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Abstract 

 

Skull stripping forms an important pre-processing step in neuroimaging 

analysis. In this paper, a local Chan-Vese Expectation Maximization (LCV-

EM) model is proposed for skull segmentation which uses both global image 

information and the local information obtained via the Expectation 

Maximization (EM) algorithm. The energy functional for the proposed model 

consists of three terms: the global term, the local EM term, and the 

regularization term. Since magnetic resonance (MR) images contain a lot of 

intensity in homogeneity, the use of the local EM term along with the global 

term allows the segmentation of the brain from the skull and the non-brain 

tissue, in spite of the partial volume effect prominent near the boundary of the 

skull. The LCV-EM model is applicable to both T1 and T2-weighted MR 

images. The proposed model has the advantage that it does not require any 

boundary function or stopping function to decide the true boundary of the 

skull. Also the model shows good performance in comparison with other 

methods for brain extraction such as BSE, skull stripping using GAC, and the 

Chan-Vese model even in the presence of noise.  

 

Keywords: MRI, skull stripping, active contours, expectation maximization, 

level sets 

 

 

1. Introduction 

Intracranial brain segmentation commonly referred to as skull-stripping, aims to 

segment the brain tissue (cortex and cerebellum) from the skull and non-brain 
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intracranial tissues in MR images of the human brain. Skull stripping forms an 

important pre-processing step in neuroimaging analyses and is widely used in tasks 

such as multimodality image fusion and intersubject image comparisons, examination 

of the progression of brain disorders such as Alzheimer’s disease, multiple sclerosis, 

and schizophrenia, monitoring the development of ageing of the brain, and creating 

probability atlases from a large group of subjects [1]. Brain images are most typically 

skull-stripped before other processing algorithms such as registration, tissue 

classification, or bias-field correction are applied. The segmentation of the skull is 

also important in approaches which study various neurological disorders by aligning 

and normalizing a volumetric image of the intracranial cavity with respect to size and 

shape.  

 A number of factors complicate the problem of segmenting the skull in MRI 

volumes. These include partial volume effects, variable topology of the skull between 

individuals, regions of the skull with very high curvature, and regions of the skull 

whose thickness is very small as compared to the voxel size [2]. 

 Skull stripping methods can generally be classified into three types: intensity-

based, morphology-based, and deformable-model based. Intensity-based methods rely 

upon modeling the intensity distribution used for threshold classification. In [3], a 

semiautomated classification method is proposed for brain tissue classification in 

brain MR images. This method uses intensity distribution functions to identify major 

brain tissues (e.g., CSF, GM, and WM). Each brain tissue was modeled using a 

modified log-normal distribution function. The limitation for intensity-based methods 

is that they are frequently sensitive to intensity bias caused by magnetic field 

inhomogeneities, sequence variations, scanner drift, or random noise. 

 Morphology-based methods frequently combine connectivity-based 

morphological operations and thresholding or edge-detection to extract image features 

and identify brain surfaces. Lee et al. [4], proposed a 2D skull stripping method 

applied to a midsaggital slice, which was later extended by Huh et al. [5] to all slices 

in a saggital series. First, thresholds were used to separate dark pixels (e.g., 

background, skull, and cavities, etc) from bright pixels (e.g., brain, skin, facial tissues, 

etc), then brain regions were identified using a connectivity-based algorithm. Shattuck 

et al. [6] developed a tool called the brain surface extractor (BSE) which used a 

combination of edge detectors and morphological operators to skull-strip the brain. A 

Marr-Hildreth edge detector was first used to identify anatomic boundaries, then 

morphological operators were used to separate the tissues into component regions. 

Next, the largest central connected component was extracted as the brain region. 

Finally, nonbrain structures still attached to the brain region were removed. A 

potential disadvantage of these methods is that they are often dependent upon many 

parameters, and the parameters are often empirically generated and sensitive to small 

changes in the data. 

 Skull-stripping methods based upon deformable models typically evolve and 

deform an active contour to fit the brain surface, which is identified using separate 

image characteristic. Abountanos et al. [7] evolved a 2D contour by maximizing its 

corresponding 1D optimization problem, which was obtained via geometrical 

transformation from a 2D contour using dynamic programming techniques. The 1D 
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optimization problem was described by a cost function that consisted of six terms 

including intensity value, morphology, gradient, moving speed of the contour, and 

smoothness of the contour. Zeng et al. [8] proposed a system of two level set 

equations whose zero level curves represented their inner and outer boundaries of the 

gray matter of the cortex. Each level set equation was driven towards the inner or 

outer boundary by a force term determined by the intensity distribution of brain 

tissues (i.e., CSF, WM, and GM). The two level set equations were further related to 

each other by constraining the distance between the inner and outer boundaries (i.e., 

the thickness of gray matter). Suri [9] proposed an active contour algorithm that uses 

the level set methods to evolve the active contour. A fuzzy membership function was 

used to classify the images into four components: WM, GM, CSF, and background, 

then a gradient detector was used along with a deformable model to evolve an active 

contour to fit the surface between CSF and GM. Ballard et al. [10] registered brain 

data to an atlas and used the brain surface from the atlas as the initial contour. Then, 

an equation based on the level set method was used, in which the speed term was 

determined by the curvature of the evolving surface and by a sign function that 

signaled whether to include or exclude a pixel that the curve passed. Smith [11] 

proposed an automated deformable model for skull stripping, called the brain 

extraction tool (BET), in which a set of forces, including morphological and image-

based forces, were applied in the tangential and normal directions of the evolving 

surface. In general, deformable models have the potential to produce more robust and 

accurate skull-stripping results than methods using edge detection and threshold 

classification. Hybrid schemes have also been proposed to combine multiple results of 

different algorithms to compensate for problems encountered with individual methods 

[2]. In Zhuang et al. [1], an automatic algorithm called the model-based level set 

(MLS) method to remove the skull and intracranial tissues surrounding the brain in 

MR images. The level set method was used to evolve an active curve defined by the 

zero level set of the implicit function φ. The velocity of the evolving curve was 

determined by the image data and the morphology of the brain surface. The image 

data function was derived from the intensity value and the contrast between brain and 

non-brain tissues; the morphology term was derived from the mean curvature of the 

evolving surface. 

 In this paper, a local Chan-Vese Expectation Maximization (LCV-EM) model is 

proposed for skull segmentation which uses both global image information and the 

local information obtained via the EM algorithm. The energy functional for the 

proposed model consists of three terms: the global term, local-EM term, and the 

regularization term. Since MR images contain a lot of intensity inhomogeneity, the 

use of the local-EM term along with the global information allows the skull and non-

brain tissue to be segmented from the brain tissue in spite of the partial volume effect 

prominent near the boundary of the skull. 

