign ”

∫
” denotes the Pettis integral. Let us recall some

definitions and properties of Hadamard fractional integration and differentiation. We
refer to [27, 30] for a more detailed analysis.

Definition 2.5 (See [27, 30]). The Hadamard fractional integral of order q > 0 for a
function g ∈ L1(J,E), is defined as

(HIq1g)(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 g(s)

s
ds,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

Provided the integral exists.

Example 2.6. Let q > 0. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [0, e].

Definition 2.7 (See [27, 30]). Let 1 ≤ a < T, q > 0, and g ∈ L1(J,E). Then

(HIqa+g)(x) =
1

Γ(q)

∫ x

a+

(
ln
x

s

)q−1 g(s)

s
ds,

Remark 2.8. Let g ∈ P1(J,E). For every ϕ ∈ E∗, we have

ϕ(HIq1g)(x) = (HIq1ϕg)(x); for a.e. x ∈ J.
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Analogously to the Riemann–Liouville fractional calculus, the Hadamard fractional
derivative is defined in terms of the Hadamard fractional integral in the following way.
Set

δ = x
d

dx
, n = [q] + 1,

where [q] is the integer part of q > 0, and

ACn
δ := {u : J → E : δn−1[u(x)] ∈ AC(J)}.

Definition 2.9 (See [27, 30]). The Hadamard fractional derivative of order q applied to
the function w ∈ ACn

δ is defined as

(HDq
1w)(x) = δn(HIn−q1 w)(x).

Example 2.10. Let 0 < q < 1. Then

HDq
1 ln t =

1

Γ(2− q)
(ln t)1−q; for a.e. t ∈ [0, e].

Definition 2.11 (See [27, 30]). Let 1 ≤ a < T and g ∈ L1(J,E). Then

(HDq
a+w)(x) = δn(HIn−qa+ w)(x).

It has been proved (see e.g., Kilbas [29, Theorem 4.8]) that in the spaceL1(J,E), the
Hadamard fractional derivative is the left–inverse operator to the Hadamard fractional
integral, i.e.,

(HDq
1)(

HIq1w)(x) = w(x).

From [30, Theorem 2.3], we have

(HIq1)(HDq
1w)(x) = w(x)− (HI1−q1 w)(1)

Γ(q)
(lnx)q−1.

Corollary 2.12. Let h : J0 → E be a continuous function. A function u ∈ L1(J0, E) is
a solution of the equation

(HDq
1u)(t) = h(t),

if and only if, u satisfies the Hadamard integral equation

u(t) =
(HI1−q1 u)(1)

Γ(q)
(ln t)q−1 + (HIq1h)(t).
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Lemma 2.13. Let h : J → E be a continuous function. A function u ∈ L1(J,E) is
solution of the fractional integral equation

u(t) =
φ

Γ(r)
(ln t)r−1 + (HIr1h)(t); if t ∈ J0,

u(t) =
φ

Γ(r)
(ln t)r−1 +

k∑
i=1

Li(u(t−i )

+
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
h(s)

sΓ(r)
ds

+

∫ t

tk

(
ln
t

s

)r−1
h(s)

sΓ(r)
ds; if t ∈ Jk, k = 1, . . . ,m,

(2.1)

if and only if u is a solution of the problem
(HDr

tk
u)(t) = h(t); t ∈ Jk, k = 0, . . . ,m,

(ln t)r−1

Γ(r)
(HI1−rtk

u)(t+k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,

(HI1−r1 u)(t)|t=1 = φ.

(2.2)

Proof. Assume u satisfies (2.2). If t ∈ J0, then

(HDr
1u)(t) = h(t).

Corollary 2.12 implies

u(t) =
φ

Γ(r)
(ln t)r−1 + (HIr1h)(t).

If t ∈ J1, then
(HDr

t1
u)(t) = h(t).

Corollary 2.12 implies

u(t) =
(HI1−rt1 u)(t+1 )

Γ(r)
(ln t)r−1 + (HIrt1h)(t)

= L1(u(t−1 )) + u(t−1 ) + (HIrt1h)(t)

= L1(u(t−1 )) +
φ

Γ(r)
(ln t)r−1 + (HIr1h)(t1) + (HIrt1h)(t).

If t ∈ J2, then
(HDr

2u)(t) = h(t).
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Corollary 2.12 implies

u(t) =
(HI1−rt2 u)(t+2 )

Γ(r)
(ln t)r−1 + (HIrt2h)(t)

= L2(u(t−2 )) + u(t−2 ) + (HIrt2h)(t)

= L2(u(t−2 )) + L1(u(t−1 )) +
φ

Γ(r)
(ln t)r−1

+ (HIr1h)(t1) + (HIrt1h)(t2) + (HIrt2h)(t).

