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Abstract 

In this research paper we have tried to show that the group algebra is very 

prominent in theory of error correcting codes. We have studied codes which are 

constructed from ideals in group algebra. We have established the use of 

Hamming distance, dimension as well as weight of codes, which are derived 

from a group algebra. Here we have presented a special type of idempotent of 

group algebra E[G]. If H is a sub group of G then, 𝐻̂=1/|H|∑ ℎℎ∈𝐻  will be an 

idempotent of E[G]. By taking an idea from such type of idempotent we have 

introduced some special type of idempotent and studied the ideal which are 

generated from them. We have tried to show that the codes which are generated 

by abelian non-cyclic groups, are more convenient and useful than the codes 

from the cyclic group. We have also discussed about non-abelian codes and their 

utility. 

Keywords: Non-abelian group, codes, ideals, cyclic group, weight, hamming 
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1. Introduction 

Group algebra is very important for the theory of error-correcting codes. In this paper 

we have focused on relationship between weight and dimension of group codes. Such 

type of codes have been the object of active research in 

[6],[14],[16],[18],[20],[22],[24],[26],[28],[21],[19],[11], and [5]. In this paper we shall 

not discussed upon the theory such as encoding and decoding because these are not 

directly related to our objectives. 
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2. A brief and short history 

At the early days a method was made to prevent a computer from working with wrong 

data. Computer gets information which was composed of a series of digits equal to 

either 0 or 1. If we choose such a word that could be 10100110011.Then we add an 

extra digit at the end of each such word. It is termed as parity-check digit, which would 

be equal to 0 or 1 depending upon whether the number of bits equal to 1 in the given 

word were even or odd. In case of our example the parity check would be 0 and the 

extended word would be 101001100110. Thus every extended word sent to the 

computer would have 12 digits and an even number of bits equal to 1. After receiving 

each word the computer would check the number of digits equal to 1 and in case this 

number were odd it would know that there was a mistake in this word and stop to work. 

Of course this method has some difficulties. First one is if two mistakes were found the 

error would not be detected. Further also if the existence of a mistake is detected, it not 

possible to determine, which is the wrong bit in the word. This method was used very 

first in 1947 at the Bell Telephone Laboratories, where the engineer Richard W. 

Hamming was working. During those days computer were much slower than as these 

days. It had taken weekend to proceed its job. The computer might have worked on 

each job and if an error was detected it might have just stopped and started to the next 

job. To overcome such type of problem Richard W. Hamming had got an idea of error 

correcting codes. He started to work on the idea of error correcting codes. He thought 

to add to each word not just one parity-check digits but more digits, those he had termed 

redundancy. It might have allowed to locate the errors and corrected them. In 1947 at 

Bell Telephone Company he developed a code in which information to be transmitted 

was made up of a word of four bits. Then he added four bits of redundancy. Let us 

suppose that a1, a2, a3, a4 be a word to be transmitted. Now it can be written as a matrix 

of size 2x2, 

  a1       a2 

  a3       a4   .   Now we extend it to a matrix of size 3×3 in such a way that each row and  

column has an even number of digits equal to 1.       a1      a2       b1 

        a3      a4       b2 

        c1       c2 

Thus the matrix can be written as a word a1, a2, b1, a3, a4, b2, c1, c2.  Let us take a word 

1101 in matrix of the form   1     1                                                               1     1     0 

                                              0     1    and the extended matrix so formed,  0     1     1  

                                                                                                                             1     0 

 Thus word that has sent to the computer would be 11001110, and computer would 

produce 3x3 matrix as well as would check parity of rows and columns along with it is 

possible to detect the existence of the error and its position so that it can be corrected.  

Let us choose another word to be sent to computer a1, a2, a3, a4, a5, a6, a7, a8, a9 in matrix  
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form             a1      a2       a3            

                     a4       a5      a6 

                     a7      a8     a9   . Word will be 111011010. After extension word will be 

sent to computer 1111011001011. Matrix in extended form is  

    a1     a2      a3   b1  

    a4     a5     a6    b2 

    a7     a8     a9    

    c1     c2            

Corresponding coding matrix is,          1      1      1    1 

                                                              0      1     1     0 

                                                              0      1     0 

                                                              1      1      

3. Some Basic Facts about the codes:  A code is a language which is derived to 

communicate with a machine. There are some fundamental elements which are used to 

produce a code;  

(1) A finite set A# is termed as an alphabet, and its elements are known as letters. We 

write q=|A| the number of elements in A# and we say that code is q-ary. 