 The rest of the paper is organized as follows. Section II explains the partial 

volume effect and the partial volume model. Section III presents a brief review of the 

previous work pertaining to deformable active contours. The proposed LCV-EM 

model is explained in section IV along with its level set formulation and numerical 

implementation. Results and Discussion are presented in Section V. This also includes 
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a comparison with other brain extraction algorithms (BEAs). 

2. Partial Volume Effect 

A problem with virtually all medical imaging devices is the partial volume effect 

(PVE); if the support of an image voxel overlays the boundary between two or more 

tissues, then the measured intensity value for that voxel will consist of a mixture of 

partial contributions from all the involved tissue types [12]. Intuitively, because the 

partial volume effect is caused by the limited spatial resolution of MRI, it should only 

appear at the boundaries of different tissue types and have a maximum influence 

width of 1 or 2 voxels across the boundaries. In practice, however the PVE affects a 

much wider area. The reason lies in the blurring effect of the imaging process, which 

has a diffuse point spread function effectively mixing the intensity of each voxel with 

many of its neighbors. Together with the PVE at tissue boundaries, the blurring effect 

depending on its strength and imaging quality makes the mixing effect of intensities 

from different tissue types appear in a wider area of the image [13]. 

 

2.1 Partial Volume Model 

The brightness of a pixel on the (two-dimensional) screen represents the MR signal 

intensity from the 3D volume of tissue in the patient, and what is actually seen in the 

MR image is the front face of the voxel [14]. The pixel represents the signal obtained 

from the voxel element and is classically represented as a linear combination of pure 

class values present in the voxel. The MR signal S from a voxel containing m different 

tissues is given by,  

 𝑆 = ∑ (
𝑉𝑙

𝑉
)𝑚

𝑙=1 𝑆𝑙 (1) 

where 𝑉𝑙 is the volume of the l-th tissue within the voxel, V is the total volume of the 

voxel, and 𝑆𝑙 is the signal from the l-th tissue. The grey level 𝑃𝑗𝑘 of the (j, k)-th pixel 

corresponding to the (j, k)-th voxel in an MR image is given by,  

 𝑃𝑗𝑘 = 𝐸[𝑃𝑗𝑘] + 𝑤𝑗𝑘 = ∑ (
𝑉𝑙𝑗𝑘

𝑉
)𝑚

𝑙=1 𝑆𝑙 + 𝑤𝑗𝑘 (2) 

where 𝑉𝑙𝑗𝑘 is the partial volume of the l-th tissue in the (j, k)-th voxel, and 𝑤𝑗𝑘 

represents statistical noise that is assumed to be additive zero mean white Gaussian 

noise field, uncorrelated between different scenes of the same MRI sequence with 

standard deviation 𝜎. 𝐸[𝑃𝑗𝑘] is deterministic but unknown, whereas the noise 𝑤𝑗𝑘 is 

stochastic, so the pixel gray level 𝑃𝑗𝑘 is the sum of a deterministic value (to be 

estimated) and noise. The notation 𝐸[𝑃𝑗𝑘] is used to denote the original, deterministic 

value of the pixel gray level, which contains information pertaining to partial volume 

averaging effects. To extract partial volume information, an image is generated whose 

pixel gray levels, on average, are proportional to the percentages of a specific tissue in 

the corresponding voxels [15].  

 Pure bone class is not strongly present in the neighborhood of thin bone. Fig. 1(a) 

shows the real-world situation in which each point is exactly one type of material. Fig. 

1(b) shows the sampling process which creates a band of mixture of the two materials 

between materials A and B. Points P1 and P2 lie in the two materials A and B 

respectively. However, point P3 lies in the transition band/region between the two 

materials where they are mixed. The transition band contains the partial volume pixels 
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which contains the signal mixture from both the tissue types A and B. If we consider 

zone A as bone (BN) and zone B as tissue (TS) then the mixture zone contains pixels 

whose signal intensity is a mixture of bone (BN) and tissue (TS) depending on their 

proportions present in the corresponding voxel. By tissue it is meant to consider all 

types of tissue other than bone.  

 Let the gray level values of tissue and bone be 𝑀𝑡𝑖𝑠𝑠𝑢𝑒 and 𝑀𝑏𝑜𝑛𝑒 respectively. 

For the transition region between the pure zones A and B, the gray level value of a 

pixel can be given by,  

 𝑔 = 𝛼𝑏𝑜𝑛𝑒 ∙ 𝑀𝑏𝑜𝑛𝑒 + 𝛼𝑡𝑖𝑠𝑠𝑢𝑒 ∙ 𝑀𝑡𝑖𝑠𝑠𝑢𝑒 
 

  
(a) (b) 

Figure 1. Zone with bone (A) and tissue regions (B) (a) real world situation, (b) 

discrete image created by the sampling process 

 

 

where 𝛼𝑏𝑜𝑛𝑒 is the corresponding percentage of bone present and 𝛼𝑡𝑖𝑠𝑠𝑢𝑒 is 

proportional to the percentage of tissue present. 𝑀𝑏𝑜𝑛𝑒 and 𝑀𝑡𝑖𝑠𝑠𝑢𝑒  are unknown and 

can be estimated. Actually, the problem can be viewed as a classification problem in 

which the transition region pixels need to be classified according to their gray-level 

values which in turn are dependent on the percentage of bone and tissue present in the 

corresponding voxel. 

 As mentioned earlier PVE is a problem associated with all medical imaging 

devices. In fact, several tissue types surround the skull. The global tissue 

characterization in the image as proposed by Santago and Gage [16] is not suited to 

the problem. In Desco et al. [17], an automatic segmentation procedure for MRI 

neuroimages that overcomes part of the problems involved in multidimensional 

clustering techniques like partial volume effects (PVE), processing speed and 

difficulty of incorporating a priori knowledge. The method is a three-stage process in 

which expectation-maximization algorithms are used to estimate the probability 

density function (pdf) of the pixels, which are assumed to be mixtures of Gaussians. 

Balafar [18] proposed an improvement of the EM algorithm for MRI brain image 

segmentation. In order to improve EM performance, the proposed algorithm 

incorporates neighborhood information into the clustering process. In Pham and 

Prince [19], a general framework for performing robust, unsupervised tissue 
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classification is presented. Tissue classification is formulated as an estimation 

problem based on an imaging model. Prior models are used within the estimation 

problem to compensate for noise and intensity. In Leemput et al. [20], a statistical 

framework for partial volume segmentation that encompasses and extends existing 

techniques is proposed. They started from a commonly used parametric statistical 

image model in which each voxel belongs to one single tissue type, and introduce an 

additional downsampling step that causes partial voluming along the borders between 

tissues. An expectation-maximization approach is used to simultaneously estimate the 

parameters of the resulting model and perform a PV classification. 

