
Advances in Computational Sciences and Technology
ISSN 0973-6107 Volume 12, Number 1 (2019) pp. 1-6
© Research India Publications
http://www.ripublication.com

Cloud Based Log Analyzing and Archiving
Architectural Solution

S. SATHYANARAYAN
DevOps Engineer, Amazon

Abstract

Logging is core part of an application. This paper would discuss a Cloud based
serverless log analyzing and archiving solution using AWS Component or
services. This system or design intends to provide the user the capability of
querying or rather analyzing the logs using the power of SQL. The Architecture
incorporates the capability of joining data from multiple logs sources that are
ingested within minutes of the log event. This design set-up would be a single
solution in spite your systems be in cloud, on-premises or hybrid and would put
an end to infrastructure maintenance overhead for the service owners.
Experimental Detail section of the paper show case the efficiency of this design
over usual standard procedure of finding the anomaly in the logs.

INTRODUCTION
Logging is core part and parcel of an application. In general log analysis is the process
of obtaining an inference from log file. The logging varies across platform’s,
applications, devices, and so is the importance of different type of logs like application
logs, service logs, system logs etc. The use of logs varies from developers, sysadmins,
security team. As developers and sysadmins intend to monitor the system performance
and efficiency using logs, whereas security and vulnerability engineers intend to scan
logs out for any breach. As of in legacy systems(non-cloud), analyzing and archiving
is a difficult solution as service owners have to build their own application on top of
their logs to process and obtain inference, at the same time have the overhead of
maintaining the infrastructure. Later section of this paper discuss log analyzing,
archiving architecting solution for distributed systems.

2 S. SATHYANARAYAN

DESIGN GOALS
1. Minimizing Infrastructure maintenance overhead:
Storing logs always have been overhead out for the service owners, in many cases the
service owners keep separate hardware usually storage intensive to keep the logs out
for a long time.
2. Serverless Architecture:
The components used in the design are serverless, therefore no infra maintenance from
developer or service owner side.

3. Develop a generic architecture
Which could be used to implement even if your application is not on cloud. This design
could be used even if your systems are on-premises, hybrid or on cloud.
4. Support Wide range of logs:

 As there are different kind of logs and varying format.

ARCHITECTURAL COMPONENTS
1. User/client: An entity from which request comes to the system.

2. Host: Hardware on which application is running
3. S3: is an object storage service that offers industry-leading scalability, data

availability, security, performance provided by AWS.
4. Broker process P or agent: is a process that runs on the hosts and pushes logs

to S3 bucket.
5. Glacier: is a secure, durable, and extremely low-cost cloud storage service for

data archiving and long-term backup provided by AWS.
6. Lambda: Lets you run code without provisioning or managing servers. You

pay only for the compute time you consume is a service provided by AWS.
7. SNS: is a highly available, durable, secure, fully managed pub/sub messaging

service that enables you to decouple microservices, distributed systems, and
serverless applications.

8. SQS: is a fully managed message queuing service that enables you to decouple
and scale microservices, distributed systems, and serverless applications.

9. Cloudwatch: is a monitoring and management service that provides you with
data and actionable insights to monitor your applications.

10. Athena: Athena is an interactive query service that makes it easy to analyze
data in Amazon S3 using standard SQL.

Cloud Based Log Analyzing and Archiving Architectural Solution 3

PROPOSED ARCHITECTURE

The broker process (P in diagram) which is deployed across the hosts serving the
application are assigned an IAM role, providing it with the access to push the logs to
S3 bucket on defined timeframe. The broker is also capable of pushing the logs on basis
of size. In our experimental detail section, we intend to push the logs every minute, that
is, broker process delivers one gzip-compressed file per host into an S3 bucket. It is that
service owner can implements custom agents, that batches and send logs to S3. If larger
is the file size, say if the object of upload is greater than 5gb multipart upload api is to
be used. The only requirement is that it should delivers data into S3. The bucket split
architecture can vary based on the application. In our case we intend to keep one bucket
per region per log format. The sub folders are created in year/month/day/hour/minute
structure.

4 S. SATHYANARAYAN

S3 publishes event to the SNS topic for each file added to the bucket. SQS in the system
must be subscribed to SNS as it is the one that queue the filename to be processed.
Lambda in architecture above is triggered by each entry in SQS. The lambda so
generated intend to convert the raw log data into parquet format. As of now lambda
function can run up to 15 mins, the conversion lambda intent to start processing as many
raw files as possible and writing the content to single parquet file, as large parquet files
are more optimal. Then the file is move to output S3 bucket. As the data is now available
in S3 destination bucket in parquet format, Athena is used to query the logs. The S3
destination bucket split can be of one bucket per log format. Setting up S3 lifecycle to
move data to glacier intend to reduce the storage cost, based on the retention needed by
your service.

EXPERIMENT DETAILS
Below is sample of our log entry:

Mon Dec 10 05:00:09 2018 GMT MyService 253.189.89.50 8739 172.45.30.48 80

 0.001596 0.001106 0.001332 200 200 0 3132 GET

 https://www.example.com/articles/556 HTTP/1.1 "Mozilla/5.0 (Macintosh;

Intel Mac OS X 10_11_2) AppleWebKit/601.3.9 (KHTML, like Gecko) Version/9.0.2

Safari/601.3.9" DHE-RSA-AES128-SHA TLSv1.2

[WARN]com.MyService.environment.platform.runtime.CoalescingQueryLogDataSourceDescripto

r: No PageType was set for this request. It is recommended the PageType is set for all

requests.

The broker agent to push the files to S3, the inputs required out for the agent in present
in the toml file where we define

1. path towards the log folder
2. the interval within which data has to be pushed

3. credential details.
Below is the screenshot of Broker process running in the system:

The Conversion lambda intend to use the defined schema for the processing the logs.
The schema is build using the Technique mentioned in [1]LogMine, making the system
capable of automatically recognizing the log pattern and hence reducing to the pain to
create schema. We used Log Mine to handle the heterogeneity of logs in distributed

Cloud Based Log Analyzing and Archiving Architectural Solution 5

system. In the below screenshot is sample of querying over all requests, where
backend_response_code wasn’t 200.

Sample Screenshot:

 to obtain the output it took 3.26 seconds to scan over a 3.47 GB.
If we intend to search or analyze the logs say over in legacy way of scanning the file
using grep/awk intend to take more time. As a sample below to obtain the same result
from the log, that is to get the records where backend_response_code wasn’t 200
using awk, it took 14.576s to scan 303MB file. Through above example we intend to
say that it took 4x time more, out for a 11.45x time less data size, this is just over the
case of scanning the small file and when it comes to real use case of searching or
analyzing the Tera bytes of file size, the proposed architecture would be better.

6 S. SATHYANARAYAN

CONCLUSION
We have Proposed an architecture for log analyzing and archiving which is a serverless
solution. It’s capable of handling millions of heterogenous logs making it perfect
solution for distributed system. As the components used in the system automatically
takes care of its scalability and availability, reducing the infrastructure overhead.
This design also would provide better upper hand when building a customized
analyzing solution like kibana on top of it. In the next phase we intend to make this
system automatically detect anomalies in the log using machine learning.

REFERENCES

[1] https://www.cs.unm.edu/~mueen/Papers/LogMine.pdf
[2] https://aws.amazon.com/blogs/big-data/analyzing-data-in-s3-using-amazon-

athena/
[3] https://static.googleusercontent.com/media/research.google.com

/en//pubs/archive/36632.pdf
[4] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8416368
[5] https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/aws-

overview.pdf