If t ∈ Jk, then again from Corollary 2.12 we get (2.1). Conversely, assume that
u satisfies the impulsive fractional integral equations (2.1). If t ∈ J0, then u(t) =
φ

Γ(r)
(ln t)r−1 + (HIr1h)(t). Thus, (HI1−r1 u)(t)|t=1 = φ and using the fact that HDr

1 is

the left inverse of HIr1 we get (HDr
1u)(t) = h(t).

Now, if t ∈ Jk; k = 1, . . . ,m, we get (HDr
tk
u)(t) = h(t). Also, we can easily show

that
(ln t)r−1

Γ(r)
(HI1−rtk

u)(t+k ) = u(t−k ) + Lk(u(t−k )).

Hence, if u satisfies the impulsive fractional integral equations (2.1) then we get (2.2).

As a consequence; we have the following lemma.

Lemma 2.14. Let f(t, u, z) : Jk×E×E → E; k = 0, . . . ,m, be a continuous function.
Then problem (1.1) is equivalent to the problem of the solution of the equation

g(t) = f

(
t,

φ

Γ(r)
(ln t)r−1 + (HIrtkg)(t), g(t)

)
,

and if g(t) ∈ C(Jk); k = 0, . . . ,m, is the solution of the above equation, then

u(t) =
φ

Γ(r)
(ln t)r−1 + (HIr1g)(t); if t ∈ J0,

u(t) =
φ

Γ(r)
(ln t)r−1 +

k∑
i=1

(Li((
HI1−rti

u)(t−i ))

+
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
g(s)

sΓ(r)
ds

+

∫ t

tk

(
ln
t

s

)r−1
g(s)

sΓ(r)
ds; if t ∈ Jk, k = 1, . . . ,m.

Definition 2.15 (See [24]). Let E be a Banach space, ΩE the bounded subsets of E
and B1 the unit ball of E. The De Blasi measure of weak noncompactness is the map
β : ΩE → [0,∞) defined by
β(X) = inf{ε > 0 : there exists a weakly compact subset Ω of E : X ⊂ εB1 + Ω}.
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The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B),

(b) β(A) = 0⇔ A is weakly relatively compact,

(c) β(A ∪B) = max{β(A), β(B)},

(d) β(A
ω
) = β(A), (A

ω
denotes the weak closure of A),

(e) β(A+B) ≤ β(A) + β(B),

(f) β(λA) = |λ|β(A),

(g) β(conv(A)) = β(A),

(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn–Banach theorem.

Proposition 2.16. Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there
exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : J → E let us denote by

V (t) = {v(t) : v ∈ V }; t ∈ J,

and
V (I) = {v(t) : v ∈ V, t ∈ J}.

Lemma 2.17 (See [26]). Let H ⊂ C be a bounded and equicontinuous. Then the
function t→ β(H(t) is continuous on J , and

βC(H) = max
t∈J

β(H(t)),

and

β

(∫
J

u(s)ds

)
≤
∫
J

β(H(s))ds,

where H(s) = {u(s) : u ∈ H, s ∈ J}, and βC is the De Blasi measure of weak
noncompactness defined on the bounded sets of C.

For our purpose we will need the following fixed point theorem.

Theorem 2.18 (See [33]). Let Q be a nonempty, closed, convex and equicontinuous
subset of a metrizable locally convex vector space C(J,E) such that 0 ∈ Q. Suppose
T : Q→ Q is weakly-sequentially continuous. If the implication

V = conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (2.3)

holds for every subset V ⊂ Q, then the operator T has a fixed point.
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3 Existence Results

Let us start by defining what we mean by a weak solution of the problem (1.1).

Definition 3.1. By a weak solution of the problem (1.1) we mean a measurable func-
tion u ∈ PC(J) that satisfies the condition (HI1−r1 u)(t)|t=1 = φ, and the equation
(HDr

tk
u)(t) = f(t, u(t), (HDr

tk
u)(t)) on Jk; k = 0, . . . ,m.

The following hypotheses will be used in the sequel.

(H1) For a.e. t ∈ Jk; k = 0, . . . ,m, the functions v → f(t, v, ·) and w → f(t, ·, w)
are weakly sequentially continuous.

(H2) For a.e. v, w ∈ E, the function t→ f(t, v, w) is Pettis integrable a.e. on Jk; k =
0, . . . ,m.