 As described earlier PVEs occur where multiple tissues contribute to a single 

voxel, resulting in blurring of edges at the boundary. Because of PVEs, it is often 

desirable to allow for some uncertainty in tissue classification. So-called soft 

segmentations allow multiple tissues to exist at a particular location with different 

levels of membership or probability. Unlike the kmeans algorithm, the approaches 

based on Gaussian clustering via the expectation-maximization (EM) algorithm are 

capable of producing soft segmentation that can better model PVEs by computing a 

posterior probability at each pixel [21-23]. 

 In the proposed method, two classes are assumed, namely bone and tissue. By 

tissue it is meant that all tissues other than bone are considered. Estimation of the 

unknown pixel class as well as class probabilities and class means is done using EM 

algorithm. The class probabilities signify the percentage of bone and tissue in the 

region surrounding the evolving contour. By incorporating these class means in the 

deformable model, the contour can be made to evolve such that it contains the brain 

tissue effectively bypassing the partial volume pixels classified as belonging to the 

bone class by the EM algorithm. The contour evolution is stopped after a specific 

number of iterations are completed or when the contour reaches stability.  

  

 

3. Previous Works 

3.1 Mumford-Shah Model 

The Chan-Vese model is the curve evolution implementation of a piecewise constant 

case of the Mumford-Shah model [24]. Mumford-Shah model is an energy-based 

method introduced by Mumford and Shah via an energy functional. The basic idea is 

to find a pair of (u, C) for a given image 𝑢0, where u is a nearly piecewise 

approximation of 𝑢0 and C denotes the smooth and closed segmenting curve. 

 The general form for the Mumford-Shah energy functional can be written as 

follows,  

𝐸𝑀𝑆(𝑢, 𝐶) = ∫ |𝑢0(𝑥, 𝑦) − 𝑢(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 + 𝜇 ∫ |∇𝑢(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 + 𝜈 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)
 

Ω\𝐶

 

Ω
 (3) 

where 𝜇 and 𝜈 are positive constants,  denotes the image domain, the segmenting 

curve 𝐶 ⊂ Ω. To solve the Mumford-Shah problem is to minimize the energy 

functional over u and C. The removal of any of the above 3 terms in exp. (3) will 

result in trivial solutions for u and C [24]. However, with all 3 terms, it becomes a 

difficult problem to solve since u is a function in the N-dimensional space (N=2 in 2D 

image segmentation), while C is an (N-1) dimensional data set. 
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3.2 Chan-Vese Model:  

The Chan-Vese (CV) model [25] is an alternative solution to the Mumford-Shah 

problem which solves the minimization of exp. (3) by minimizing the following 

energy functional:  

𝐸𝐶𝑉(𝑐1, 𝑐2, 𝐶) = 𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)

+ 𝜆1 ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦

 

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2𝑑𝑥𝑑𝑦

 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

 

(4) 

where 𝜇, 𝜆1, and 𝜆2 are positive constants, usually fixing 𝜆1 = 𝜆2 = 1, 𝑐1 and 𝑐2 are 

the intensity averages of 𝑢0 inside C and outside C respectively.  

 To solve this minimization problem, the level set method [26] is used which 

replaces the unknown curve C by the level-set function 𝜙(𝑥, 𝑦), considering that 

𝜙(𝑥, 𝑦) > 0 if the point (x, y) is inside C, 𝜙(𝑥, 𝑦) < 0 if (x, y) is outside C, and 

𝜙(𝑥, 𝑦) = 0 if (x, y) is on C. Thus, the energy functional 𝐸𝐶𝑉(𝑐1, 𝑐2, 𝐶) can be 

reformulated in terms of the level set function 𝜙(𝑥, 𝑦) as follows:  

𝐸𝜀
𝐶𝑉(𝑐1, 𝑐2, 𝜙) = 𝜇 ∫ 𝛿𝜀(𝜙(𝑥, 𝑦))|∇𝜙(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

 

Ω

+ 𝜆1 ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝐻𝜀(𝜙(𝑥, 𝑦))𝑑𝑥𝑑𝑦
 

Ω

+ 𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2(1 − 𝐻𝜀(𝜙(𝑥, 𝑦)))𝑑𝑥𝑑𝑦
 

Ω

 

(5) 

where 𝐻𝜀(𝑧) and 𝛿𝜀(𝑧) are respectively, the regularized approximations of the 

Heaviside function 𝐻(𝑧) and the Dirac Delta function 𝛿(𝑧) as follows:  

 𝐻(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0 

 

 𝛿0(𝑧) =
𝑑

𝑑𝑧
𝐻(𝑧) (6) 

 The minimization problem is solved by taking the Euler-Lagrange equations and 

updating the level set function 𝜙(𝑥, 𝑦) by the gradient descent method:  

 
𝜕𝜙

𝜕𝑥
= 𝛿𝜀(𝜙) [𝜇 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) − 𝜆1|𝑢0 − 𝑐1|2 + 𝜆2|𝑢0 − 𝑐2|2] (7) 

where 𝑐1 and 𝑐2 can be respectively updated at each iteration by 

 𝑐1(𝜙) =
∫ 𝑢0(𝑥,𝑦)𝐻(𝜙(𝑥,𝑦))𝑑𝑥𝑑𝑦

 
Ω

∫ 𝐻(𝜙(𝑥,𝑦))𝑑𝑥𝑑𝑦
 

Ω

 

 𝑐2(𝜙) =
∫ 𝑢0(𝑥,𝑦)(1−𝐻(𝜙(𝑥,𝑦)))𝑑𝑥𝑑𝑦

 
Ω

∫ (1−𝐻(𝜙(𝑥,𝑦)))
 

Ω
𝑑𝑥𝑑𝑦

 (8) 

 The Chan-Vese model has achieved good performance in image segmentation task 

due to its ability of obtaining a larger convergence range and handling topological 

changes naturally. It can deal with the detection of objects whose boundaries are 

either smooth or not necessarily defined by gradient. In such cases, the edge-based 
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level set methods commonly fail and result in boundary leakage [27]. Second, it does 

not require image smoothing and thus can efficiently process the images with noise. 

Therefore, the true boundaries are preserved, and could be accurately detected. 