(2) The finite sequences of elements of A# are words. The number of letters in a word 

is known as its length. Here we shall assume that all the words in the codes taken 

have the same length.  

(3) A q-ary code C of length n, this means a code C is a subset of (A#)n= 

A#.A#.A#.......A#(n-times). This set is also known as the ambient space Fn
q of the 

code. 

(4) Hamming distance: Let us supposed that there be two words x=(x1, x2, ……,xn) 

and y=(y1, y2, ….., yn ) in a code C ⊂ (A#)n. The Hamming distance from x to y is 

the number of coordinates in which these elements differ, which is as d(x, y)=|{i, 

1≤ i ≤ n| xi ≠ yi }|. For given a code C ⊂ (A#)n is the minimal distance of C is the 

number d=min {d(x, y)|x, y ∈ C, x≠ y }. Let us take a rational number  𝛼  as the 

greatest integer [𝛼] such that any greatest integer m ≤ 𝛼. One of the important 

result in coding theory is the following. 

Theorem: Let us suppose that C be a code with minimal distance d and let us put, K=[d-

1/2]. Then it is possible to detect up to d-1 errors and correct up K errors. The number 

K is called error correcting capacity of the code. 

(5) A q-ary code of length n, which contains M words and having minimal distance d 

is termed as (n, M, d)-code. When we design a code, we try to make its efficiency 

heavy and minimal distance large so that it can correct a big number of errors. But 

it is very hard to do so, because the ambient space (A#)n is finite. The main problem 

of coding theory is that to maximize the one parameters (n, M, d) when the other 

two are given. We will construct a linear code, which is the most important class 



106 Dr. Hiteshwar Singh and Dhananjay Kumar Mishra 

of codes. We choose as an alphabet, a finite field Fq with q elements, here q is 

power of a prime p=char (Fq). The ambient space Fq
n will be a vector space of 

dimension n over Fq
n.  A linear code C of length n over Fq is a proper linear sub 

space of Fq. If we have dimension dim(C) =m than, m ≤ n. So we have found that 

the number of words in code C will be qm, and we get a new cods in code as (n, m, 

d)-code. E. Prange   [17] in 1957 had introduced a special class of linear codes. 

Such type of codes have efficient implementation. Let us take a word (x1, x2, 

……,xn) ∈ C⇒ ( xn, x1, x2, ……, xn-1) ∈ C. Thus if (x1, x2, ….,xn)  is a code then 

all its permutations are also in codes. Now we choose a map ∅ such that, ∅: Fq
n 

→Fq[X]/(Xn-1) which will be presented as ∅(a0, a1, …., an-1, an-2) = a0+a1X+…..+an-

1X
n-1 here  [ f ] is the class of polynomials f ∈ Fq[x] in Rn, which is the linear 

isomorphism. So it is clear to observe that a linear subspace C in Fn
q is a cyclic 

code if and only if ∅(C) is an ideal of Fq[X]/(Xn-1). Thus the study of cyclic codes 

of length n over Fq
n is the same as the study of ideals in the quotient ring Fq[X]/(Xn-

1). But we have observed that Cn is a cyclic group of order n and Fq[Cn] is its 

group algebra over Fq, then we have found that Fq[X]/(Xn-1 ) ≅ Fq[Cn]. Therefore 

we will say that the study of cyclic codes of length n over the field Fq can be also 

regarded as the study of ideals in the group algebra Fq[Cn].  

