
Advances in Computational Sciences and Technology

ISSN 0973-6107 Volume 17, Number 2 (2024) pp. 77-101

© Research India Publications

https://dx.doi.org/10.37622/ACST/17.2.2024.77-101

User-Upload Images on Content Sharing Sites

M. Devaiah1*, S. Ramesh Babu2, M.Naresh3

(1*, 2, 3) Newtons Institute of Engineering, Macherla-522426, A.P., INDIA.

Abstract

Users can establish photo privacy settings through the innovative Adaptive

Privacy Policy Prediction (A3P) system. Social media platforms like Facebook

and LinkedIn facilitate the sharing of vast amounts of personal information,

leading many individuals to post their photos online in hopes of gaining

attention for social interaction. Unfortunately, this trend has resulted in many

public consumer photos being available, which raises serious concerns about

privacy violations. The risk of identity theft, embarrassment, and even

blackmail looms large as personal data proliferates.

To address these challenges, it is essential to consider flexible privacy

measures that can help protect users. This initiative aims to explore various

privacy policy strategies to enhance the security of private data shared on

social networking sites. While numerous researchers have focused on the

broader privacy issues and social applications of online sharing, fewer studies

specifically address the privacy challenges associated with photo sharing on

these platforms. Users often share extensive information with many "friends,"

and as the volume of images shared increases, so does the potential for privacy

infringements. Protecting this privacy is crucial for improving user satisfaction

and ensuring a safer online experience.

Keywords: Online Social networking communities, content sharing, Security.

1. Introduction

These days, one of the main factors facilitating user connectivity is images. For social

discovery—to find new peers and discover their interests and social context—sharing

occurs both among pre-existing groups of familiar individuals or social circles (e.g.,

Google+, Flickr, or Picasa) and increasingly with individuals outside of the users'

social circles. However, content-sensitive information may be revealed by

semantically rich images [1]. Take, for instance, a picture from a student's 2012

commencement. It might be shared in a Flickr group or Google+ circle, but it might

unnecessarily reveal the students' friends and BApos family. Therefore, sharing

photos on online content-sharing platforms can easily result in uninvited disclosure

and privacy violations [3]. Furthermore, other users can gather rich aggregated

information about the owner of the published content and the subjects in the published

78 M. Devaiah, S. Ramesh Babu et al

content due to the persistent nature of online media [3]. The combined data may lead

to misuse of personal information and unanticipated exposure of one's social

surroundings. Users can enter their privacy preferences on the majority of content-

sharing websites. Regretfully, users find it difficult to establish and preserve these

privacy settings, according to recent studies [1], [11]. One of the primary explanations

offered is that this procedure can be time-consuming and prone to mistakes due to the

volume of information exchanged. As a result, a lot of people agree that policy

recommendation systems that help users set up their privacy settings correctly and

easily are necessary [7]. However, it seems that current ideas for automating privacy

settings are insufficient to handle the particular privacy requirements of images. [3],

[5], because of the quantity of information that images subtly convey and how they

relate to the online context in which are perceived. In this project work, we propose

an Adaptive Privacy Policy Prediction (A3P) system that automatically generates

personalized policies, giving users a hassle-free privacy settings experience. The A3P

system manages user-uploaded photos and takes into account the following factors

that affect an individual's image privacy settings: _ the influence of one's personal

traits and social surroundings. Users' social environment, including their relationships

with others and profile details, may offer valuable insights about their privacy

preferences. Users who are interested in photography, for instance, might enjoy

showing their images to other amateur photographers. Users may share photos of

family occasions with their social acquaintances if they have many family members.

Nevertheless, applying uniform policies to all users or users with comparable

characteristics could be overly straightforward and unsatisfying of personal

preferences. Users' perceptions of the same kind of image can differ greatly. A more

conservative person would only choose to share personal photos with his family,

whereas a privacy-conscious person might be happy to share all of his photos.

In this paper, different privacy policy techniques for user-uploaded data and images in

content-sharing sites are described. The creation of privacy policies is determined by

user behavior and image content. There are some benefits and drawbacks to the

current systems. Although the A3P system performs better than other approaches, it

has a drawback in that it is challenging to establish a privacy policy when uploaded

image metadata is not available. In the future, images will be automatically annotated.

In computer vision and multimedia content analysis, automatic image annotation is a

difficult problem. Images are annotated using a hierarchical framework. First, an

image filtering algorithm that eliminates the majority of the images that are relevant

to an unlabeled image is presented. As the main relevant image set in the algorithm, a

discriminative model is used to assign an image cluster to the unlabeled image. A

hybrid annotation model is suggested for image annotation in the second stage. To

transfer labels from relevant images to unlabeled images based on global visual

features, a baseline method is presented.