However, the CV model suffers from some intrinsic limitations. The CV model 

generally works for images with intensity homogeneity since it assumes that the 

intensities in each region remains constant. The CV model thus leads to poor 

segmentation results for images with intensity inhomogeneity due to wrong 

movement of evolving curves guided by global image information. Second, the 

segmentation of CV model is usually dependent on the placement of the initial 

contour, especially for the complicated images. Sometimes, different results will be 

obtained for the same image by using different initial contours. 

 

 

4. Local Chan-Vese Expectation Maximization Model 

The proposed local Chan-Vese EM (LCV-EM) model is discussed along with its 

numerical implementation. The proposed model is defined based on the techniques of 

curve evolution, local statistical function, and level set methods. MR images contain a 

lot of intensity inhomogeneity in them, i.e., the intensity changes over the image due 

to the varied amount of tissues in them. Therefore, traditional level set methods, using 

either the image gradient [30-32] or the global information [25], [33] to drive the 

evolving curve(s) towards the true boundaries cannot achieve success in segmentation 

of the skull from surrounding tissue. The proposed model combines both local and 

global statistical information to overcome the inhomogeneous distribution in the MR 

image and hence provide more satisfactory segmentation of the skull from the 

surrounding tissue. 

 The overall energy functional in the proposed LCV-EM model consists of three 

parts: the global term EG, the local EM term EL-EM and the regularization term ER. 

Thus, the overall energy functional can be described as,  

 𝐸𝐿𝐶𝑉−𝐸𝑀 = 𝛼 ∙ 𝐸𝐺 + 𝛽 ∙ 𝐸𝐿−𝐸𝑀 + 𝐸𝑅 (9) 

 

4.1 Global Term 

The global term 𝐸𝐺  is derived directly from exp. (4) in the Chan-Vese model, in 

which it is called as the fitting term. It can be seen that the global term is defined 

based on the global properties, i.e., the averages of 𝑢0 inside C and outside C, which 

is stated as follows:  

𝐸𝐺(𝑐1, 𝑐2, 𝐶) = 𝐹1(𝐶) + 𝐹2(𝐶)

= ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦 + ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2𝑑𝑥𝑑𝑦

 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

 

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

 

(10) 

 Using the level set formulation, the boundary C is represented using the zero level 

set of a Lipschitz function 𝜙: Ω → 𝑅. 

 𝜙(𝑥, 𝑦) = {

> 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶

= 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑛 𝐶

< 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶

 (11) 
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 Accordingly, the global term in exp. (10) can be rewritten so as to evaluate the 

level set function 𝜙 on the domain :  

𝐸𝐺(𝑐1, 𝑐2, 𝐶) = ∫|𝑢0(𝑥, 𝑦) − 𝑐1|2𝐻(𝜙(𝑥, 𝑦))𝑑𝑥𝑑𝑦

 

Ω

+ ∫|𝑢0(𝑥, 𝑦) − 𝑐2|2(1 − 𝐻(𝜙(𝑥, 𝑦)))𝑑𝑥𝑑𝑦

 

Ω

 

(12) 

where, 𝐻(𝑧) is the Heaviside function described in exp. (6). Usually, after exp. (12) 

comes to a steady state, or approximately to be zero, the evolving curve C (the zero 

level set of 𝜙) will separate the object from the background. However, for the images 

with intensity inhomogeneity such as MR images, the final obtained curve can hardly 

divide the image into object region and background region even after a long iteration 

time. The reason is that the global term assumes that the image intensity is piecewise 

constant like the CV model. Thus, the averages 𝑐1 and 𝑐2 act as the global information 

and cannot represent the inhomogeneous intensities of the object region and 

background region in the images with intensity inhomogeneity. Therefore, to achieve 

a good performance in segmenting the images with intensity inhomogeneity, the local 

image information needs to be included [44]. 

 

4.2 Local Chan-Vese Expectation-Maximization Term 

The following local term is introduced which uses the local statistical information as 

the key improvement factor for improving the segmentation performance on MR 

images, showing large intensity inhomogeneity. 

𝐸𝐿−𝐸𝑀(𝜇1, 𝜇2, 𝐶)

= ∫ |𝑢0(𝑥, 𝑦) − 𝜇1|𝛼1𝑑𝑥𝑑𝑦 + ∫ |𝑢0(𝑥, 𝑦) − 𝜇2|𝛼2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

 

(17) 

where 𝜇1 and 𝜇2 are the class means obtained by the application of the EM algorithm 

to narrowbands surrounding the evolving contour both on the inside and outside 

respectively considering the two classes, i.e., bone and tissue. A description of the EM 

algorithm can be found in [43]. The level set formulation allows for the narrowband 

implementation of the model, and also allows for the application of the EM algorithm 

to narrowbands on the inside and outside of the evolving contour, which is an 

important factor as this results in an considerable decrease of the computation time. 

Too small a width of the surrounding narrowbands will not be adequate to cover the 

partial volume pixels between the boundary of the skull and the brain tissue. Too 

large a width will also not be adequate as this will make the overall speed of 

computation too slow. It was found experimentally that a width of 5-20 pixels is 

adequate. The local fitting term keeps on decreasing while the curve evolves towards 

the true boundaries of objects in the image, and the true boundary 𝐶∗ is a minimizer of 

the following fitting term:  
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 𝑖𝑛𝑓
𝐶

(𝐹1
𝐿−𝐸𝑀(𝐶) + 𝐹2

𝐿−𝐸𝑀(𝐶)) ≈ 0 ≈ 𝐹1
𝐿−𝐸𝑀(𝐶∗) + 𝐹2

𝐿−𝐸𝑀(𝐶∗) (18) 

where 𝐹1
𝐿−𝐸𝑀(𝐶) + 𝐹2

𝐿−𝐸𝑀(𝐶) denotes the local fitting term. In a manner similar to 

the global term, the local term exp. (17) can also be reformulated in terms of the level 

set function 𝜙(𝑥, 𝑦) as follows:  

𝐸𝐿−𝐸𝑀(𝜇1, 𝜇2, 𝐶)

= ∫|𝑢0(𝑥, 𝑦) − 𝜇1|𝛼1𝐻(𝜙(𝑥, 𝑦))𝑑𝑥𝑑𝑦

Ω

+ ∫|𝑢0(𝑥, 𝑦) − 𝜇2|𝛼2 (1 − 𝐻(𝜙(𝑥, 𝑦))) 𝑑𝑥𝑑𝑦

Ω

 

(19) 

 

4.3 Regularization Term 

To control the smoothness of the zero level set and further avoid the occurrence of 

small, isolated regions in the final segmentation, a length penalty term 𝐿(𝐶) is added 

as the regularization term. 