(H3) There exists p ∈ C(Jk, [0,∞)); k = 0, . . . ,m such that for all ϕ ∈ E∗, we have

|ϕ(f(t, u, v))| ≤ p(t)‖ϕ‖
1 + ‖ϕ‖+ ‖u‖E + ‖v‖E

; for a.e. t ∈ Jk, and each u, v ∈ E.

(H4) For each bounded and measurable set B ⊂ E and for each t ∈ Jk; k = 0, . . . ,m,
we have

β(f(t, B,H Dr
1B) ≤ (ln t)1−rp(t)β(B),

where HDr
1B = {HDr

1w : w ∈ B}.

(H5) There exists a constant l∗ > 0 such that for all ϕ ∈ E∗, we have

|ϕ(Lk(u))| ≤ l∗‖ϕ‖
1 + ‖ϕ‖+ ‖u‖E

; for a.e. t ∈ Jk; k = 1, . . . ,m, and each u ∈ E.

Set
p∗ = sup

t∈J
p(t),

Theorem 3.2. Assume that the hypotheses (H1)− (H4) hold. If

L := ml∗(lnT )1−r +
2p∗ lnT

Γ(1 + r)
< 1, (3.1)

then the problem (1.1) has at least one solution defined on I .
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Proof. Transform the problem (1.1) into a fixed point equation. Consider the operator
N : PC → PC defined by

(Nu)(t) =
φ

Γ(r)
(ln t)r−1 + (HIr1g)(t); if t ∈ J0,

(Nu)(t) =
φ

Γ(r)
(ln t)r−1 +

k∑
i=1

Li(u(t−i )

+
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
g(s)

sΓ(r)
ds

+

∫ t

tk

(
ln
t

s

)r−1
g(s)

sΓ(r)
ds; if t ∈ Jk, k = 1, . . . ,m,

(3.2)

where g ∈ C(Jk); k = 0, . . . ,m, with

g(t) = f

(
t,

φ

Γ(r)
(ln t)r−1 + (HIrtkg)(t), g(t)

)
.

First notice that, the hypotheses imply that
(

ln
tk
s

)r−1
g(s)

s
; for all t ∈ Jk, k =

0, . . . ,m, is Pettis integrable, and for each u ∈ C, the function

t 7→ f

(
t,

φ

Γ(r)
(ln t)r−1 + (HIrtkg)(t), g(t)

)
: k = 0, . . . ,m,

is Pettis integrable over Jk; k = 0, . . . ,m. Thus, the operator N is well defined. Let
R > 0 be such that

R > ml∗(lnT )1−r +
2p∗ lnT

Γ(1 + r)
,

and consider the set

Q =
{
u ∈ PC : ‖u‖PC ≤ R and ‖(lnx2)1−ru(x2)− (lnx1)

1−ru(x1)‖E

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣+
2p∗

Γ(1 + r)
(lnT )1−r

∣∣∣∣ln x2x1
∣∣∣∣r

+
2p∗

Γ(r)

∫ x1

1

∣∣∣∣(lnx2)1−r (ln
x2
s

)r−1
− (lnx1)

1−r
(

ln
x1
s

)r−1∣∣∣∣ ds} .
Clearly, the subset Q is closed, convex end equicontinuous. We shall show that the
operator N satisfies all the assumptions of Theorem 2.18. The proof will be given in
several steps.

Step 1. N maps Q into itself.
Let u ∈ Q, t ∈ J0 and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such that

‖(ln t)1−r(Nu)(t)‖E = ϕ((ln t)1−r(Nu)(t)).
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Thus

‖(ln t)1−r(Nu)(t)‖E = ϕ

(
φ

Γ(r)
+

(ln t)1−r

Γ(r)

∫ t

1

(
ln
t

s

)r−1
g(s)

s
ds

)
,

where g ∈ C with

g(t) = f

(
t,

φ

Γ(r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

Then

‖(ln t)1−r(Nu)(t)‖E ≤ (ln t)1−r

Γ(r)

∫ t

1

(
ln
t

s

)r−1 |ϕ(g(s))|
s

ds

≤ p∗(lnT )1−r

Γ(r)

∫ t

1

(
ln
t

s

)r−1
ds

s

≤ p∗ lnT

Γ(1 + r)

≤ R.

Also, if u ∈ Q, t ∈ Jk : k = 1, . . . ,m, we get

‖(ln t)1−r(Nu)(t)‖E ≤
k∑
i=1

ϕ((ln t)1−rLi(u(t−i ))

+ (lnT )1−r
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
ϕ(g(s))

sΓ(r)
ds

+ (lnT )1−r
∫ t

tk

(
ln
t

s

)r−1
ϕ(g(s))

sΓ(r)
ds

≤ ml∗(lnT )1−r +
2p∗ lnT

Γ(1 + r)

≤ R.