2. Literature Survey

a). Over-Exposed? Privacy Patterns and Considerations in Online and Mobile

Photo Sharing: Sharing personal media online has become increasingly effortless

and widespread, but this comes with new privacy challenges. The enduring nature of

User-Upload Images on Content Sharing Sites. 79

photos and their context can inadvertently expose details about the physical and social

environments where these images were captured. In a groundbreaking study, we

explore how context-aware camera phone devices influence privacy decisions in

mobile and online photo sharing. By analyzing data on user privacy choices alongside

contextual information from a real-world system, we uncover connections between

where photos are taken and the privacy settings applied to them. Our findings raise

additional questions that we delve into through interviews with 15 users. These

discussions reveal recurring themes in privacy considerations, including security,

social disclosure, identity, and convenience. We also shed light on various

implications and opportunities for developing media-sharing applications, such as

leveraging historical privacy patterns to minimize mistakes and oversights.

b). Privacy Suites: Shared Privacy for Social Networks: One of the key challenges

we face today is creating effective and user-friendly privacy controls for social

networks. Many users are often unaware of their privacy settings, which can lead to

the accidental sharing of personal information and, in some cases, serious

consequences. To address this issue, we propose a fresh approach that allows users to

easily choose "packages" of privacy settings curated by friends or trusted

professionals, making adjustments only if they wish. This innovative system has the

potential to greatly enhance the level of privacy protection for most users with

minimal effort, especially since many currently opt for the default settings chosen by

the operators.

c). Sheep Dog–Group and Tag Recommendation for Flickr Photos by Automatic

Search-based Learning: Online photo albums have been prevalent in recent years

and have resulted in more and more applications being developed to provide

convenient functionalities for photo sharing. In this paper, we propose a system

named Sheep Dog to automatically add photos into appropriate groups and

recommend suitable tags for users on Flickr. We investigate the problem of gathering

training data for concept classification and use concept detection to forecast pertinent

concepts of a picture. We present two mechanisms and examine their concept

detection performances from the standpoint of obtaining training data through web

searches. A ranking-based approach is used to provide reasonable group/tag

recommendations for input photos in addition to obtaining trustworthy training data,

based on some information already available from Flickr. We test this system using a

comprehensive collection of images, and the outcomes show how successful our

efforts are.

d). Personalizing Image Search Results on Flickr: Flickr is a social media platform

that lets users post their images, tag them, add them to groups, and create social

networks by adding other users as contacts. Flickr can be browsed or searched in a

variety of ways. Tag search is one option that yields all images that have been tagged

with a particular keyword. The results of a tag search will contain a lot of images that

are unrelated to the sense the user had when executing the query if the keyword is

unclear, such as "beetle," which could refer to an automobile. We assert that the

80 M. Devaiah, S. Ramesh Babu et al

metadata users add, such as contacts and image annotations, reflects their interests in

photography. We demonstrate how to take advantage of this metadata to enhance

search performance by tailoring the user's search results. First, we demonstrate how

filtering tag search results by a user's contacts or a broader social network that

includes those contacts' contacts can greatly increase search precision. Furthermore,

we present a probabilistic model that leverages tag information to uncover latent

topics in the search volume. The tags that users use to annotate their images can also

be used to describe their interests. The latent topics found by the model are then used

to personalize search results by finding images on topics that are of interest to the

user.

3. System Analysis

3.1. Software Development Life Cycle:

In software engineering, the Software Development Life Cycle, or SDLC for short, is

a clearly defined and organized series of steps used to create the desired software

product.

3.1.1. SDLC Activities

To efficiently design and develop a software product, a set of steps is provided by the

Software Development Life Cycle (SDLC). The following steps are included in the

SDLC framework:

3.1.2. Communication

The user makes the initial request for the desired software product in this step. He

attempts to negotiate the terms with the service provider. He makes a written request

to the organization that provides the service.

3.1.3. Requirement Gathering

The software development team continues to work on the project after this step. To

learn as much as possible about the needs of the different stakeholders in the problem

User-Upload Images on Content Sharing Sites. 81

domain, the team has conversations with them. The requirements are carefully

considered and divided into three categories: functional, system, and user

requirements. The requirements are collected using several practices as given -

Studying the existing or obsolete system and software,

Conducting interviews of users and developers,

Referring to the database or

Collecting answers from the questionnaires.

3.1.4. Feasibility Study

After requirement gathering, the team comes up with a rough plan of the software

process. At this stage, the team examines whether software can be developed to meet

all user needs and whether there is a chance that it will become useless. The project's

financial, practical, and technological viability for the organization is determined.

Numerous algorithms are available to assist developers in determining whether a

software project is feasible.

3.1.5. System Analysis

At this stage, the developers choose a plan and attempt to identify the best software

model for the project. Understanding software product limitations, learning about

system-related issues or necessary modifications to current systems in advance,

determining and resolving the project's effects on the organization and its employees,

etc., are all components of system analysis. The project team plans the schedule and

resources based on an analysis of the project's scope.

3.1.6. Software Design

The next stage is to design the software product and put all of the requirements and

analysis knowledge on the desk. This step's inputs are user inputs and data acquired

during the requirement gathering stage. Two designs—a logical design and a physical

design—are the result of this step. Engineers create logical diagrams, data-flow

diagrams, meta-data and data dictionaries, and occasionally pseudo codes.