 Let C be a smooth closed planar curve 𝐶(𝑝): [0, 1] → Ω parameterized by 

parameter 𝑝 ∈ [0, 1]. The length functional can be written as,  

 𝐿(𝐶) = ∮ 𝑑𝑝
𝐶

 (20) 

 Replacing the curve C by the level set function, 𝜙(𝑥, 𝑦), 𝐿(𝐶) can be reformulated as,  

 𝐿(𝜙 = 0) = ∫ |∇𝐻(𝜙(𝑥, 𝑦))|𝑑𝑥𝑑𝑦
Ω

= ∫ 𝛿(𝜙(𝑥, 𝑦))|∇𝜙(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
Ω

 (21) 

where, 𝐻(𝑧) is the Heaviside function and 𝛿(𝑧) the Dirac Delta function, which has 

been described in exp. (6). The use of length penalty term implies that the evolving 

curve which minimizes the overall energy functional should be as short as possible. It 

imposes a penalty on the length of the curve that separates the two phases of the 

image, i.e., foreground and background on which the energy functional will make a 

transition from one of its values 𝑐1(𝜇1) to 𝑐2(𝜇2). 

 In many situations, the level set function will develop shocks, very sharp and/or 

flat shape during the evolution, which in turn makes further computation highly 

inaccurate in numerical approximations. To avoid these problems, it is necessary to 

reshape the level set function to a more useful form, while keeping the zero location 

unchanged. A common numerical scheme is to reinitialize the function 𝜙(𝑥, 𝑦) to be a 

signed distance function periodically during the evolution, which can be written as,  

 𝜙(𝑥, 𝑦) = {

𝑑𝑖𝑠𝑡(𝑋, 𝐶𝑡) 𝑖𝑓 𝑋 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶𝑡

0 𝑖𝑓 𝑋 ∈  𝐶𝑡

−𝑑𝑖𝑠𝑡(𝑋, 𝐶𝑡) 𝑖𝑓 𝑋 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶𝑡

 (22) 

where, 𝑑𝑖𝑠𝑡(𝑋, 𝐶𝑡) is the shortest Euclidean distance of X to the points on the 

evolving curve 𝐶𝑡 at time t. It is crucial to keep the evolving level set function as an 

approximate signed distance function during the evolution, especially in the 

neighborhood around the zero level set [38]. The most straightforward way of 

implementing the reinitialization operation is to extract the zero level set and then 

compute the distance function from it. 

 However, the method is generally time-consuming. To, overcome this difficulty, a 

now widely accepted method has been proposed in [39] in order to re-initialize the 
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level set function by solving the following partial-difference expression:  

 
𝜕𝜙

𝜕𝑡
= 𝑠𝑖𝑔𝑛(𝜙0)(1 − |∇𝜙|) (23) 

where 𝜙0 is the function to be re-initialized, and 𝑠𝑖𝑔𝑛(𝜙0) is the sign function. When 

the steady state of exp. (23) is reached, 𝜙 will be a distance function with the same 

zero level set as 𝜙0 despite 𝜙0 is a distance function or not. This is commonly known 

as the standard re-initialization procedure. 

 

4.3 Level Set Formulation 

In the level set formulation, the curve C is represented by the zero level set of a 

Lipschitz function 𝜙. The overall energy functional in exp. (9) can be further 

described as follows:  

 𝐸𝐿𝐶𝑉−𝐸𝑀(𝑐1, 𝑐2, 𝜇1, 𝜇2, 𝜙) = 𝛼 ∙ 𝐸𝐺(𝑐1, 𝑐2, 𝜙) + 𝛽 ∙ 𝐸𝐿−𝐸𝑀(𝜇1, 𝜇2, 𝜙) + 𝐸𝑅(𝜙 (24) 

where, 𝛼 is a positive parameter, and 𝛽 can be positive or negative, which govern the 

trade-off between the global term and the local-EM. In the experiments carried out 

𝛼 = 1 and 𝛽 = −1.  

 In general, the skull segmentation process can be equivalently transformed into 

finding a solution that minimizes 𝐸𝐿𝐶𝑉−𝐸𝑀 by evolving the level set function 𝜙. The 

Heaviside function 𝐻(𝑧) and the Dirac Delta function 𝛿(𝑧) described in exp. (6) are 

then applied to divide the level set function into three parts, i.e., the part inside C, the 

part outside C, and the part on C. For practical and feasible implementation, 𝐻𝜀(𝑧) is 

chosen as a non-compactly supported, smooth and strictly monotone approximation of 

𝐻(𝑧), which can be written as,  

 𝐻𝜀(𝑧) =
1

2
|1 +

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 |

𝑧

𝜀
|| , 𝜀 → 0 (25) 

 The regularized approximation 𝛿𝜀(𝑧) of Dirac Delta function 𝛿(𝑧) is 

correspondingly computed by 

 𝛿𝜀(𝑧) =
1

𝜋

𝜀

𝜀2+𝑧2 (26) 

 Therefore, the overall energy functional can then be rewritten as,  

𝐸𝐿𝐶𝑉−𝐸𝑀(𝑐1, 𝑐2, 𝜇1, 𝜇2, 𝜙)

= ∫(𝛼 ∙ |𝑢0(𝑥, 𝑦) − 𝑐1|2 + 𝛽 ∙ |𝑢0(𝑥, 𝑦) − 𝜇1|𝛼1)

Ω

× 𝐻𝜀(𝜙(𝑥, 𝑦))𝑑𝑥𝑑𝑦

+ ∫(𝛼 ∙ |𝑢0(𝑥, 𝑦) − 𝑐2|2 + 𝛽 ∙ |𝑢0(𝑥, 𝑦) − 𝜇2|𝛼2)

Ω

× (1 − 𝐻𝜀(𝜙(𝑥, 𝑦)))𝑑𝑥𝑑𝑦 +  𝜇 ∙ ∫ 𝛿𝜀(𝜙(𝑥, 𝑦))|∇𝜙(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

Ω

 

(27) 

 The gradient descent method is used to compute the minimizer of exp. (27). For a 

fixed level set function 𝜙, we minimize the energy functional in exp. (27) with respect 

to the two pairs of constants 𝑐1 and 𝑐2, 𝜇1 and 𝜇2. By calculus of variations it can be 

shown that the constant functions 𝑐1(𝜙) and 𝑐2(𝜙) that minimize 

𝐸𝐿𝐶𝑉−𝐸𝑀(𝑐1, 𝑐2, 𝜇1, 𝜇2, 𝜙) for a fixed function 𝜙 are given by,  
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 𝑐1(𝜙) =
∫ 𝑢0(𝑥,𝑦)𝐻𝜀(𝜙(𝑥,𝑦))𝑑𝑥𝑑𝑦