 

4. Formation of codes in group algebra Fq
n[Gn], when we have a cyclic group Gn: 

We can extend the concept of code in group rings R[G] of cyclic group G as ideals to 

other classes of groups. It was very first done by S. D. Berman [10], [12], in 1967 and 

separately by F.J. Mac Williams [17], in 1970. Let we suppose that there be a group 

algebra of finite group G over field  R is a set of all formal linear combinations, as   𝛼= 

∑ 𝛼𝑔∈𝐺 g.g  as well as  𝛽= ∑ 𝛽𝑔∈𝐺 g.g then we have 𝛼 = 𝛽 ⟺  𝛼g=𝛽g ∀ g∈G.  We will 

define group algebra further as,   ∑ 𝛼𝑔∈𝐺 g.g  +  ∑ 𝛽𝑔∈𝐺 g.g = ∑ ( 𝛼g + 𝛽g )𝑔𝒈∈𝑮 ,  

(∑ 𝛼𝑔∈𝐺 g.g) .(∑ 𝛽ℎ∈𝐺 h.h)=∑ 𝛼𝑔∈𝐺( g.𝛽h)gh. Let there be any constant 𝜆 in field R then 

we have,  

𝜆.( ∑ 𝛼𝑔∈𝐺 g.g) =  ∑ 𝛼𝑔∈𝐺(𝜆 g.)g. Thus the set R[G], with above operations is known as 

group algebra of  basis set G ={g1, g2, ….., gn} and (x1, x2, ……., xn) in Fq
n then the 

corresponding element of Fq
n[G] will  be written as  𝛼= x1g1+x2g2+……..xngn. Now we 

choose a group algebra corresponding to Fq
n as Fq[G] and define a group code or a G-

code over Fq as an ideal of group algebra Fq[G]. We find that the support of an element   

𝛼= ∑ 𝛼𝑔∈𝐺 g.g   in group algebra Fq[G] of a group G over a field Fq is the set as sup 

(𝛼) =    {g∈G | 𝛼g≠0}.  Now the Hamming distance between two elements of group 

algebra Fq[G]    as                 𝛼= ∑ 𝛼𝑔∈𝐺 g.g  and   𝛽= ∑ 𝛽𝑔∈𝐺 g.g  is d(𝛼𝛽)=  |{g|  𝛼g≠ 𝛽g,  

g∈ 𝐴}|, as well as the weight of an element 𝛼  of this group algebra is w(𝛼) = d(𝛼,0) = 

|supp(𝛼)|, then  w(𝛼)=|g∈G | 𝛼g≠0}|. For linear codes, the minimum distance of a code 

corresponds to the minimum weight. Let us take an ideal I ⊂ Fq[G], the weight 

distribution of I is the map which assigns to each possible weight t and the number of 

elements of I having weight t. It is clear that due to well-known Maschke’s theorem 

[13, corollary 3.2.8], the structure of the group algebra Fq[G] depends on whether q and 
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|G| are relatively prime or not relatively prime. In this research paper we have assume 

that gcd (q,|G|)=1. In such case the group algebra Fq[G] will semi-simple . This means 

that every two-sided ideal is a direct summand and thus it is a principal ideal, generated 

by an idempotent element. Further we can show that, 

(1) Group algebra Fq[G] is a direct sum of finite number of two-sided ideals {Ai}1≤
𝑖 ≤ 𝑟. It is called the simple components of Fq[G], and each Ai forms a simple 

algebra. 

(2) Any two- sided ideal of group algebra Fq[G] is a direct sum of some of the members 

of the family {Bi}1≤ 𝑖 ≤ 𝑟.  

(3) Each simple component Ai will be isomorphic to a full matrix ring of the form 

Mni(Ei), here Ei is a field containing an isomorphic copy of Fq in its center. 

As every simple component of ideal is generated by an idempotent element, so the 

above results can be transformed in following way. 

Let us suppose that G be a finite group and Fq be a field such that char(Fq) does not 

divide |G| and E[G]=⊕  i=1 
s  Ai     be the decomposition of group algebra as a direct sum 

of minimal two-sided  ideals. Then there will be a family {e1, e2, …….,es} of elements 

of E[G] such that, 

(1.) ei≠0  is a central idempotent, 1≤i≤ 𝑡. 