3.1.7. Coding

This step is also known as the programming phase. The implementation of software

design starts in terms of writing program code in a suitable programming language

and developing error-free executable programs efficiently.

3.1.8. Testing

An estimate says that 50% of the whole software development process should be

tested. Errors may ruin the software from a critical level to its own removal. Software

testing is carried out by developers while they are coding, and testing specialists

perform comprehensive testing at different code levels, including module, program,

product, in-house, and user-end testing. The secret to dependable software is the early

identification of errors and their correction.

82 M. Devaiah, S. Ramesh Babu et al

3.1.9. Integration

It might be necessary to integrate software with databases, libraries, and other

programs. Software integration with external entities is the focus of this SDLC stage.

3.1.10. Implementation

This entails setting up the program on user computers. Software occasionally requires

user-end post-installation configurations. Issues pertaining to integration are resolved

during implementation, and software is tested for portability and adaptability.

3.1.11. Operation and Maintenance

This stage verifies that the software is operating more effectively and with fewer

errors. Users receive training or assistance with the documentation on how to use the

software and maintain its functionality, if necessary. By updating the code in

accordance with developments in the user-end environment or technology, the

software is kept up to date. Hidden bugs and undiscovered real-world issues could

present difficulties during this phase.

3.1.12. Disposition

Over time, the software's performance may deteriorate. It might require significant

upgrades or become totally outdated. Therefore, there is an urgent need to get rid of a

significant part of the system. Archiving data and necessary software components,

shutting down the system, organizing disposal activities, and ending the system at the

proper end-of-system time are all included in this phase.

3.1.13. Software Development Paradigm

The paradigm for software development aids developers in choosing a software

development approach. A software development paradigm defines the software

development life cycle and has its own set of tools, techniques, and procedures that

are clearly stated. The following are some definitions of software development

paradigms or process models:

3.2. Waterfall Model

The most basic model of the software development paradigm is the waterfall model. It

declares that the SDLC will be carried out in a sequential manner for each step. To

put it another way, the second phase won't start until the first one is finished, and so

on.

User-Upload Images on Content Sharing Sites. 83

This model makes the assumption that everything goes according to plan in the

previous stage and that there is no need to consider potential problems from the past

that might come up in the subsequent stage. If there are still problems from the

previous step, this model does not function properly. We are unable to reverse or redo

our actions due to the sequential nature of the model.

When developers have previously designed and developed similar software and are

familiar with all of its domains, this model works best.

3.3. Iterative Model

Iterations of the software development process are led by this model. It repeats each

step after each cycle of the SDLC process, projecting the development process in a

cyclical fashion.

The software is first created on a very small scale, considering each step as it is done.

With each iteration that follows, more features and modules are developed, coded,

tested, and added to the program. Each cycle produces software that is complete in

and of itself, with more features and capabilities than the previous one. After each

iteration, the management team can focus on risk management and prepare for the

next one. Because a cycle only includes a small portion of the entire software process,

it is easier to manage the development process even though it uses more resources.

3.4. Spiral Model

The spiral model is a hybrid of one of the SDLC models and an iterative model. It is

comparable to combining a cyclic process (iterative model) with one SDLC model.

84 M. Devaiah, S. Ramesh Babu et al

This model takes risk into account, something that most other models frequently

overlook. At the beginning of one iteration, the model begins by identifying the

software's goals and limitations. Software prototyping is the next stage. Risk analysis

is part of this. The software is then developed using a single standard SDLC model.

The next iteration's plan is created in the fourth phase.

3.5. V– Model

The waterfall model's main flaw is that we only proceed to the next step after the

previous one is complete, and there is no way to go back if something is discovered to

be incorrect later on. The V-Model offers a way to test software in reverse at every

stage.

The primary drawback of the waterfall model is that we only move on to the next

phase once the previous one is finished, and there is no way to reverse course if

something turns out to be wrong later. Software can be tested in reverse at every stage

with the V-Model. To verify and validate the product in compliance with the stage's

requirements, test cases and test plans are created at every stage. For example, during

the requirement gathering phase, the test team prepares all test cases in compliance

with the requirements. Once the software has been developed and is ready for testing,

test cases from this stage verify that it meets the requirements.

As a result, validation and verification proceed simultaneously. The verification and

validation model is another name for this model.

3.6. Big Bang Model

Labels, inscriptions, and remarks are the metadata that we take into consideration in

our work. Recover each metadata vector's hyponym. Choose the hyponym that has the

most remarkable recurrence. An incremental method is a subcategory that a picture

belongs to. In the beginning, the primary image becomes the up category itself, and

the picture's delegate hyponyms become the illustrative hyponyms for the

subcategory. Keep track of the distance between each current subcategory and the

agent hyponyms of an upcoming image.

User-Upload Images on Content Sharing Sites. 85

There is very little planning needed for this model. It doesn't adhere to any procedure,

and occasionally the client is unsure of the specifications and upcoming demands.