Next, let x1, x2 ∈ J0 such that 1 ≤ x1 < x2 ≤ t1 and let u ∈ Q, with

(lnx2)
1−r(Nu)(x2)− (lnx1)

1−r(Nu)(x1) 6= 0.

Then there exists ϕ ∈ E∗ such that

‖(lnx2)1−r(Nu)(x2)− (lnx1)
1−r(Nu)(x1)‖E

= ϕ((lnx2)
1−r(Nu)(x2)− (lnx1)

1−r(Nu)(x1))
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and ‖ϕ‖ = 1. Then

‖(lnx2)1−r(Nu)(x2)− (lnx1)
1−r(Nu)(x1)‖E

= ϕ((lnx2)
1−r(Nu)(x2)− (lnx1)

1−r(Nu)(x1))

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣
+ ϕ

(
(lnx2)

1−r
∫ x2

1

(
ln
x2
s

)r−1 g(s)

sΓ(r)
ds− (lnx1)

1−r
∫ x1

1

(
ln
x1
s

)r−1 g(s)

sΓ(r)
ds

)
,

where g ∈ C with

g(t) = f

(
t,

φ

Γ(r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

Then

‖(lnx2)1−r(Nu)(x2)− (lnx1)
1−r(Nu)(x1)‖E

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣
+ (lnx2)

1−r
∫ x2

x1

∣∣∣ln x2
s

∣∣∣r−1 |ϕ(g(s))|
sΓ(r)

ds

+

∫ x1

1

∣∣∣∣(lnx2)1−r (ln
x2
s

)r−1
− (lnx1)

1−r
(

ln
x1
s

)r−1∣∣∣∣ |ϕ(g(s))|
sΓ(r)

ds

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣
+ (lnx2)

1−r
∫ x2

x1

∣∣∣ln x2
s

∣∣∣r−1 p(s)
Γ(r)

ds

+

∫ x1

1

∣∣∣∣(lnx2)1−r (ln
x2
s

)r−1
− (lnx1)

1−r
(

ln
x1
s

)r−1∣∣∣∣ p(s)Γ(r)
ds.

Thus, we get

‖(lnx2)1−r(Nu)(x2)− (lnx1)
1−r(Nu)(x1)‖E

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣
+

p∗

Γ(1 + r)
(lnT )1−r

∣∣∣∣ln x2x1
∣∣∣∣r

+
p∗

Γ(r)

∫ x1

1

∣∣∣∣(lnx2)1−r (ln
x2
s

)r−1
− (lnx1)

1−r
(

ln
x1
s

)r−1∣∣∣∣ ds.
Also, if we let x1, x2 ∈ Jk; k = 1, . . . ,m such that tk ≤ x1 < x2 ≤ tk+1 and let u ∈ Q,
we obtain

‖(lnx2)1−r(Nu)(x2)− (lnx1)
1−r(Nu)(x1)‖E

≤ ml∗
∣∣(lnx2)1−r − (lnx1)

1−r∣∣+
2p∗

Γ(1 + r)
(lnT )1−r

∣∣∣∣ln x2x1
∣∣∣∣r

+
2p∗

Γ(r)

∫ x1

1

∣∣∣∣(lnx2)1−r (ln
x2
s

)r−1
− (lnx1)

1−r
(

ln
x1
s

)r−1∣∣∣∣ ds.
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Hence N(Q) ⊂ Q.
Step 2. N is weakly-sequentially continuous.

Let (un) be a sequence in Q and let (un(t)) → u(t) in (E,ω) for each t ∈ Jk; k =
0, . . . ,m. Fix t ∈ Jk; k = 0, . . . ,m, since f satisfies the assumption (H1), we have
f(t, un(t),H Dtkun(t)) converges weakly uniformly to f(t, u(t),H Dtku(t)). Hence the
Lebesgue dominated convergence theorem for Pettis integral implies (Nun)(t) con-
verges weakly uniformly to (Nu)(t) in (E,ω), for each t ∈ Jk; k = 0, . . . ,m. Thus,
N(un)→ N(u). Hence, N : Q→ Q is weakly-sequentially continuous.

Step 3. The implication (2.3) holds.
Let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Obviously

V (t) ⊂ conv(NV )(t)) ∪ {0}), t ∈ Jk; k = 0, . . . ,m.