(2.) If we have i≠ 𝑗, then eiej=0 

(3.) e1+e2+e3+………..+et =1 

(4.) We cannot write ei  as  ei = e’+ e’’  here e’, e’’ are central idempotent  provided 

that e’.e’’≠ 0 and  e’e’’=0, 1≤i≤ 𝑡. 

(5.) Ai=Aei ,    , 1≤i≤ 𝑠. 

Such above idempotent are termed as the primitive central idempotent of Fq[G]. We 

can also construct idempotent in group algebra in rather standard way. If we have H is 

a subgroup of G then,     𝐻̂=1/|H|∑ ℎℎ∈𝐻   will be an idempotent of group algebra E[G] 

and 𝐻̂will central in G if and only if H is normal subgroup in G. We have a well-known 

isomorphism [13] E[G]. 𝐻̂ ≅ E[G/H], and hence dimE{E[G].𝐻̂} = [G:H]. Thus it is easy 

to find that if 𝜏  is a transversal of H in G that is a complete set of cosets of H in group 

G, than we have {t𝐻̂|t ∈ 𝑟}  is a basis of (E[G]).𝐻̂ over E.  But such type of ideal is not 

useful in coding, because it allows repetition of codes.  We will write such type of ideal 

as      𝛼 = ∑ 𝑎𝑡∈𝑟 𝑡𝐻 ̂with basis from G.  Here we have seen that the same coefficient 

along all the elements of the idempotent, in the form of t-th for a fixed t ∈ 𝜏  arbitrary 

h ∈ H. 

Therefore, we will search another kind of idempotent, which will generate more 

effective codes: 

Now we will get the help of some theorems, which will allows us to make another 

idempotent that will not permit any kind of repetition in codes. 

Theorem [28]:  Let us suppose that G be a finite group and E be a field such that char 

(E) does not divide |G|. Let us choose H and H* as normal subgroups of G such that 

H ⊂ H* and set e=H -H*. Then dimE(E[G]) = |G/H| - |G/H*| and  w{(E[G])e} = 2|H|. 



108 Dr. Hiteshwar Singh and Dhananjay Kumar Mishra 

Let us take B as a transversal of H* in G and 𝜏 be a transversal of H in H* containing 

1. Than it seen that B’= {a(1-t)𝐻̂|a∈B, t∈ 𝜏/{1} is a basis of (E[G])e over E. In such 

case if G is an abelian group, it is possible to consider when all primitive central 

idempotent can be formed in this way. Let us take an abelian p-group A0. For each 

subgroup H of A0, such that A/H≠{1} is cyclic, and we will form an idempotent of 

group algebra E[A0]. As A0/H is a cyclic subgroup of order a power of p, there exists a 

unique subgroup H* of A0, containing H, such that |H*/H|=p.  We put eH =𝐻̂-𝐻 ∗̂  and 

also eG=1/|G|∑ 𝑔𝑔∈𝐺 .   

Theorem [28]: Let us suppose that p be an odd prime and A0 be an abelian p-group of 

exponent pr. Then the set of idempotent above is the set of primitive idempotent of 

Fq[A
0]  and only if one of the following holds  good, 

(1) pr = 2 and q is odd  

(2) pr= 4 and q≡ 3(𝑚𝑜𝑑4) 

(3) o(q)= ∅(𝑝n) in U(Zpn), here ∅ is Euler’s Totient function. In special case when G 

is a cyclic group of order pn, with gcd(p,q)=1 then the above theorem gives the 

following result.  

 

Corollary [28], [7].  Let E be a field with q elements and A0 is a cyclic group of order 

pn such that o(q)=∅(𝑝n) in U(Zp
n) and also let A0=A0 ⊃A1⊃A2⊃………⊃An ={1} be 

the descending chain of all subgroups of A; Then we have the set of primitive 

idempotent of E[A] will be given by,  

e0= 1/pn∑ 𝑎𝑎∈𝐴0
 , and ei= Ai-Ai-1, 1≤ 𝑖 ≤ 𝑛. We can get a similar result for cyclic group 

of order 2pn [4],       [28]. Since the idea of abelian codes was given by Berman and 