Thus, the requirements for input are arbitrary. Although this model works well for

learning and experimentation, it is not appropriate for large software projects.

3.7 System Requirements Specification

The purpose, scope, definitions, acronyms, abbreviations, references, and an overview

of the entire Software Requirements Specification (SRS) are all included in the

introduction. By thoroughly defining the problem statement, this document seeks to

collect, examine, and provide a comprehensive understanding of the entire Marvel

Electronics and Home Entertainment software system. However, while defining high-

level product features, it also focuses on the capabilities and needs of stakeholders.

This document contains the specific requirements for Marvel Electronics and Home

Entertainment.

3.8. Functional Requirements

The definition of a functional requirement is any requirement that specifies what the

system should do.

5. System Design

5.1.1. System Specifications

Hardware Requirements:

 System :Pentium IV3.4GHz.

 Hard Disk :40 GB.

 Floppy Drive :1.44 Mb.

 Monitor :14’ Colour Monitor.

 Mouse :Optical Mouse.

 Ram :1 GB.

Software Requirements:

 Operating system :Windows Family.

 Coding Language :J2EE(JSP, Servlet, JavaBean)

 Data Base :MS Access.

 Web Server :Tomcat 6.0

86 M. Devaiah, S. Ramesh Babu et al

5.5.2. System Components
A system component is a process, program, utility, or another part of a computer's

operating system that helps manage different areas of the computer. Not to be

confused with a hardware component, a system component is similar to a computer

program, but is not something an end-user directly interacts with when using a

computer. There are multiple system components at work in a computer operating

system, each serving a specific function. Together, they allow the operating system

and computer to function correctly and efficiently.

5.2.1. Process Management

The process management component is responsible for overseeing the various

processes running within the operating system. Each software program is linked to

one or more processes that activate when the program is in use. For instance, using an

Internet browser means that a specific process dedicated to that browser is actively

running. The operating system itself also hosts numerous processes, each serving a

unique purpose. It is the role of process management to keep all these processes

organized, ensure they operate effectively, allocate the necessary memory, and

terminate them when required.

5.2.2. Memory Management

The memory management component, also sometimes called main memory

management or primary memory management, handles primary memory, or RAM.

When programs are running, including the operating system, those programs store

data in RAM for quick access at any time. Memory management monitors and

manages the memory and knows which blocks of memory are in use, which programs

are using memory, and which memory blocks are available to be used.

5.2.3. File Management

The file management component manages just about anything with computer files.

When a file is created, file management is involved in the creation of the

file, including where it is stored on a storage device. When a file is modified, file

management helps with the modification of the file. If a file is deleted, file

management is there to help with deleting the file and freeing up the space for another

file to be stored there at a later time.

File management also handles tasks related to the creation, modification, and deletion

of folders, or directories, on a storage device.

5.2.4. Secondary Storage Management

The secondary storage management component works with storage devices, like a

hard drive, USB flash drive, DVD drive, or floppy disk drive. While the file

management component takes care of the actual files on the storage device, the

secondary storage management component manages the storage device itself. It

manages the available space, or free space, on the storage device and allocates space

for new files to be stored there. Requests for data on a storage device are handled by

secondary storage management as well. For example, when a user double-clicks on a

http://www.computerhope.com/jargon/c/component.htm
http://www.computerhope.com/os.htm
http://www.computerhope.com/os.htm
http://www.computerhope.com/jargon/r/ram.htm
http://www.computerhope.com/jargon/f/file.htm
http://www.computerhope.com/jargon/s/stordevi.htm
http://www.computerhope.com/jargon/f/folder.htm
http://www.computerhope.com/jargon/d/director.htm
http://www.computerhope.com/jargon/h/harddriv.htm
http://www.computerhope.com/jargon/j/jumpdriv.htm
http://www.computerhope.com/jargon/j/jumpdriv.htm
http://www.computerhope.com/jargon/d/dvd.htm
http://www.computerhope.com/jargon/f/fdd.htm

User-Upload Images on Content Sharing Sites. 87

file to open it, secondary storage management receives that request and helps in the

retrieval of that file from the storage device.

5.2.5. Access Management

The access management component is tasked with managing user access to data on a

computer. Accounts provide each user with specific access to software, files, and

functionality within an operating system. The ability to install a software program is

controlled by access management. Access to view, edit, and delete a file is managed

by access management. Changing settings within the operating system is managed by

access management. How a user interacts with the computer operating system and

uses software is handled by access management, about the permissions they have

been granted through user accounts.

5.2.6. System Resource Management

The system resource management component is responsible for managing the

allocation of system resources, like memory and CPU time. When programs are

running, they require the use of memory and CPU time to function properly. System

resource management determines how much memory and CPU time that program is

allowed to use at any given time.

Managing system resource usage is a big responsibility, as it can directly impact the

performance of the computer. If too many resources are allocated to one program and

there is not enough to allocate to another program, functionality in the second

program will appear to be slow or sometimes even unresponsive. If the operating

system does not have enough resources allocated to it, the entire computer can run

slow or stop working altogether. It is the responsibility of system resource

management to make sure system resources are allocated properly, including taking

resources away from one program that does not need it and allocating those resources

to another program that does need it.