 
Ω

∫ 𝐻𝜀(𝜙(𝑥,𝑦))𝑑𝑥𝑑𝑦
 

Ω

 (28a) 

 𝑐2(𝜙) =
∫ 𝑢0(𝑥,𝑦)(1−𝐻𝜀(𝜙(𝑥,𝑦)))𝑑𝑥𝑑𝑦

 
Ω

∫ (1−𝐻𝜀(𝜙(𝑥,𝑦)))
 

Ω
𝑑𝑥𝑑𝑦

 (28b) 

 It is obtained experimentally that,  

 𝜇1(𝜙) = min(𝜇11, 𝜇12) (29a) 

 𝜇2(𝜙) = min (𝜇21, 𝜇22) (29b) 

where, 𝜇11, 𝜇12, and 𝜇21, 𝜇22 are the class means obtained from the EM algorithm for 

the assumed two classes bone and tissue, derived from the interior and exterior 

narrowbands respectively surrounding the evolving contour. Accordingly, 𝑐1, 𝑐2, 𝜇1, 

𝜇2 are also changing with respect to the evolving contour C. 

 The minimization of exp. (27) can be done by introducing an artificial time 

variable 𝑡 ≥ 0, and moving 𝜙 in steepest descent direction to a steady state with the 

initial condition defined in exp. (30b), and boundary condition defined in exp. (30c):  

 
𝜕𝜙

𝜕𝑡
= 𝛿𝜀(𝜙) [−(𝛼(𝑢0 − 𝑐1))

2
+ 𝛽(𝑢0 − 𝜇1)𝛼1) + (𝛼(𝑢0 − 𝑐2)2 + 𝛽(𝑢0 − 𝜇2)𝛼2] + 𝜇𝛿𝜀(𝜙)𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
)(30a) 

 𝜙(0, 𝑥, 𝑦) = 𝜙0(𝑥, 𝑦) 𝑖𝑛 Ω (30b) 

 
𝜕𝜙

𝜕𝑛̅
= 0 on 𝜕Ω (30c) 

where 𝑛̅ denotes the exterior normal to the boundary 𝜕Ω. In the above partial 

differential expression, the Neumann boundary condition in exp. (30c) is chosen as 

the boundary condition. Usually, Neumann boundary condition has many advantages. 

First, it is easy to implement since there are no values to assign for 𝜙 at the boundary. 

Second, it implies that the solution of exp. (27) satisfies a maximum principle. 

Moreover the gaps of the curve C may appear only when advancing the zero level set 

which would change its topology, and cannot come from outside of  because of the 

spurious values created by the Neumann boundary condition. 

 

4.4 Termination Criteria for Curve Evolution 

The evolving curve C, or the zero level set function, will gradually split according to 

the topological structure of the object and evolves towards the true boundaries of 

objects in images. When evolving curves finally arrive at the position of the true 

boundary 𝐶∗, the curves should stop evolving. Now, a problem of when and how the 

curves automatically stop evolving or what termination criterion is for curves 

evolution is arising.  

 It can be obviously seen that the global term and the local-EM term keeps 

decreasing while the curve evolves towards the true boundaries of objects, and the 

true boundary 𝐶∗ is the minimizer of the global term and the local term, which can be 

written as follows:  

 𝑖𝑛𝑓
𝐶

(𝛼 ∙ 𝐸𝐺(𝐶) + 𝛽 ∙ 𝐸𝐿−𝐸𝑀(𝐶)) ≈ 0 ≈ 𝛼 ∙ 𝐸𝐺(𝐶∗) + 𝛽 ∙ 𝐸𝐿−𝐸𝑀(𝐶∗) (31) 

 In the implementation, the termination criterion chosen is the steady-state reached 

by the contour. When the curve reaches the true boundary, it will remain stable. 

Hence, the curve evolution process is stopped, when either the fixed number of 

iterations are completed or when the evolving contour reaches its steady state. 
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4.5 Numerical Implementation of the Model:  

The partial differential expression in the continuous domain defined in exp. (30a) can 

be solved by a finite difference method in the numerical scheme. All the spatial partial 

derivatives are approximated by the forward difference. Then exp. (30a) can be 

discritized using the forward difference as follows:  

 
𝜙𝑖,𝑗

𝑛+1−𝜙𝑖,𝑗
𝑛

∆𝑡
= 𝐿(𝜙𝑖,𝑗

𝑛 ) (32) 

 Where ∆𝑡 is the time step and 𝐿(𝜙𝑖,𝑗
𝑛 ) is the numerical approximation of the right 

hand side in exp. (30a). The corresponding curvature 𝜅 = 𝑑𝑖𝑣 (
∇ϕ

|∇𝜙|
) in the 𝐿(𝜙𝑖,𝑗

𝑛 ) 

can be discretized using a second-order central difference scheme:  

 𝜅 = 𝑑𝑖𝑣 (
∇ϕ

|∇𝜙|
) =

𝜙𝑥𝑥𝜙𝑦
2−2𝜙𝑥𝑦𝜙𝑥𝜙𝑦+𝜙𝑦𝑦𝜙𝑥

2

(𝜙𝑥
2+𝜙𝑦

2)
3 2⁄  (33) 

where 𝜙𝑥 , 𝜙𝑦, 𝜙𝑥𝑥 , 𝜙𝑦𝑦 are computed as follows:  

 𝜙𝑥 =
1

2ℎ
(𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗) 

 𝜙𝑦 =
1

2ℎ
(𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗−1) 

 𝜙𝑥𝑥 =
1

ℎ2 (𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗 − 2𝜙𝑖,𝑗) 

 𝜙𝑦𝑦 =
1

ℎ2 (𝜙𝑖,𝑗+1 + 𝜙𝑖,𝑗−1 − 2𝜙𝑖,𝑗) 

 𝜙𝑥𝑦 =
1

ℎ2 (𝜙𝑖+1,𝑗+1 − 𝜙𝑖−1,𝑗+1 − 𝜙𝑖+1,𝑗−1 + 𝜙𝑖−1,𝑗−1) (34) 

where h is the grid spacing. Exp. (30a) can then be implemented as follows:  

𝜙𝑖,𝑗
𝑛+1 − 𝜙𝑖,𝑗

𝑛

∆𝑡
= 𝛿𝜀(𝜙𝑖𝑗

𝑛 ) {− (𝛼 (𝑢𝑖𝑗 − 𝑐1(𝜙𝑛))
2

+ 𝛽 (𝑢𝑖𝑗 − 𝜇1(𝜙𝑛))
𝛼1

)

+ (𝛼 (𝑢𝑖𝑗 − 𝑐2(𝜙𝑛))
2

+ 𝛽 (𝑢𝑖𝑗 − 𝜇2(𝜙𝑛))
𝛼2

)} + 𝜇 ∙ 𝛿𝜀(𝜙𝑖𝑗
𝑛 )𝜅 

(35) 

where 𝛿𝜀 and 𝜅 are computed according to exp.(25) and exp. (33) respectively. 