Mac Wiliams. These codes were constructed, were defined from minimal ideals. These 

codes were no longer used for the purpose, as we have needed. Let us suppose that G1 

and G2 are two finite groups of same order. E be a finite and takes 𝛾: 𝐺1→ 𝐺2 as a 

bijective mapping. We write, 𝛾: E[G1]→ 𝐸[G2] as its linear extension to the 

corresponding group algebras. Thus it is clear that 𝛾̅ is a hamming isometry, this means 

elements corresponding under this map have the same hamming weight. If we have two 

ideals I1⊂E [G1] and I2⊂E[G2] such that 𝛾: (I1)=I2  are hence equivalent. This means 

that they have same dimension and same weight distribution. Thus codes I1 and I2 are 

said to be permutational equivalent as well as combinational equivalent [3]. 

 

Theorem: [16] Every minimal ideal in the semi-simple group algebra Fq[A
0] of a finite 

abelian group A0 is permutational equivalent to a minimal ideal in the group algebra 

Fq[C] of a cyclic group C of the same order.  

 

5. Construction of codes, defined from non-minimal ideals: 

As we have discussed in previous section that the main problem in constructing codes 

to build codes with a good error correcting capacity and dimension as big as possible. 
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Since one of this numbers decreases as the other increases to compare the efficiency of 

codes with different weights and dimensions, Thus we have the following more natural 

concept,  to overcome this challenges.  

Let us choose a code C and we write convenience of code C, as in numeral way, Conv 

( C )=dim( C).w ( C )          If we a code with high convenience, this means one of the 

parameter is quit big and other is rather small. But such type of code is not useful. We 

choose a cyclic group o G= <a>, with 𝑎𝑝2=1, which is acyclic code of order p2 and we 

suppose Fq be any field as in the hypothesis of the theorem [16] above. Then from the 

corollary [28] [7] there exist only three principal idempotent in group algebra F[G] as  

(1) e0=𝑮̂        (2) e1 = 𝑮̂1-𝑮̂             (3) e2= 𝑮̂2-𝑮̂1. 

Therefore, the maximal ideals are , I=I0⊕I1 and  J=I1⊕I2 ,with dim(I)=p, w(I)=p 

and dim(J)=p2-1, w(J)=2 and hence conv(I)=p2  as  well as conv(J)=2(p2-1). Again 

from theorem [16], it can be shown that if we choose A0 =Cp . Cp then the principal 

idempotent of Fq[A
0] are as e0=A0, e1=𝑎̂ -𝐴̂0, e2=𝑏̂-𝐴̂0 as well as fj=𝑎𝑏̂j-𝐴̂0, 1≤i≤p-

1, here a and b are generators of both direct factors. Now we have, w(Fq[A
0])= p2 

and dim((Fq)e0)=1 and other minimal ideals Li=(Fq[A
0])e0, i=1,2 as well as 

Mj=(Fq[A
0])fi, 1≤i≤p-1. 

Thus we get, w(Li)=2p dim(Li)=p-1,i=1,2,w(Mj)=2p.dim(Mj)=p-1, 1≤i≤p-1. If H=<h> 

and K=<k> are two subgroups of order p of Cp.Cp the corresponding idempotent are, 

e=𝐻̂-𝐴̂0, f=𝐾̂-𝐴̂, and we get N= (E[A0])e ⊕(E[A0])f. 

Proposition: [15] The weight and dimension of I=(E[G])e⊕(E[G])f are w(N)=2p-2, 

so conv(N)=4(p-1)2. Therefore, if prime p>3, we have conv (N) is greater than conv (I) 

for all proper ideal I of Fq[Cp
2]. 

 

6. Codes in group algebra for non-abelian groups. 

Lomonaco and Sabin [3] had studied meta-cyclic groups and they had found that central 

idempotent generate codes that are combinatorically equivalent to abelian codes. 

Recently C. Garca Pillado, S. Gonzalez, C. Martinez, V. Markov, as well as A. 

Nechaev, [29] found that for groups G=AB, here A and B are abelian is also valid in 

this case.  

Therefore we should study on ideals those are generated by non-central 

idempotent.  