5.3. System Architecture

http://www.computerhope.com/jargon/c/cpu.htm

88 M. Devaiah, S. Ramesh Babu et al

5.4. Data Flow Diagram
Another name for the DFD is a bubble chart. A system can be represented using this

straightforward graphical formalism by showing the input data, the different

processing operations performed on the data, and the output data that the system

generates.

One of the most crucial modeling tools is the data flow diagram (DFD). The system

components are modeled using it. The system process, the data that the process uses,

an outside party that communicates with the system, and the information flows within

the system are all examples of these components.

DFD illustrates the flow of information through the system and the various

transformations that alter it. It is a visual method that illustrates the flow of

information and the changes made as data passes from input to output.

A DFD, sometimes referred to as a bubble chart, can depict a system at any

abstraction level. It can be divided into tiers that correspond to escalating functional

detail and information flow.

5.5. Use Case Diagram

According to the Unified Modeling Language (UML), a use case diagram is a

particular kind of behavioral diagram that is produced from and defined by a use-case

analysis. In terms of actors, their objectives (shown as use cases), and any

dependencies between those use cases, it serves to visually summarize the

functionality offered by a system. A use case diagram's primary objective is to

illustrate which actors utilize the system's functionalities. The roles of the actors in the

system can be depicted.

User-Upload Images on Content Sharing Sites. 89

Class Diagram

A class diagram in software engineering is a kind of static structure diagram that

illustrates a system's classes, attributes, operations (or methods), and relationships

between the classes using the Unified Modeling Language (UML). It clarifies which

class has the data.

5.6.1 Sequence Diagram

In the Unified Modeling Language (UML), one kind of interaction diagram that

shows the order and way processes interact with one another is a sequence diagram. It

is a construct of a message sequence chart. Sequence diagrams are also known as

event diagrams, event scenarios, and timing diagrams.

90 M. Devaiah, S. Ramesh Babu et al

5.7 Flow Chart Diagram

 Flow Chart1: Use Flow Chart2: Admin

6. System Implementation

6.1. Modules Description:

6.1.1. Modules:

 System Construction Module

 Content-Based Classification

 Metadata-Based Classification

 Adaptive Policy Prediction

6.2 Module Description:

6.2.1. System Construction Module

A3P-core and A3P-social are the two primary parts of the A3P system. The following

is the general data flow. An image uploaded by a user is initially routed to the A3P-

core. The image is classified by the A3P-core, which also assesses whether the A3P-

social needs to be called. Based on the users' past behavior, the A3P-core typically

makes direct policy predictions for them. If either of the two situations below is

verified to be true, A3P-core will contact A3Psocial: (i) The user's increased social

networking activities (adding new friends, posting on their profile, etc.) and recent

significant changes in their community regarding their privacy practices are detected

by the A3P-core; (ii) The user lacks sufficient information about the type of uploaded

image to perform policy prediction.

User-Upload Images on Content Sharing Sites. 91

6.2.2. Content-Based Classification

We propose a hierarchical image classification system that first classifies images

based on their contents and then further refines each category into subcategories based

on their metadata to obtain groups of images that may be associated with similar

privacy preferences. Pictures without metadata will only be grouped by content. This

kind of hierarchical classification gives image content priority and lessens the effect

of missing tags. Please take note that certain images may be included in more than

one category if they have the metadata or typical content features of those categories.

The foundation of our content-based classification strategy is an accurate and efficient

image similarity method. Our classification algorithm specifically compares image

signatures that are defined using the sanitized and quantified Haar wavelet

transformation. Each image's color, size, invariant transform, shape, texture,

symmetry, and other spatial and frequency information are encoded by the wavelet

transform. After that, a select few coefficients are chosen to create the image's

signature. The distance between the image signatures is then used to calculate the

content similarity between the images.

6.2.3. Metadata-Based Classification

Under the previously mentioned baseline categories, the metadata-based classification

divides images into subcategories. There are three primary steps in the process.

Extracting keywords from an image's associated metadata is the first step. Our work

takes into account tags, captions, and comments as metadata. Finding a representative

hypernym (represented by h) from each metadata vector is the second step. Finding a

subcategory to which an image belongs is the third step. This process is incremental.

The first image initially creates a subcategory for itself, and the image's representative

hypernyms turn into the representative hypernyms for the subcategory.

6.2.4.Adaptive Policy Prediction

The policy prediction algorithm provides a predicted policy of a newly uploaded

image to the user for his/her reference. More importantly, the predicted policy will

reflect the possible changes of a user’s privacy concerns. The prediction process

consists of three main phases: (i) policy normalization; (ii) policy mining; and (iii)

policy prediction.