 

4.6 Description of Algorithm Steps 

A description of the algorithm of LCV-EM is given as follows. It consists of the 

following steps:  

Step 1: Input the original image 𝑢0. 

Step 2: Set the initial curve 𝐶𝐼 in 𝑢0. Set the value of time step ∆𝑡, the grid spacing h 

and 𝜀 in exp. (34). In practice ∆𝑡 = 0.1 and ℎ = 𝜀 = 1. Set the values of the 

controlling parameter of the global term i.e., 𝛼, the controlling parameter of the local 

term i.e., 𝛽, and the length controlling parameter 𝜇. For MR images, 𝛼 = 1, 𝛽 = −1, 

and 𝜇 = 1. 

Step 3: Evolve level set function 𝜙 according to exp. (30) and its numerical solution 

scheme described in exp. (35). 

Step 4: Extract the evolving curve C from the zero level set function. 

Step 5: Decide whether the termination criterion described in section 4.4 is satisfied or 

not. 

Step 6: If yes, the algorithm is stopped, otherwise go to step 3. 
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5. Results and Discussion 

The brain extraction algorithms using the LCV-EM model has been developed using 

MATLAB 2009b on an Intel Pentium Core2Duo machine. The images used for the 

analysis have been taken from the Open Access Series of Imaging Studies (OASIS) 

and The Whole Brain Atlas. Out of the two datasets available on the OASIS webpage, 

the dataset of cross-sectional MRI data in young, middle-aged, nondemented, and 

demented older adults is used. Both T1-and T2-weighted MR images are used for the 

analysis. During the implementation of the LCV-EM model, no pre-processing steps 

such as morphological filtering or anisotropic diffusion was employed. The initial 

contour was interactively placed to be near the brain-skull interface using the roipoly 

function in MATLAB. This has the advantage of reducing the number of iterations 

and also bypasses the structures present within the brain (e.g., tumors etc.). Also a 

reduction in the number of iterations is achieved. In the implementation, the time step 

dt is calculated using the Courant-Fredrichs-Lewy condition. 

 The segmentation results for the images from the OASIS dataset are shown in fig. 

2. Fig. 2(a) is showing the original brain MR image from the OASIS dataset. The slice 

orientation chosen for analysis is the transaxial or axial orientation. The processed 

skull stripped result for the corresponding image present in the dataset is shown in fig. 

2(d). This is taken as the gold standard for comparison with other methods including 

the proposed method. Fig. 2(b) and fig. 2(c) are showing the MR image with the 

developed contour superimposed on it. Fig. 2(e) is showing the result of the proposed 

method with the values of 𝛼1 = 𝛼2 = 5 and fig. 2(f) is showing the result of the 

proposed model with the values of 𝛼1 = 𝛼2 = 11. On observing both images, i.e., fig. 

2(e) and fig. 2(f) it can be seen that the parameters 𝛼1 and 𝛼2 indeed control the 

ability of the model to follow the curves in the original image. A small value of 𝛼1 

and 𝛼2 allows the model to follow the curves of the brain more closely, while large 

values of 𝛼1 and 𝛼2 make the proposed model to obtain coarse segmentation. 

 

 
Figure 2. Skull stripping results for the proposed model (a) Original image (b) 
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MR image with contour overlayed on it (𝜶𝟏 = 𝜶𝟐 = 𝟓), (c) MR image with 

contour overlayed on it (𝜶𝟏 = 𝜶𝟐 = 𝟏𝟏) (d) Processed image with skull stripped 

from the OASIS dataset (e) Result obtained from the LCV-EM model for 𝜶𝟏 =
𝜶𝟐 = 𝟓, (f) Result obtained from the LCV-EM model for 𝜶𝟏 = 𝜶𝟐 = 𝟏𝟏 

 Fig. 3 is showing the results of the proposed algorithm applied to T1-, T2-, and 

T2*-weighted images. Fig. 3(a) is showing the T1-weighted image, fig. 3(b) is 

showing the T2-weighted image and fig. 3(c) is the T2*-weighed image. Fig. 3(d), fig. 

3(e), and fig. 3(f) are the corresponding skull segmented results for T1-, T2-and T2*-

weighted images respectively. It is observed that as compared to other active contour 

models, segmentation using LCV-EM is more reliable and also depends upon a lesser 

number of parameters. The calculation time is further reduced by using narrow-band 

propagation of the model. The proposed model is also insensitive to random noise 

scattered in the MR image. 

 

 
Figure 3. Skull stripping results using LCV-EM for (a), (d) axial T1 weighted, 

(b), (e) axial T2 weighted, (c), (f) axial T2* weighted 

 

 

 To evaluate the performance of the proposed model, its results are compared with 

well-known skull stripping methods such as the Brain Surface Extractor (BSE) 

algorithm, skull stripping using geodesic active contours (GAC) [40], and the Chan-

Vese model [25]. The processed results available in the OASIS dataset are taken as 

the gold standard. The BSE algorithm is available in the stand alone application Brain 

Suite which is available for download via http: /users.loni.ucla.edu. Fig. 4 is showing 

the skull segmentation results for BSE, GAC, Chan-Vese active contour model, and 
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the proposed LCV-EM model. The disadvantage of the GAC algorithm is its 

dependence on the stopping function. The accuracy of the algorithm depends on the 

stopping function generated. The more accurate the stopping function is able to high-

light the boundary between the brain and non-brain region, the more accurate, the 

GAC is able to follow the curves in the brain region. The presence of a weak 

boundary or a kink in the detected boundary can cause leakage of the contour through 

that portion, resulting in incorrect segmentation. As opposed to this, the LCV-EM 

model does not require any stopping function. Also, the problem of leakage through 

the boundary can also be eliminated through the choice of the width of the interior 

and exterior bands surrounding the narrowband representing the evolving contour. 