Now, we try to understand the ideals, those are generated by non-central 

idempotent through suitable examples [6] 

 

[1]. Let us choose a set of group G= {a, b|a7=1=b3,, bab-1 = a2} .  

  We can present the central primitive idempotent of F2[G]  as  

 f1=𝑏̂𝑎̂,      f2=(1-𝑏̂)𝑎̂,      f3= 1/7(3+(𝜀+𝜀2+𝜖4)𝜃a+(𝜀3+𝜀5+𝜀6)𝜃a
3) 

f4=1/7(3+(𝜀3+𝜀5+𝜀6)𝜃a+(𝜀+𝜀2+𝜀4)𝜃3, here 𝜃 is a primitive 7th root of unity. 
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We can also show that, F [G]≅F2⊕F4⊕M3[F2]⊕M3[F2]. If we choose e1=1+𝑎̂, which 

is not a central primitive idempotent, and calculate, 

F= (𝑏̂+𝑏̂a(1+𝑏̂))e1 = (𝑏̂+𝑏̂a(1+𝑏̂))(1+𝑎̂) 

=1+b+b2+a+a2b+a4b+a+ab+ab2+a2b+a2b2+a2+a4b2+a4+a4b+𝐺̂ 

Thus the weight of f as w(f)=12 as well as weight distribution of this ideal   will be,  

 

Weight 0 8 12 

Word 1 21 42 

It is clear that the code [21, 6, 8] has same weight as in code [21, 6] 

[2]. Let us choose another dihedral group of order 6: 

D6= {a, b|a3=1=b2, bab=a2}.  

Let us suppose that Fq be a finite field with q elements such that U(Z3) =<𝑞̅> Thus from 

[11, theorem 3.3],  central primitive idempotent of Fq[D6] will be,  

e11=(1+b/2)𝐴̂,        e22=(1-b/2)𝐴̂,               e1=1-e11-e22,    as well as we write f=e11-e22 

and the we will put I=FqD6.f. Since it is clear that |I|=2, and set {f, af} will be the basis 

over Fq, and an element 𝛼 ∈ FqD6 .f will be represented as 𝛼 =𝜶0f+𝛼1af=1/12[4 𝜶0 

+ 𝛼1)1 +(-5 𝜶0 +4 𝛼1)a+( 𝜶0 -5 𝛼1 )a
2 + (4 𝜶0 -5 𝛼1)b+( 𝜶0 +4 𝛼1)ab+(-5 𝜶0 + 𝛼1)a

2b]. If 

q=11, is a direct calculation then w(I)=5  is  the weight of code [6,2] from [27]. When 

we have any field of characteristic different from 2, 3, 5, and 7 then such above 

condition also  holds good.  

 

Matrix algebra for idempotent as well as left ideals in the formation code: 

It is very important to represent coding theory in matrix algebra. For this purpose we to 

convert the idempotent and ideals into matrix algebra. Matrix algebra is the building 

blocks of finite semi-simple group algebra over finite field. This can be required as 

follow,  

Let us suppose that Y(n, k) be the set all matrices D=(bij} such that there exist k rows, 

at positions presented as i1, i2, i3, i4, ……………,ik such that  

(1) Every row of D, except these which is row of zeros. 

(2) bij,ij =1 as well as bij, h= 0  if h<ij, 1≤ 𝑗 ≤k. 

(3) bij, h=0 for h=is, j+1≤s≤k. 

As the set of numbers i1, i2, i3, ……..,ik will be called the pivotal position of D. 

Now we try to produce an example, let Y(4, 3) be the set all matrices then its 

all forms will be presented as,     
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    1     0      0      a14                       1      0      a13      0                   1      a12     0     0 

          1       0      a24         1      a23      0                             0       0     0 

                   1      a34                   0       0                                      1      0 

                           0             ,                                     1            ,                                 1 

 

      0      0      0     0  

  1      0     0  

                      1     0  

                             1. 

 

Thus, each left ideal of rank k has q(n-k)k different idempotent generators. Or the 

elements of the set  Y(n, k) are  idempotent generators of the different left ideals 

of rank k of  Mn[Fq][30]. 
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