Sample Code:

Results:

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartFrame;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.data.category.DefaultCategoryDataset;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

92 M. Devaiah, S. Ramesh Babu et al

public class Results {

 public static void main(String[] args) {

 int total1 = 0, total2 = 0, total3 = 0, total4 = 0, total5 = 0;

 String c1 = null, c2 = null, c3 = null, c4 = null, c5 = null;

 int fr = 0, br = 0, bfr = 0, sfr = 0, lfr = 0;

 try {

 // Load MySQL JDBC Driver

 Class.forName("com.mysql.jdbc.Driver");

 // Establish the connection

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/ppi", "root", "root");

 System.out.println("Connected");

 // Create statement and execute query

 Statement st = con.createStatement();

 ResultSet rs = st.executeQuery("SELECT * FROM images");

 // Iterate through the result set

 while (rs.next()) {

 String iname = rs.getString("tag");

 // Handle cases for different image tags

 if (iname.equalsIgnoreCase("Cat")) {

 c1 = "Cat";

 fr = rs.getInt("count");

 total1 += fr;

 }

 if (iname.equalsIgnoreCase("Deer")) {

 c2 = "Deer";

 br = rs.getInt("count");

 total2 += br;

 }

 if (iname.equalsIgnoreCase("Tiger")) {

 c3 = "Tiger";

 bfr = rs.getInt("count");

 total3 += bfr;

 }

 if (iname.equalsIgnoreCase("Dog")) {

 c4 = "Dog";

 sfr = rs.getInt("count");

 total4 += sfr;

 }

 if (iname.equalsIgnoreCase("Elephant")) {

 c5 = "Elephant";

 lfr = rs.getInt("count");

 total5 += lfr;

 }

User-Upload Images on Content Sharing Sites. 93

 }

 // Create dataset for bar chart

 DefaultCategoryDataset dataSet = new DefaultCategoryDataset();

 dataSet.setValue(total1, "Cat Rank", c1);

 dataSet.setValue(total2, "Deer Rank", c2);

 dataSet.setValue(total3, "Tiger Rank", c3);

 dataSet.setValue(total4, "Dog Rank", c4);

 dataSet.setValue(total5, "Elephant Rank", c5);

 // Create 3D Bar Chart

 JFreeChart chart = ChartFactory.createBarChart3D(

 "Privacy Policy Inference of User Uploaded Images on Content Sharing

Sites", // Chart title

 "Total Image Rank Details", // Category axis label

 "No. of Ranks", // Value axis label

 dataSet, // Dataset

 PlotOrientation.VERTICAL, // Orientation

 true, // Include legend

 true, // Tooltips

 true // URLs

);

 // Display chart in a frame

 ChartFrame chartFrame = new ChartFrame("Privacy Policy Inference of User

Uploaded Images on Content Sharing Sites Rank Details", chart);

 chartFrame.setVisible(true);

 chartFrame.setSize(800, 500);

 } catch (Exception ex) {

 System.out.println(ex);

 }

 }

}

Insert Image

<%@ page import="com.oreilly.servlet.*, java.sql.*, java.text.SimpleDateFormat,

java.util.*, java.io.*, javax.servlet.*, javax.servlet.http.*" %>

<%@ include file="connect.jsp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>PPI: Image Insertion Page</title>

 <link href="css/tooplate_style.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper">

94 M. Devaiah, S. Ramesh Babu et al

 <div id="main">

 <h2>Image Uploading!!!</h2>

 <div style="width:380px; margin:0 auto;">

<%

try {

 String imguname = (String) application.getAttribute("imageuname");

 ArrayList<FileInputStream> list = new ArrayList<>();

 ServletContext context = getServletContext();

 String dirName = context.getRealPath("Gallery/");

 String paramname = null, image = null;

 String a = null, b = null, c = "", d = null;

 String[] ee = null;

 String checkBok = "";

 int lyke = 0;

 String bin = "";

 FileInputStream fs = null;

 File file1 = null;

 MultipartRequest multi = new MultipartRequest(request, dirName, 10 * 1024 *

1024); // 10MB

 Enumeration<?> params = multi.getParameterNames();

 // Processing parameters

 while (params.hasMoreElements()) {

 paramname = (String) params.nextElement();

 if (paramname.equalsIgnoreCase("tag")) {

 a = multi.getParameter(paramname);

 } else if (paramname.equalsIgnoreCase("color")) {

 b = multi.getParameter(paramname);

 } else if (paramname.equalsIgnoreCase("annotation")) {

 c += multi.getParameter(paramname);

 } else if (paramname.equalsIgnoreCase("uses")) {

 d = multi.getParameter(paramname);

 } else if (paramname.equalsIgnoreCase("policy")) {

 ee = multi.getParameterValues(paramname);

 } else if (paramname.equalsIgnoreCase("pic")) {

 image = multi.getParameter(paramname);

 }

 }

 for (String str : ee) {

 checkBok += "|" + str;

 }

 if (checkBok.contains("All")) {

 checkBok = "All";

 }

 Enumeration<?> files = multi.getFileNames();

 // Processing file upload

User-Upload Images on Content Sharing Sites. 95

 while (files.hasMoreElements()) {

 paramname = (String) files.nextElement();

 if (paramname != null) {

 image = multi.getFilesystemName(paramname);