Evaluation of the performance of the proposed LCV-EM model is first done using 

FPR as the evaluation parameter. Table 1 is showing the FPR for all four BEAs, 

namely BSE, skull stripping using GAC, Chan-Vese active contour model, and the 

LCV-EM model. It can be seen that LCV-EM model provides the optimum 

performance with respect to that of the other algorithms. It is also observed that the 

FPR for the GAC algorithm is slightly larger than that of BSE and LCV-EM. This can 

be attributed mainly to the conservative nature of the algorithm, i.e., the tendency to 

avoid removing non-brain tissus [40]. The performance of the Chan-Vese model is 

somewhat poor as compared to that of BSE and LCV-EM. This is because the model 

tends to align itself along the deep sulci of the brain. The addition of the L-EM term 

reduces this tendency and improves the performance of the model. 

 

 
Figure 4. Skull stripping results (a) Original image (b) processed standard (c) 

BSE (d) GAC (e) Chan-Vese active contour model (f) LCV-EM model 

 

Table 1. Performance indices of GAC, Chan-Vese active contour model, BSE, 

and LCV-EM models of skull stripping 

 

Sr. No. Method FP_rate 

1 GAC 0.0489 

2 Chan-Vese Active Contours 0.1369 

3 BSE 0.0265 

4 LCV-EM 0.0193 

 

 

 Fig. 6 is showing the segmentation results for LCV-EM model, BSE, and the 

Chan-Vese models. The first column of fig. 6 is showing the original images taken 
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from the OASIS dataset. The second column shows the processed results present in 

the dataset against which comparison of the BEAs is made. The third column contains 

the results of LCV-EM model for the respective images. The fourth column contains 

skull segmentation results for BSE and the last column contains skull segmentation 

results obtained using the Chan-Vese Model. The corresponding performance indices, 

i.e., the Jaccard coefficient, Dice coefficient, false positive rate and false negative rate 

are shown in Table 2. It can be observed from fig. 5 as well as table 2, that LCV-EM 

provides better results than both BSE and Chan-Vese algorithms. 

 
Figure 5. Skull stripping results for LCV-EM, BSE, and Chan-Vese model 

 

Table 2. Performance Indices for LCV-EM, Chan-Vese, and BSE skull stripping 

methods 

 
Sr. No. Image LCV-EM Model Chan-Vese BSE 

  J D FPR FNR J D FPR FNR J D FPR FNR 

1 Img1 0.9621 0.9807 0.0065 0.0316 0.9005 0.9477 0.0005 0.0990 0.9422 0.9702 0.0406 0.0195 

2 Img2 0.9374 0.9677 0.0016 0.0611 0.8613 0.9255 0 0.1387 0.9457 0.9721 0.0396 0.0169 

3 Img3 0.9651 0.9822 0.0216 0.0141 0.9210 0.9589 0.0082 0.0783 0.9292 0.9633 0.0686 0.0071 

4 Img4 0.9677 0.9836 0.0174 0.0155 0.9495 0.9741 0.0082 0.0427 0.9278 0.9626 0.0755 0.0021 

5 Img5 0.9647 0.9820 0.0044 0.0311 0.9285 0.9629 0.00008 0.0715 0.9447 0.9715 0.0492 0.0088 
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6 Img6 0.9583 0.9787 0.0076 0.0344 0.8725 0.9319 0 0.1275 0.9426 0.9705 0.0380 0.0216 

7 Img7 0.9741 0.9869 0.0060 0.0200 0.9311 0.9643 0.0007 0.0682 0.9499 0.9743 0.0435 0.0088 

8 Img8 0.9568 0.9779 0.0159 0.0280 0.9260 0.9616 0.0032 0.0711 0.9500 0.9743 0.0383 0.0136 

9 Img9 0.9535 0.9762 0.0088 0.0381 0.8969 0.9456 0.0028 0.1006 0.9463 0.9724 0.0402 0.0156 

10 Img10 0.9405 0.9673 0.0008 0.0588 0.8605 0.9250 0 0.1375 0.9187 0.9576 0.0386 0.0459 

6. Conclusion 

In this paper, a new local Chan-Vese Expectation-Maximization (LCV-EM) model 

for skull stripping MRI brain images is proposed. The energy functional for the 

proposed model consists of a global term, local EM term and a regularization term. 

By incorporating the local-EM term, images having intensity inhomogeneity such as 

MR images can be effectively skull stripped. Incorporating the information obtained 

from the EM algorithm results in a better segmentation of the skull from the brain 

tissue as compared to other brain extraction algorithms. Further, the EM algorithm is 

applied only to narrowbands surrounding the zeroth level set. This results in a faster 

computation of the EM algorithm, hence speeding up the entire process. Experiments 

on MR images from the OASIS dataset and the Whole Brain Atlas have demonstrated 

the desired segmentation performance of the proposed model on the MR images 

having a large amount of intensity inhomogeneity. Further, the efficiency of the 

model is apparent from the values of the segmentation evaluation parameters such as 

Jaccard coefficient, Dice coefficient, sensitivity, specificity, false positive rate, and 

false negative rate. 
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Summary 

Intracranial brain segmentation commonly referred to as skull-stripping, aims to 

segment the brain tissue (cortex and cerebellum) from the skull and non-brain 

intracranial tissues in magnetic resonance (MR) images of the human brain. Skull 

stripping forms an important pre-processing step in neuroimaging analyses. In this 

paper, a local Chan-Vese Expectation Maximization (LCV-EM) model is proposed 

for skull segmentation which uses both global image information and the local 

information obtained via the EM algorithm. The energy functional for the proposed 

model consists of three terms: the global term, local EM term, and the regularization 

term. Since MR images contain a lot of intensity inhomogeneity, the use of the local-

EM term along with the global information allows the skull and non-brain tissue to be 

segmented from the brain tissue in spite of the partial volume effect prominent near 

the boundary of the skull. The LCV-EM model is applicable to both T1 and T2-

weighted MR images. The model has the advantage that it does not require any 

boundary function or stopping function to decide the true boundary of the skull. Also, 

the problem of leakage through the boundary can be eliminated through the choice of 

the width of the interior and exterior narrowbands surrounding the evolving contour. 

The model also shows good performance in comparison with other methods for brain 

extraction such as BSE, skull stripping using GAC, and the Chan-Vese model and 

also provides good segmentation results even in the presence of noise. Experiments 

on MR images from the OASIS dataset and the Whole Brain Atlas have demonstrated 

the desired segmentation performance of the model. The efficiency of the model is 

also apparent from the values of segmentation evaluation parameters such as Dice 

coefficient, false positive rate and false negative rate. 
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