Further, as V is bounded and equicontinuous, by [23, Lemma 3] the function t→ v(t) =
β(V (t)) is continuous on Jk; k = 0, . . . ,m. From (H3) − (H5), Lemma 2.17 and the
properties of the measure β, for any t ∈ J0, we have

(ln t)1−rv(t) ≤ β((ln t)1−r(NV )(t) ∪ {0})
≤ β((ln t)1−r(NV )(t))

≤ (lnT )1−r

Γ(r)

∫ t

1

∣∣∣∣ln t

s

∣∣∣∣r−1 p(s)β(V (s))

s
ds

≤ (lnT )1−r

Γ(r)

∫ t

1

∣∣∣∣ln t

s

∣∣∣∣r−1 (ln s)1−rp(s)v(s)

s
ds

≤ p∗ lnT

Γ(1 + r)
‖v‖C .

Thus
‖v‖C ≤ L‖v‖C .

Also, for any t ∈ Jk; k = 1, . . . ,m, we get

(ln t)1−rv(t) ≤ β((ln t)1−r(NV )(t) ∪ {0})
≤ β((ln t)1−r(NV )(t))

≤ (lnT )1−r
k∑
i=1

l∗β(V (s))

+ (lnT )1−r
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
p(s)β(V (s))

sΓ(r)
ds

+ (lnT )1−r
∫ t

tk

(
ln
t

s

)r−1
p(s)β(V (s))

sΓ(r)
ds

≤ l∗(lnT )1−r
k∑
i=1

(ln t)1−rv(t)



14 Saı̈d Abbas, Mouffak Benchohra, Farida Berhoun and Juan J. Nieto

+ (lnT )1−r
k∑
i=1

∫ ti

ti−1

(
ln
ti
s

)r−1
(ln s)1−rp(s)v(s)

sΓ(r)
ds

+ (lnT )1−r
∫ t

tk

(
ln
t

s

)r−1
(ln s)1−rp(s)v(s)

sΓ(r)
ds

≤
(
ml∗(lnT )1−r +

2p∗ lnT

Γ(1 + r)

)
‖v‖C .

Hence
‖v‖C ≤ L‖v‖C .

From (3.1), we get ‖v‖C = 0, that is v(t) = β(V (t)) = 0, for each t ∈ I and then
by [31, Theorem 2], V is weakly relatively compact in C. Applying now Theorem 2.18,
we conclude that N has a fixed point which is a solution of the problem (1.1).

4 An Example
Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Consider the problem of implicit impulsive Hadamard fractional differential equations
of the form

(HDr
tk
u)(t) = f(t, u(t), (HDr

tk
u)(t)); t ∈ Jk, k = 0, . . . ,m,

(ln t)r−1

Γ(r)
(HI1−rtk

u)(t+k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,

(HI1−r1 u)(t)|t=1 = 0,

(4.1)

where J = [1, e], r ∈ (0, 1], u = (u1, u2, . . . , un, . . .),

f = (f1, f2, . . . , fn, . . .),
HDr

tk
u = (HDr

tk
u1,

H Dr
tk
u2, . . . ,

H Dr
tk
un, . . .); k = 0, . . . ,m,

fn(t, u(t), (HDr
tk
u)(t)) =

ct2

1 + ‖u(t)‖E + ‖HDr
tk
u(t)‖E

(
e−7 +

1

et+5

)
un(t); t ∈ [1, e],

Lk(u(t−k )) =
1

3e4(1 + ‖u(t−k )‖E)
; k = 1, . . . ,m.
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Clearly, the function f is continuous.
For each u ∈ E and t ∈ [1, e], we have

‖f(t, u(t), (HDr
tk

)(t))‖E ≤
ct2

1 + ‖u(t)‖E + ‖HDr
tk
u(t)‖E

(
e−7 +

1

et+5

)
,

and
‖Lk(u(t−k ))‖E ≤

1

3e4(1 + ‖u(t−k )‖E)
.

Hence, the hypothesis (H3) is satisfied with p∗ = ce−4, and (H5) is satisfied with l∗ =
1

3e4
.

We shall show that condition (3.1) holds with T = e. Indeed, if we assume, for instance,

that the number of impulses m = 3, and r =
1

2
, then we have

ml∗(lnT )1−r +
2p∗ lnT

Γ(1 + r)
=

1

e4
+

2c

e4Γ
(
3
2

) =
9

16
< 1.

A simple computations show that all conditions of Theorem 3.2 are satisfied. It follows
that the problem (4.1) has at least one solution on [1, e].
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