 String fPath = context.getRealPath("Gallery/" + image);

 file1 = new File(fPath);

 fs = new FileInputStream(file1);

 list.add(fs);

 FileInputStream fis = new FileInputStream(fPath);

 StringBuffer sb1 = new StringBuffer();

 int i;

 while ((i = fis.read()) != -1) {

 String hex = Integer.toHexString(i);

 sb1.append(hex).append(",");

 String binFragment = "";

 for (int i1 = 0; i1 < hex.length(); i1++) {

 int iHex = Integer.parseInt("" + hex.charAt(i1), 16);

 binFragment = Integer.toBinaryString(iHex);

 while (binFragment.length() < 4) {

 binFragment = "0" + binFragment;

 }

 bin += binFragment;

 }

 }

 fis.close();

 }

 }

 PreparedStatement ps = connection.prepareStatement(

 "INSERT INTO images (tag, color, annotation, uses, policy, imagess, count,

binaryimage, imagetitle, uname) " +

 "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

);

 ps.setString(1, a);

 ps.setString(2, b);

 ps.setString(3, c);

 ps.setString(4, d);

 ps.setString(5, checkBok);

 ps.setBinaryStream(6, fs, (int) (file1 != null ? file1.length() : 0));

 ps.setInt(7, lyke);

 ps.setString(8, bin);

 ps.setString(9, image);

 ps.setString(10, imguname);

 int x = ps.executeUpdate();

96 M. Devaiah, S. Ramesh Babu et al

 if (x > 0) {

 out.println("Image successfully added.");

 } else {

 out.println("Failure");

 }

} catch (Exception e) {

 out.println("Error: " + e.getMessage());

}

%>

 </div>

 </div>

</div>

</body>

</html>

SEND REQUEST:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>PPI: Send Request Page</title>

 <link rel="stylesheet" href="css/reset.css" type="text/css" media="screen">

 <link rel="stylesheet" href="css/style.css" type="text/css" media="screen">

 <link rel="stylesheet" href="css/layout.css" type="text/css" media="screen">

 <script src="js/jquery-1.6.min.js" type="text/javascript"></script>

 <script src="js/cufon-yui.js" type="text/javascript"></script>

 <script src="js/cufon-replace.js" type="text/javascript"></script>

 <script src="js/Open_Sans_400.font.js" type="text/javascript"></script>

 <script src="js/Open_Sans_Light_300.font.js" type="text/javascript"></script>

 <script src="js/Open_Sans_Semibold_600.font.js" type="text/javascript"></script>

 <script src="js/tms-0.3.js" type="text/javascript"></script>

 <script src="js/tms_presets.js" type="text/javascript"></script>

 <script src="js/jquery.easing.1.3.js" type="text/javascript"></script>

 <script src="js/FF-cash.js" type="text/javascript"></script>

 <!--[if lt IE 9]>

 <script src="js/html5.js" type="text/javascript"></script>

 <link rel="stylesheet" href="css/ie.css" type="text/css" media="screen">

 <![endif]-->

</head>

<body id="page1">

<div class="bg">

 <div class="main">

 <!-- Header Section -->

 <header>

 <div class="row-1">

User-Upload Images on Content Sharing Sites. 97

 <h1 style="width:600px;">

 Privacy Policy Inference of User-Uploaded Images

on Content Sharing Sites

 </h1>

 <form id="search-form" action="#" method="post"

enctype="multipart/form-data">

 <fieldset>

 <div class="search-form">

 <input type="text" name="search" value="Type Keyword Here"

 onBlur="if(this.value=='')this.value='Type Keyword Here'"

 onFocus="if(this.value=='Type Keyword Here')this.value=''"/>

 Search

 </div>

 </fieldset>

 </form>

 </div>

 <div class="nav-bar" style="background-color:#000000; height:40px;">

 <nav>

 <!-- Uncomment this section if you wish to use the navigation menu -->

 <!--

 <ul class="menu">

 Home Page

 About Us

 Admin

 User

 <li class="last-item">Register

 -->

 </nav>

 </div>

 </header>

 <!-- Content Section -->

 <section id="content">

 <div class="padding">

 <div class="wrapper">

 <div class="col-2">

 <div class="block-news">

 <h4 class="color4p2">Welcome to <%=

application.getAttribute("uname") %></h4>

 <div class="wrapperp2">

 <ul class="tooplate_list">

 View Profile

 Add Image

 User Search

 Send Friend Request

98 M. Devaiah, S. Ramesh Babu et al

 Search Other Friends

 View My Search

History

 Set Policies On Image

 Recommend Image to

Other Friends

 View

Recommended Images

 View All Friends

Request

 Logout

 </div>

 </div>

 </div>

 <div class="col-3">

 <iframe src="selectfriend.jsp" style="border:3px solid;" width="640"

height="400"></iframe>

 </div>

 </div>

 </div>

 </section>

 <!-- Footer Section -->

 <footer>

 <div style="background-color:#000000; height:40px;"></div>

 </footer>

 </div>

</div>

</body>

</html>

System Testing and Testing Strategies:

Software or hardware system testing is the process of testing an entire, integrated

system to determine whether it satisfies its requirements. As system verification falls

under the category of black-box testing, it does not require knowledge of the internal

mechanics of the code or logic. The software system, along with any relevant

hardware or systems, and all 'integrated' software elements that have successfully

passed integration testing, are generally included in the system testing input. The

objective of integration testing is to identify any inconsistencies between the software

units that are combined (termed assemblages) or between any of the assemblages and

the hardware. System testing is a more targeted form of testing that seeks to uncover

defects both within the overall system and within the 'inter-assemblages.

User-Upload Images on Content Sharing Sites. 99

 SCR.1 Home Page SCR.2 Admin Page

 SCR.3. User Page: SCR.4. Registration Page:

 SCR.5. Image Uploading Page: SCR.6. User Details Page:

SCR.7.User Searching Image Based On Friend Page And Rank:

100 M. Devaiah, S. Ramesh Babu et al

Conclusions
In this paper, we introduced the Adaptive Privacy Policy Prediction (A3P) system,

designed to help users automate the privacy settings for their uploaded images. The

A3P system establishes a robust framework to discern privacy preferences based on

the information available for each user. Additionally, we effectively addressed the

cold-start challenge by utilizing social context information. Our experimental results

demonstrate that the A3P is a valuable tool, significantly enhancing the current

methods for managing privacy.

References

[1] Acquisti and R. Gross, “Imagined communities: Awareness, information

sharing, and privacy on the facebook,” in Proc. 6th Int. Conf. Privacy

Enhancing Technol. Workshop, 2006, pp. 36–58.

[2] R. Agrawal and R. Srikant,“Fast algorithms for mining association rules in

large databases,” in Proc. 20th Int. Conf. Very Large Data Bases, 1994, pp.

487–499.

[3] S. Ahern, D. Eckles, N. S. Good, S. King, M. Naaman, and R. Nair, “Over-

exposed?: Privacy patterns and considerations in online and mobile photo

sharing,” in Proc. Conf. Human Factors Comput. Syst., 2007, pp. 357–366.

[4] M. Ames and M. Naaman, “Why we tag: Motivations for annotation in mobile

and online media,” in Proc. Conf. Human Factors Comput. Syst., 2007, pp.

971–980.

[5] Besmer and H. Lip ford, “Tagged photos: Concerns, perceptions, and

protections,” in Proc. 27th Int. Conf. Extended Abstracts Human Factors

Comput. Syst., 2009, pp. 4585–4590.

[6] D. G. Altman and J. M. Bland ,“Multiple significance tests: The bonferroni

method,” Brit. Med. J., vol. 310, no. 6973, 1995.

[7] J. Bonneau, J. Anderson, and L. Church, “Privacy suites: Shared privacy for

social networks,” in Proc. Symp. Usable Privacy Security, 2009.

[8] J. Bonneau, J. Anderson, and G. Danezis, “Prying data out of a social network,”

in Proc. Int. Conf. Adv. Soc. Netw. Anal. Mining., 2009, pp.249–254.

[9] H.-M. Chen, M.-H. Chang, P.-C. Chang, M.-C. Tien, W. H. Hsu, and J.-L. Wu,

“Sheepdog: Group and tag recommendation for flickr photos by automatic

search-based learning,”inProc.16th ACM Int. Conf. Multimedia, 2008, pp.

737–740.

User-Upload Images on Content Sharing Sites. 101

[10] M. D. Choudhury, H. Sundaram, Y.-R. Lin, A. John, and D. D. Seligmann,

“Connecting content to community in social media via image content, user tags

and user communication,” in Proc. IEEE Int. Conf. Multimedia Expo, 2009,

pp.1238–1241.

[11] L. Church, J. Anderson, J. Bonneau, and F. Stajano, “Privacy stories:

Confidence on privacy behaviors through end user programming,” in Proc. 5th

Symp. Usable Privacy Security, 2009.

[12] R. da Silva Torres and A. Falc~ao, “Content-based image retrieval: Theoryand

applications,” Revista de Inform_atica Te_orica e Aplicada, vol. 2, no. 13, pp.

161–185, 2006.

[13] R. Datta, D. Joshi, J. Li, and J. Wang, “Image retrieval: Ideas, influences, and

trends of the new age,” ACM Comput. Surv., vol. 40, no. 2, p. 5, 2008.

[14] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What does classifying more than

10,000 image

categoriestellus?”inProc.11thEur.Conf.Comput.Vis.:PartV,2010,pp.71–

84.[Online]. Available:http:// portal.acm.org/citation.cfm?id=1888150.1888157

[15] Kapadia, F. Adu-Oppong, C. K. Gardiner, and P. P. Tsang, “Social circles:

Tackling privacy in social networks,” in Proc. Symp. Usable Privacy Security,

2008.

